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Abstract

This paper presents a study, based on conic correspon-
dences, on the relationship between multiple images ac-
quired by uncalibrated cameras. Representing image con-
ics as points in the five-dimensional projective space al-
lows us to handle image conics in the same way as image
points. We show that the coordinates of corresponding im-
age conics satisfy the multilinear constraints, as shown in
the case for points and lines. To be more specific, the coor-
dinates of two corresponding image conics satisfy bilinear
constraints. When a third image comes in, the coordinates
of three corresponding image conics satisfy trilinear con-
straints. Moreover, these constraints are naturally extended
to the case where more images are available.

1. Introduction

The appearance of an object’s shape varies significantly
with changes in viewpoint and this results in numerous dif-
ferent images even for the same object. One of the fun-
damental difficulties in recognizing objects from images
is how to deal with such images obtained from the same
object. Clarifying the relationship between images of the
same object is thus of fundamental importance in com-
puter vision. Knowledge of the relationship between im-
ages provides us with many advantages in important prob-
lems in computer vision and multimedia including three-
dimensional reconstruction from multiple images, object
recognition, image synthesis and image coding.

It is widely known that the coordinates of corresponding
points in two perspective images satisfy the bilinear (epipo-
lar) constraint. With the help of projective geometry, it was
shown that the coordinates of corresponding points in three
uncalibrated perspective images satisfy the trilinear con-
straints [4, 5, 23, 24, 25, 29]. Faugeras–Mourrain [4] and
Triggs [29] independently extended this result to the case of
four images, showing that the coordinates of corresponding

points in four uncalibrated perspective images satisfy the
quadrilinear constraints. Trilinear constraints and quadrilin-
ear constraints have been deeply investigated to understand
them in a common framework (see [9, 10, 12, 13, 14], for
example) and are called, as a whole, the multilinear con-
straints. These multilinear constraints have been also ex-
tended to be applicable to the time-continuous case or the
space-continuous case [1, 11, 30].

In the case of lines, by contrast, it is widely known that
no constraint exists on the coordinates of two corresponding
image lines. When a third image in involved, however, the
coordinates of three corresponding image lines satisfy the
trilinear constraints [4, 6, 7]. In particular, Hartley [6, 7, 8]
showed that the trilinear constraints for lines are essentially
equivalent to those for points and opened a unified linear
approach to handling both points and lines.

A conic is one of the most important image features.
This is because many man-made objects have circular parts,
and circles are perspectively projected onto conics. Further-
more, the conic is a more compact primitive than points
or lines and can be more robustly and more exactly ex-
tracted from images. In addition, finding correspondences
between conics is much easier than that between points.
Unlike points, conics have features that distinguish one
from another and can be used to narrow down the pos-
sible matches. It is thus clear that investigating vision
problems based on conic correspondence is also signifi-
cant. Nevertheless, there are fewer articles (for instance,
[15, 16, 17, 18, 19, 20, 31, 32]) dealing with conics, and the
relationship between corresponding image conics is still an
open problem.

This paper presents a study, based on conic correspon-
dences, on the relationship between multiple images ac-
quired by uncalibrated cameras. We employ the represen-
tation where a conic is represented as a point in the five-
dimensional projective space. This representation allows us
to handle image conics in the same way as image points. We
show that the coordinates of corresponding image conics
satisfy the multilinear constraints, as shown in the case for
points and lines. In particular, we focus on the two-image
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Figure 1. Pointwise transformation and con-
icwise transformation.

case and the three-image case. We show that the coordinates
of two corresponding image conics satisfy five independent
bilinear constraints. When a third image comes in, the coor-
dinates of three corresponding image conics satisfy trilinear
constraints. Moreover, these constraints are naturally ex-
tended to the case where more images are available. Note
that a part of this work was presented in [27] and [28].

2. Pointwise projection

We discuss here the relationship between coplanar points
in 3-D and their images based on the framework of projec-
tive geometry. Note that if not explicitly stated, the coor-
dinates are understood to be homogeneous throughout this
paper. An introduction to elementary projective geometry
can be found in [3] or [22].

Let �� be the �-dimensional projective space over the
real number field �. When we observe points on plane �
in 3-D, we embed � in 3-D into ��. We also embed the
image plane � (� is the viewpoint) in ��. Embedding �
and � in �� allows us to express the transformation from
� to � as a plane projective transformation. That is, letting
the homogeneous coordinates of a point in� in 3-D and its
image observed from viewpoint � be� and�� respectively,
we have

�� � ��������

where�� is a �� � nonsingular matrix and � implies the
equality sign up to a scale factor. We remark that in this
formulation, all the information of camera parameters is in-
cluded in ��; we need not assume that the camera is cali-
brated. In this paper, we call�� a pointwise projection.

