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Abstract

To realize versatile real-time man-machine interactions
based on understanding human intention and activities, we
develop an active wearable vision sensor. The sensor con-
sists of the detector of person’s viewing lines and two active
cameras. First, we establish a method for calibrating the
sensor so that it can detect person’s blink points accurately
even in a real situation such that the depth of blink points
changes. Secondly, we propose a method, the binocular in-
dependent fixation control, for incrementally estimating the
motion trajectory of a person wearing the sensor.

1 INTRODUCTION

With the rapid progress of computer facility, computer us-
age in every aspect of our daily life has become more and
more popular; wearing the computer in our everyday life is
becoming tangible to reality. Thus, a tremendous amount of
efforts has been made to establish technologies for realizing
the wearable computer (see [1, 2, 6, 7, 8] for example).

The current approach for the interactions between hu-
man beings and computers such as GUI (Graphical User
Interface) is, on the other hand, based on the concept that
the computer is a tool to enhance our capabilities or ac-
tivities. This kind of our interactions with the computer
can be regarded as so-called a master-servant interaction
model. The user there has to explicitly manipulate objects
on a computer monitor to interact with the computer, and
the computer is just a tool that gives us no response with-
out any order from us. Though multi-modal interface [11]
and PUI (Perceptual User Interface) [12, 15] have been pro-
posed for usage of the wearable computer, such interfaces
are also based on the master-servant interaction model. In
fact, in their context more flexible and simpler interfaces for
us to “use” the computer are being studied.

This current concept of the relationship between human
beings and computers should change for the next generation
way of getting along with computers in our every day life.
We should introduce a new interaction model, so-called a

man-machine symbiotic interaction model, between human
beings and computers. In this interaction model, the com-
puter has its own identity and exists as a partner of us. That
is, not only the computer gives us responses based on our
orders but also it itself autonomously understands our situ-
ation, intention or activities, and then provides us in good
time with useful information at that time.

The above observation motivated us to develop a wear-
able vision sensor [14]. Our sensor consists of the detector
of person’s viewing lines and two active cameras. With the
cameras that have the common field of view with a person
wearing this sensor, the computer can detect the viewing
lines of the person. First, we establish a method for cali-
brating the sensor so that it can detect person’s blink points
accurately even in a real situation such that the depth of
blink points changes. We formulate errors of the viewing-
line detector in terms of the depth in blink points from the
person and employ the stereo algorithm to correct the errors.
Secondly, we propose a method for incrementally estimat-
ing the motion trajectory of a person wearing the sensor. In
our method, we propose the binocular independent fixation
control. That is, while the person moves we control the two
active cameras independently so that each automatically fix-
ates its optical axis to its own fixation point.

2 ACTIVE WEARABLE VISION SENSOR

A device sensing information in the scene nearby a person
is indispensable to the computer for understanding his/her
situation, intention and activities. In particular, the cam-
era is most promising because of two reasons. One is the
amount of acquired information and the other is the capa-
bility of having the common field of view with a person. It
is also quite natural to regard that the viewing lines of a per-
son result in strongly reflecting his/her interest or attention
regardless of his/her consciousness [3, 13].

Why wearable: We may take an alternative approach
to understand person’s activities where we embed in the
surrounding environment multiple sensors such as cameras
or magnetic sensors, and process information acquired by
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Figure 1: Head part. Figure 2: A person with the
head part.

them. Information acquired by the sensors embedded in
the surrounding environment, i.e., information through an
objective point of view, however, is not satisfactory from
the point of view that we capture the intension and inter-
est of the person moving in the environment. Information
through the person’s viewpoint, i.e., information through a
subjective point of view, is necessary for such tasks. This
can be supported by our experience that we often feel dif-
ficulty in communicating our intention to a person who is
in a spatially different place. From the point of view that
we understand human intention and activities, sharing the
common field of view with a person and sharing common
inputs with the person are required. The wearable vision
sensor satisfies these two requirements.

Why active: If the camera is active, namely, we can
control the optical axis of the camera through a computer,
the function of acquiring information is highly enhanced:
the computer can control the camera to autonomously ac-
quire information of the environment independent of per-
son’s viewing lines. In other words, depending on the situa-
tion, the computer can switch two kinds of functions: (1)
acquiring subjective information by sharing the common
field of view with a person and (2) acquiring objective in-
formation, i.e., autonomously acquiring information of the
environment independent of person’s viewing lines. This is
the great advantage of acquiring information that cannot be
realized with a camera whose optical axis is fixed.

3 SENSOR CONFIGURATION

Our active wearable vision sensor consists of the head part
and the computer. The head part (Fig. 1) has two active
cameras and a detector of person’s viewing lines. The
projection centers of the two cameras are designed to be
aligned with the centers of the person’s eyeballs. The com-
puter, on the other hand, is a PC with Pentium III 750MHz
and 1GB memory. Fig. 2 shows a person with the head part
of our sensor.

Eye-mark recorder EMR-8 from NAC Image Technol-
ogy is employed as the detector of person’s viewing lines.
EMR-8 uses the pupil-corneal reflection method in eye
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Figure 3: Introduced coordinate systems.

tracking and overlays person’s blink points, i.e., the points
in 3D at which a person looks while blinking, onto the im-
age captured by the right camera. This overlaid point is
called an “eye mark”. The sampling rate of eye marks by
EMR-8 is 60Hz (about 17ms). As an active camera, we
employed the off-the-shelf camera, EVI-G20, produced by
Sony. EVI-G20 accepts commands from a computer to ro-
tate its optical axis by the pan (within ±30o) and the tilt
(within ±15o). It is also designed so that the projection
center of the camera is identical with the rotation center of
the camera body.

The viewing line of a person detected by EMR-8 and
two images captured by the two cameras are all put into
the computer. The blink point of the person’s right eye is
superimposed as the eye mark on the right-camera image.

4 DETECTION OF PERSON’S BLINK
POINTS

4.1 Introduction of coordinate systems
We have to set some coordinate systems for analyzing
the relationship between the viewing line of a person and
his/her blink point. They are the right-camera coordinates,
the left-camera coordinates, and the viewing-line angle co-
ordinates with respect to the person’s right eyeball (Fig. 3).

We introduce the camera coordinate system to each cam-
era where the projection center of the camera is identical
with the origin. To reconstruct the depth of a point of inter-
est, we calibrate the intrinsic and extrinsic camera parame-
ters in advance and then employ stereo vision technique. In
this paper, we employ the method proposed by Zhang [16]
to calibrate the camera parameters. We verified that the op-
tical axes of the two cameras are almost parallel with each
other and that the poses are identical.

We set the rotation center of the person’s right eyeball as
the origin of the viewing-line angle coordinates. In this co-
ordinate system, the coordinates represent rotation angles,
pan and tilt angles, with respect to the optical axis of the
right-camera coordinate system. EMR-8 measures the ro-
tation angles of the person’s right eyeball in terms of the
coordinates in this viewing-line angle coordinate system.
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Figure 4: Blink point farther than the calibration plane.

In this measurement, the pupil-corneal reflection method is
employed where the cornea is illuminated by an infrared
light and the light reflected back from the cornea is then
captured to estimate the direction of the cornea.

4.2 Sensor calibration

To observe person’s blink points we overlay them onto the
image captured by the right camera. For this purpose, we
have to calibrate the relative position and pose between the
right-camera coordinates and the viewing-line angle coor-
dinates. The algorithm for this calibration is provided with
EMR-8. Namely, a person gazes at given nine points on
a plane (called a calibration plane) one by one in a given
order, and then the nine pairs of viewing-line angles and
the images of the points are used to calibrate the two co-
ordinates. This algorithm allows the system to overlay a
person’s blink point onto the image captured by the right
camera.

Unfortunately, however, EMR-8 assumes in its usage
that the distance between a calibration plane and a person is
not large and that the person always keeps his blink points
on the calibration plane. These assumptions cause the prob-
lem that eye marks do not accurately reflect person’s blink
points in the image for the case where the distance between
the person and his blink points dynamically changes; this
case always occurs in our daily life.

For example, we consider the case where person’s blink
points are farther than a calibration plane (Fig. 4). Let M
be the blink point of a person. EMR-8 then (incorrectly)
identifies M ′ on the calibration plane as the blink point of
the person and overlays its image m ′ onto the right-camera
image as the person’s eye mark at that time. As seen above,
this overlay is incorrect because the image m of M should
be overlaid. The horizontal (x−) component δ of the resid-
ual of m′ from m follows from Fig. 4:

δ = wf

(
1

Dc
− 1

Do

)
, (4.1)

where f and w respectively denote the focal length of the
right camera and the horizontal component of the distance
between the rotation center of the person’s right eyeball and
the projection center of the right camera. Dc and Do are the

Figure 5: Binocular independent fixation control.

distance of the calibration plane and the blink point from
the projection center of the right camera, respectively. This
is the formulation of errors of detected eye marks in terms
of the depth, Do, in blink points. We remark that the verti-
cal (y−) components of the residual can be also derived in
the same way. For the case where person’s blink points are
nearer than the calibration plane, the residual is represented
in the same equation as (4.1).