3. Conic-based relationship between a conic in
3-D and its image

3.1. Conicwise projection

Since a conic in 3-D lies in a plane, embedding both the
plane involving the conic and the image plane into �� al-
lows us to express a conic in 3-D and its images in the same
form of

�� � � � �� (3.1)

where � is the �� � symmetric matrix given by
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� is called a conic matrix. Note that we need not as-
sume any calibration in this formulation. It follows from
(3.1) that conics have a one-to-one correspondence with
�s i.e., � � � symmetric matrices up to scale. This is be-
cause one conic corresponds to one � up to scale and an-
other conic corresponds to another � up to scale. � has
six independent entries and only the ratios between them
are significant. In other words, � bijectively corresponds
to a point in ��. Hereafter, for a conic (3.1), we refer to
� � ��� �� 
� �� 
� 	�� as the coordinates of the conic.

Conics are transformed into conics under projective
transformations. It is not difficult to see the relationship
between a conic in 3-D (with conic coordinates �) and its
image (with conic coordinates ��) observed from viewpoint
�:

�� � ���� (3.2)

where �� is a nonsingular �� � matrix (see Fig. 1). We call
�� a conicwise projection.

3.2. Link between conicwise projection and point-
wise projection

When points are subject to a pointwise projection ��,
its corresponding conic matrix � is transformed to

�� � ��������� (3.3)

This equation indicates that each entry of �� is expressed
as the linear combination of the entries of � and that the co-
efficients are quadratic homogeneous in the entries of ��.
Each entry of �� is thus quadratic homogeneous in the en-
tries of ��. This relationship is explicitly obtained in the
following way.
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and then rewrite (3.3) in terms of the entries of the conic
coordinates, it follows that
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where ��� �� denotes the entry of the conic coordinates
that is deduced from ��� (��

�� �� is defined in the same
manner). The notation �� �� implies the symmetriza-
tion of the indices inside parentheses; we define that
the symmetrized indices are aligned in such a way as
�� ��� �� ��� �� ��� �� ��� �� ��� �� ��. Moreover, function �
is defined by
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Here we used tensor analysis. See [21] for details of tensor
analysis and the notations.

From (3.2) and (3.4), we establish the link between a
conicwise transformation �� and its corresponding point-
wise transformation��:

���� ���� �� � ���� ����
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Note that, from the definition,
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We see that we obtain �� by taking the tensor product of
�� and itself, and then symmetrizing the rows and the
columns respectively.

Based on (3.5), Sugimoto [26, 27] derived a linear algo-
rithm for computing�� (up to scale) from a given ��.

� ��� or ��
�

denotes the ��� �� entry of a matrix � .

3.3. Algebraic properties of conicwise transforma-
tion

�� is essentially determined by a pointwise projection
�� and, therefore, it has eight independent parameters. We
thus see that �� belongs to an eight-dimensional submani-
fold of all �� � matrices up to scale. In other words, if we
are given an arbitrary � � � matrix up to scale, the matrix
does not necessarily belong to the submanifold.

A � � � matrix up to scale has �� � � � �� degrees of
freedom and an eight-dimensional manifold has 8 degrees
of freedom. To give the necessary and sufficient conditions
on �� for belonging to the submanifold constructed essen-
tially by ��, it is thus sufficient to derive �� � � � �

algebraically independent constraints on entries of ��. We
derive here this necessary and sufficient conditions.

To obtain the constraints on the entries of ��, we in-
vestigate (3.5) in detail. Without loss of generality, we
may handle ��� instead of �� since ��� � �����, where
� �� ������� �� �� �� �� ��:
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We pay our attention to the particular cases where � � � or
� � �, from which it follows that
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It is now easy to see that the entries of ��� satisfy the
following relationship:

������������ � ����������� � ���������������������� 	
����������� � ���������������������� �

������������ � ����������� ����������������������� 	
����������� � ���������������������� �

������������ � ����������� ����������������������� 	
����������� � ���������������������� �

������������ � ����������� ����������������������� 	
����������� � ���������������������� �

When � �� � and � �� � (we have 9 cases for such �� �� �� �),
these equations make sense and indicate that each �����������
is expressed in four different ways in terms of other entries
of ���. (The equations above may be rewritten as cubic con-
straints on the entries of ���.) It is not difficult to see that
any three of the four expressions are algebraically indepen-
dent. (From any three expressions above, the other one is



derived.) We thus have � � � � �
 algebraically indepen-
dent (cubic) constraints on the entries of ���, which are the
necessary and sufficient constraints on the entries of ��� for
belonging to the eight-dimensional submanifold that is es-
sentially constructed by �� . In fact, � � � matrices up to
scale satisfying these 27 constraints have a one-to-one cor-
respondence with conicwise projections.

4. Multilinear forms

We consider a conic in 3-D with conic coordinates �,
and its � images (� 	 �). We obtain from (3.2)

���� � ��� �� � �� �� � � � � ���

where �� denotes the conic coordinates of the image conic
observed from viewpoint � and �� denotes the conicwise
projection onto the image �. Along with [10, 12], the above
equations can be written as

�� � �� (4.1)

where
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Since � in (4.1) has a nontrivial nullspace, we have

����� 
 �� 	��� � � � 	 ��

This is equivalent to that all �� 	 �� � �� 	 �� subma-
trices of � have vanishing determinants. We see that any
of these minors contains all the columns of � and that the
coordinates in different images do not appear in the same
column, from which it follows that all the determinants of
��	��� ��	�� submatrices of � are multihomogeneous
of degree ��� �� � � � � �� that is of the same degree in every
� -plet of image coordinates. Moreover, it can be seen from
the structure of � that any term of the determinants is fac-
torized as a product of image coordinates multiplied by an
expression involving only rows taken from at most six dif-
ferent conicwise projections. This observation means that
this type of constraints exist only for at most six correspond-
ing image conics.
� has the �� 	����� 	��	���� �� 	��� � �� 	

����� 	 �� degrees of freedom since � is a �� � �� 	
�� matrix whose rank is at most �� 	 ��. We thus have
����	��� �� 	����� 	�� � ��� � �� algebraically
independent constrains on the entries of �.

�
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��

viewpoint 2
viewpoint 1

�� ��

Figure 2. Two views of a conic in 3-D

5. Bilinear constraints

We here focus on the case of � � �, that is, we assume
that two corresponding image conics are given.

When we observe a conic in 3-D (with conic coordinates
�) from two different viewpoints � and � by uncalibrated
cameras (Fig. 2), we have
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� � �� (5.1)

Since the �� � � coefficient matrix in (5.1) is at most of
rank 7, all the �� � ��-minors of the matrix have vanishing
determinants. In taking the �� � ��-minors, we have ����

cases, only 5 of which are algebraically independent.
We can show that the five algebraically independent mi-

nors exist that involve the first four rows from one conic-
wise projection, the first three rows from the other conic-
wise projection—these seven rows are fixed—and any one
row from the other five (two from the first projection and
three from the second). (A brief sketch of the proof is given
in the appendix.) An unfixed one row selection results in
the five algebraically independent minors. For example, we
can involve the minor obtained by the first five rows from
�� and the first three rows from ��:
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where ���� and ��� denote the �th row of �� and �th entry
of ��, respectively. Laplace expansions of the minors allow
us to express the five determinants in the bilinear forms in
the coordinates of the two image conics. This indicates that



the corresponding image conics satisfy the five independent
bilinear constraints, and they have the form of�
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where ��� is the �th entry of �� and �	���� is defined as the
determinant of a � � � matrix whose rows are taken only
from rows of the two conicwise projections �� and �	 . For
instance, �	��� � �������� �
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���.

We see that we have 30 �	����’s that actually appear in
the bilinear constraints. Since each conic correspondence
gives five independent linear constraints on �	����’s, we
can linearly estimate �	����’s up to a scale factor from six
coplanar conics even if nothing is known about �	���� . In
fact, we face the case in robotic applications [2] where we
have to deal with more than six coplanar conics, no pair of
which is intersecting and nothing is known about them. We
remark that knowledge about �	���� , of course, reduces the
number of required conics for estimating �	���� .

Remark 5.1 Fixing another set of seven rows from the
coefficient matrix in (5.1) yields also �	����’s, however,
our selection of the seven fixed rows minimizes the num-
ber of �	����’s that actually appear in the bilinear con-
straints. Originally we have 36 �	����’s, six of which, i.e.,
�	��� �� � 
� �� �� � � �� ��, do not appear in the above
row set selection (cf. the appendix for this verification). �

Remark 5.2 �	���� ’s have a relationship with the homog-
raphy between two images � and � . This is because con-
ics are coplanar objects and two images of coplanar ob-
jects are related by the homography. The results of Sug-
imoto [26, 27] implicitly characterize this relationship. In
this paper, however, we do not get into this direction. De-
tailed research results in this direction will be reported in
another paper. �

6. Trilinear constraints

When we observe a conics in 3-D (with conic coordi-
nates �) from three different viewpoints 1, 2 and 3 by un-
calibrated cameras (Fig.3), we have
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All the �� � ��-minors of the coefficient matrix in (6.1)
have vanishing determinants and only 10 of them are al-
gebraically independent, which yields 10 algebraically in-
dependent trilinear constrains on the coordinates of three
corresponding image conics.