To correct eye marks, we have to know w, f, Dc and Do

in advance, and then compute δ. We can measure w, f and
Dc since we can calibrate them beforehand. Do, on the
other hand, can be computed by a stereo algorithm since two
calibrated cameras are mounted on our sensor. Accordingly,
we can correct the residual δ, and this correction enables the
system to correctly overlay blink points onto the image even
though the distance between the person and his/her blink
points dynamically changes.

5 ESTIMATION OF HUMAN-MOTION
TRAJECTORY BY BINOCULAR INDE-
PENDENT FIXATION CONTROL

In the previous section, to detect his/her blink points two
cameras shared the common field of view with a person
wearing the cameras: we used the active wearable vision
sensor in the context of acquiring subjective information.
In this section, by contrast, the sensor is used for acquiring
objective information: the field of view of the cameras is
independent of the person’s.

To estimate the human-motion trajectory with two active
wearable cameras, we introduce the fixation control, i.e., the
camera control in which the camera automatically fixates its
optical axis to a selected point (called the fixation point) in
3D, and apply the fixation control independently to each
active camera. That is, while the person moves, we control
the two active cameras independently so that each automat-
ically fixates its optical axis to its own fixation point. We
call this camera control the binocular independent fixation
control (Fig. 5).



5.1 Binocular independent fixation control vs. stereo
vision framework

In the robotics literatures, the framework of stereo vision is
widely used to estimate the position and motion of a mov-
ing robot [4, 9, 10]．When we employ the stereo vision
algorithm, however, we have to make two cameras share
the common field of view and, moreover, establish feature
correspondences between the images captured by the two
cameras. This kind of processing has difficulty in its sta-
bility. In addition, we have another problem in using the
stereo vision framework in the context of wearable cam-
eras. Namely, though the accuracy of the estimation is well
known to highly depend on the baseline of the two cameras,
keeping the baseline of two cameras wide is hard when we
wear cameras. Therefore, the estimation accuracy of the
motion trajectory is limited if we employ the stereo vision
algorithm.

In the binocular independent fixation control, on the
other hand, the two cameras need not share the common
field of view because each camera fixates its optical axis to
its own fixation point in 3D. We do not face the problem
of feature correspondences between the images captured by
two cameras. Moreover, the estimation accuracy becomes
independent of the baseline of two cameras. This can be
understood as follows. If we assume that we set a cam-
era at each fixation point and that the optical axis of each
camera is toward a person, then the binocular independent
fixation control can be regarded as the situation where we
apply the stereo vision framework to estimating the position
of the person from the two fixation points. The baseline in
this case is identical with the distance of the two fixation
points. This means that the estimation accuracy is inde-
pendent of the baseline of the two cameras that the person
wears; selecting fixation points as far as possible from each
other allows the estimation accuracy to become high.

5.2 Constraint derivation on human motion
We set the right camera is base and assume that the motion
of a person wearing the cameras is identical with the motion
of the base-camera coordinates. Moreover, for simplicity,
we assume that the orientation of the camera coordinates
does not change even though we change pan and tilt of the
camera for the fixation control. This means that only the
human motion causes changes in orientation and translation
of the camera coordinates. We then develop a method for
estimating a human motion below.

We assume that the translation vector and the rotation
matrix to make the left-camera coordinates identical with
the right-camera coordinates are T in in the left-camera co-
ordinates and Rin in the right-camera coordinates, respec-
tively. T in and Rin are both assumed to be known.
5.2.1 Constraints from fixation correspondence
The fixation control gives us the correspondence of the
viewing lines of a camera toward the fixation point over

Figure 6: Relationship between the projection centers and
the fixation points at time t.

Figure 7: Geometry based on the fixation correspondence
of the right camera.

time-series frames. We call this correspondence a fixation
correspondence.

Let the projection centers of the left camera and the right
camera be C t

� and Ct
r in 3D at time t. We assume that the

both cameras have their own fixation points P� and Pr. We
denote by vt

r the unit vector from C t
r to Pr in the right-

camera coordinates at time t. We also denote by v t
� the unit

vector from C t
� to P� in the left-camera coordinates at time

t (Fig. 6).
We first focus on the right camera. We assume that the

projection center of the right camera moves from C t
r to

Ct+1
r in 3D due to the human motion from time t to t + 1

(Fig. 7). We also assume that the rotation and the transla-
tion of the right camera incurred by the human motion are
expressed as R in the right-camera coordinates at time t and
T in the world coordinates. We remark that the orientation
of the world coordinates is assumed to be obtained by ap-
plying rotation matrix R−1

0 to the orientation of the right-
camera coordinates at time t.

It follows from the fixation correspondence of the right
camera that

λR0v
t
r = λ′R0Rvt+1

r + T ,

where λ and λ′ are non-zero constants. This equation is
rewritten by

det
[

R0v
t
r R0Rvt+1

r T
]

= 0, (5.1)

which gives the constraint on the human motion derived
from the fixation correspondence of the right camera. We
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Figure 8: Geometry based on the line correspondence of the
right camera.

see that this constraint is homogeneous quadratic on the un-
knowns, i.e., R and T .

Since we calibrate the two cameras in advance, we can
represent vt

� and vt+1
� in the right-camera coordinates. We

therefore obtain the constraint similar to (5.1) from the the
fixation correspondence of the left camera.

5.2.2 Constraints from line correspondence

To derive sufficient constraints to estimate the human mo-
tion, we employ lines nearby the fixation point. This is be-
cause (i) we find many lines in the indoor scene, (ii) we can
easily and accurately detect lines with less computation by
using the Hough transformation, and (iii) we can easily es-
tablish line correspondences over time-series frames due to
their spatial extents.

We first focus on the right camera. We assume that we
establish the correspondence of images of line L r in 3D over
time t and t+1, where line Lr is selected nearby the fixation
point of the right camera. Line Lr is called a focused line
in this paper. We denote by Lr the unit direction vector of
the focused line Lr in the world coordinates1 . Observing
a line in 3D is identical to determining the plane in 3D on
which both the projection center at the observation time and
the line exist. We thus obtain the unit normal vector of the
plane. For the focused line Lr, this unit vector in the right-
camera coordinates at time t is denoted by nt

r (Fig. 8).
From the relationship of the orientations among the

world coordinates, the right-camera coordinates at time t
and the right-camera coordinates at time t + 1, we see that
nt

r and nt+1
r are expressed as R0n

t
r and R0Rnt+1

r in the
world coordinates. Since R0n

t
r and Lr are orthogonal, and

R0Rnt+1
r and Lr are also orthogonal, we obtain the fol-

lowing constraint on the human motion from the line corre-
spondence over two frames captured by the right camera:

µrLr = (R0n
t
r) × (R0Rnt+1

r ), (5.2)

1 We assume here that the unit direction vector of a focused line in the
world coordinates is known. The vector, however, can be estimated from
(5.2) during the motion estimation. Namely, we can compute �r (with
‖�r‖ = 1) from (5.2) because we know R0 and R if we have estimated
the human motion up to time t + 1.
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Figure 9: Calibration curve (w = 114mm).

where µr is a non-zero constant and depends on the focused
line. We see that this constraint is linear homogeneous with
respect to the unknowns, i.e., R and the non-zero constant.

In the similar way, we obtain the constraint on the cam-
era motion derived from the line correspondence of the left
camera.

5.2.3 Estimation of rotation and translation
The constraints derived from line correspondences depend
only on the rotation of the human motion. We can thus di-
vide the human motion estimation into two steps: the rota-
tion estimation and the translation estimation.

The first step is the rotation estimation of the camera
motion. We suppose that we have correspondences of n
focused lines over two time-series frames. Then, we have
n+3 unknowns (n are from scale factors and 3 are from ro-
tation) whereas we have 3n constraints in this case. There-
fore, we can estimate the rotation of the camera motion if
we have correspondences of more than two focused lines.

When we finish estimating the rotation of the camera
motion, unknowns are only the translation factors. The con-
straint derived from the fixation correspondence thus be-
comes homogeneous linear with respect to the unknowns.
Hence, we can obtain the translation of the camera motion
up to scale from two fixation correspondences with only lin-
ear computation2 .

6 EXPERIMENTS

6.1 Precision evaluation of detected blink points
We evaluated the effect of our correction to eye marks de-
tected by EMR-8 under the condition that the depth of per-
son’s blink points changes.