�

��

��

viewpoint 2viewpoint 1

��

��

��

��
viewpoint 3

Figure 3. Three views of a conic in 3-D

Since the coefficient matrix contains one block with six
rows for each image, we have two types of the �� � ��-
minors: the minors whose rows are all from only two im-
ages and the minors whose rows are exactly from the three
images.

As seen in the previous section, the determinants of the
first type yield the bilinear constraints on the conic coordi-
nates of the three pairs of the three image conics.

The determinants of the second type, on the other hand,
yield the trilinear constrains on the coordinates of three im-
age conics: �

�����
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where �	
������ is defined as the determinant of a � � �
matrix whose rows are taken only from rows of the conic-
wise projections �� � �	 and �
 . For example, �	
���� �
�������� �
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���. To compute 10 independent mi-

nors, we fix eight rows of the coefficient matrix in (6.1), i.e.,
six from one image, one from another image and one from
the other image, and then we select one row from the other
rows. This allows only 66 �	
������’s to actually appear in
the trilinear constraints� . Since each conic correspondence
over three images gives 10 independent linear constraints
on �	
������’s, we can linearly estimate �	
������’s up to
a scale factor from seven coplanar conics even if nothing is
known about �	
������ nor �	���� .

Remark 6.1 The number of algebraically independent
constraints on ��� �� and �� derived from (6.1) is 10. In
the previous section, we have already identified five alge-
braically independent constrains for the two-image case.
This implies that we have 5 independent constraints be-
tween images 1 and 2, and other 5 independent constraints
between images 2 and 3. The trilinear constraints on three
corresponding image conics may, therefore, not be alge-
braically independent of the bilinear constraints on the con-
ics between any pair of the three images. Clarifying the

� Originally, we have �� � ��� ���������’s.



relationship between bilinear constraints and trilinear ones
is an open problem. �

7. Conclusion

We presented a study, based on conic correspondences,
on the relationship between multiple images acquired by
uncalibrated cameras. We employed the representation
where a conic is represented as a point in the five-
dimensional projective space. This representation allows us
to handle image conics in the same way as image points.

A conicwise projection from 3-D to the image plane is
represented as a � � � matrix (up to scale) belonging to
the eight-dimensional submanifold determined by the cor-
responding pointwise projection. We gave the necessary
and sufficient conditions on a conicwise projection for be-
longing to the submanifold determined by its corresponding
pointwise projection.

We showed that the coordinates of corresponding image
conics satisfy the multilinear constraints. In particular, the
coordinates of two corresponding image conics satisfy five
algebraically independent bilinear constraints. When a third
image comes in, the coordinates of three corresponding im-
age conics satisfy the trilinear constraints. These results are
naturally extended to the case where more than three images
are available: quadrilinear constraints for four image con-
ics, pentalinear constraints for five image conics and hexa-
linear constraints for six image conics. We also showed that
these types of constraints exist only for at most six different
images and that the number of the algebraically independent
constraints is ��� � ��, where � is the number of images.

Clarifying the relationship between �	���� in the bilinear
constraints and �	
������ in the trilinear constraints is left
for future research.
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Appendix (Algebraically independent minors
of a rectangular matrix)

We here consider minors of a rectangular matrix whose
entries are all independent variables, and investigate alge-
braic independence among the minors. The Grassmann–
Plücker identity below plays a significant role in this inves-
tigation.

Grassmann–Plücker identity Let � be a matrix with
��� 
 ���, where � � ������ and � � ������. For
�� � � � � with �� � � �� �� � ��� and � � �
� �, it holds that

������� � � � ������� � �� ��
��	��	

������� � � �	 �� � ������� � � 	 �� ���

where ���� � � means the submatrix of � having row set �
and column set � , and � � �	 � is a short-hand notation for
��
����

�
��� in which the column � is put at the position

of column � in � ; similarly for � �	 �� � � �� �
�
����
���.

�

Let � be a � � � matrix with �  � and ����� � !

�! 
 ��. Then, the number of (�!	��� �!	��)-minors of
� is ���
�����
�. Since ����� � !,� has ���!����!�
constraints on the entries of�, which indicates that we have
���!����!� algebraically independent (�!	����!	��)-
minors of �.

In the two-view case, since

�� �



�� �� �

�� � ��

�
�

� � �, � � ��, and ! � 
. We thus have 5 algebraically
independent ��� ��-minors of �.

We assume that ! � ��� for simplicity. This assumption
does not cause any essential difference in the subsequent
result. Since ! � �� �, we can talk of ��� ��-minors of �,
and we have ��� �	�� algebraically independent minors.
Letting

�� �� ��� �� �� � � � � ���

and  �� � ������
�� �� ��	�� �	�� � � � � ���, we define

�
 �� �� � � 	 " �" �  ����

We now have the following theorem on independence of
��� ��-minors of �.

Theorem Let � � ������. Then, �� � � 	 �� minors
������� ���� ������� �
� �" �  ��� are algebraically inde-
pendent ��� ��-minors of �. �

Proof. Instead of showing independence between
������� ��� and ������� �
� �" �  ��� straightforwards,



we will take an indirect proof. Since we know that �� �
� 	 �� algebraically independent minors exist, we show
the other minors algebraically depend on ������� ��� and
������� �
� �" �  ���.

To minor ������� � � �� � �������, we introduce dis-
tance �	 from ������� ���:

�	 �� ���
� ��

We remark that �	� � � and �	� � � for " �  ��.
We classify all the �� � ��-minors of � into �� � ��

groups depending on the distance from ������� ���. Note
that the maximum distance from ������� ��� is ��� ��.

Let ������� � � be a minor with �	 � �. Putting
��
� � ���� ��� and �
�� � ���� ���, where ��� �� � ��

and ��� �� �  ��, it follows from the Grassmann–Plücker
identity that

������� ��� � ������� � � �

������� �� � �� 	 ��� � ������� � 	 �� � ���

	������� �� � �� 	 ��� � ������� � 	 �� � ����

We see that any minor that appears in the right-hand
side of the above equation has the distance of 1 from
������� ���. This indicates that ������� � � algebraically
depends on ������� ��� and the minors with distance 1
from ������� ���. The important remark here is that ap-
plying the Grassmann–Plücker identity to a minor with dis-
tance 2 together with ������� ��� reduces the distance by
1.

In the similar way, to any minor whose distance is greater
than 2, we recursively apply the Grassmann–Plücker iden-
tity to see that it algebraically depends on ������� ��� and
the minors with distance 1.

To end the proof we have now only to show that the
minors with distance 1 other than ������� �
� �" �  ���
algebraically depends on ������� �
� �" �  ��� and
������� ���.

Let ��
 �� �� � �	 ", where � � ��
��� and " �  ��.
Note that �	�� � �.

We construct �� 	 �� � �� 	 �� matrix � whose prin-
cipal �� � ��-matrix is identical with ���� ��� and whose
�� 	 ��th column vector is identical with the vector con-
catenating ���� �"�� and 1. Moreover, the rest entries of
� are assigned so that � degenerates. Taking the determi-
nant of �, we have an algebraic equation with respect to
������� ��
�, ������� �
� and ������� ���.

We construct another ��	�����	�� matrix�. We have
two differences in the construction of � from�. One is that
the principal �����-matrix of� is identical with���� ��
�.
The other is that the �� 	 ��th column vector of � is iden-
tical with the vector concatenating ���� �"��� and 1, where
"� �  ��
�"�. Taking the determinant of �, we have
another algebraic equation with respect to ������� ��
�,

������� �
� and ������� ���. Note that here we again em-
ploy the Grassmann–Plücker identity to reduce the distance
from ������� ���. Changing "� leads to different algebraic
equations.

From the obtained algebraic equations above, it is not
difficult to see that the minors with distance 1 other
than ������� �
� �" �  ��� algebraically depends on
������� �
� �" �  ��� and ������� ���. �

When we return to the case of two views,� has a special
structure, i.e., the entries of the second half of the 7th row
vector and the first half of the 8th row vector are all zero.
This structure reduces the number of different terms that
appear in the algebraically independent minors more than
the case without any structure.

To determine the column-set order of our � that corre-
sponds to ��, we have essentially three cases. One is the
case where 6 columns are from �� and 2 from ��. Another
case is that 5 columns are from �� and 3 from ��. The third
one is the case where 4 columns are from �� and 4 from ��.
From the structure of our�, it is easy to verify that the third
case minimizes the number of different terms that actually
appear in the algebraically independent minors. In fact, 36
different terms appear for the first case and 32 for the second
one while for the third case only 30 different terms appear.
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