We first set a calibration plane whose distance is 1.7m
from a person, and then instructed the person to gaze at a
set of nine points on the plane one by one to calibrate EMR-
8. Next we moved the plane so that the distance from the
person changes by 0.5m from 1.7m to 5.7m in turn. At each

2 Whenever we estimate the translation of the camera motion over two
frames, we have one unknown scale factor. The trilinear constraints [5] on
corresponding points over three frames enable us to adjust the unknown
scales with only linear computation.
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Figure 10: Errors of detected blink points.

distance, we instructed the person to gaze at another set of
nine points and obtained the coordinates in the right-camera
image of the eye marks detected by EMR-8. In fact, we
used the average of the coordinates of the stably detected
eye marks. The nine points here, on the other hand, were
also captured by the right camera and formed their images
in the right-camera image, whose coordinates were used as
the ground truths to evaluate the precision of our correc-
tion. Next, we applied our correction described in (4.1) to
the eye marks detected by EMR-8 to obtain the corrected
coordinates of images of the blink points. We remark here
that we carefully measured Dc and w to obtain Dc = 1.7m
and w = 114mm. We therefore had the calibration curve
shown in Fig. 9.

For the cases with/without our correction, we com-
puted the average and the variance of the residuals from
the ground truths over the given set of nine points, and
compared the two cases (Fig. 10). Note that error bars in
Fig. 10 represent the standard deviation. Fig. 10 shows that
the residuals of corrected coordinates almost stably remain
small independent of the change in distance of the plane
from the person. In fact, they are within perturbation of the
standard deviation from the average for the distance 1.7m
at which EMR-8 was calibrated. This observation indicates
that our correction is valid and effective.

6.2 Experiments on estimating a human-motion tra-
jectory

We set up a simulated active wearable vision sensor where
two cameras with the baseline of about 27cm were mounted
on the stage of a tripod (Fig. 11). Here we employed EVI-
G20 and a PC with PentiumIII 750MHz and 1GB memory,
both of which are used in our active wearable vision sen-
sor (Fig. 1). We then calibrated the intrinsic and extrinsic
parameters of the two cameras using the method proposed
by Zhang [16]. The size of images captured by each camera
was 640 × 480 pixels.

We moved the simulated active wearable vision sensor
in the scene. The trajectory of the right-camera motion is
shown in Fig. 12. The length of the trajectory was about
6m. We marked 35 points on the trajectory and regarded
them as samples during the motion. We then applied the

Figure 11: Simulated active wearable vision sensor.

(a) wide-view representation (b) top-view representation

Figure 12: Camera motion trajectory.

binocular independent fixation control only to the samples
to estimate the right-camera motion.

In each image captured by each camera at the starting
point of the camera motion, we manually selected a point to
set as the fixation point. During the estimation, we updated
fixation points 8 times. This updating was also conducted
by hand. We used two focused lines for each camera (we
thus used four focused lines in total). In detecting lines,
we applied the Hough transformation to the edges detected
from each image. Fig. 13 shows an example of image pairs
captured by the right and left cameras at a marked point. We
see that little field of view of the two cameras is common.
We remark that the fixation point (the black circle) and two
focused lines (the black thick lines) are overlaid onto the
images in Fig. 13.

Under the above conditions, we estimated the right-
camera motion at each marked point. Fig. 14 shows the
trajectory of the right-camera motion that was obtained by
concatenating the estimated motions at the marked points.

(a) left-camera image (b) right-camera image

Figure 13: Example of images acquired by the two cameras
during the camera motion.



 

 
 

(a) 3D representation (b) top-view representation

Figure 14: Estimated trajectory of the camera motion.

We note that S means the starting point of the motion.
The height from the floor was almost accurately esti-

mated over the trajectory. In fact, the estimated height
was almost constant. As for the component parallel to the
floor, however, the shape of the former part (from S to P
in Fig. 14) of the estimated trajectory fairly coincides with
that of the actual trajectory whereas the latter part (after P )
of the estimated trajectory has great aberration from the ac-
tual trajectory. We have two reasons that may cause this
aberration. One is the incorrect estimation of the motion at
P and the other is the effect of the estimation error at P
upon the subsequent estimations. In other words, since the
motion is incrementally estimated, the accumulation of esti-
mation errors and an incorrect estimation at just one marked
point cause aberration. The estimation error can be caused
by errors in the fixation correspondence or errors in the line
detection. Calibration errors of the two cameras also may
cause estimation errors.

7 CONCLUSION

We developed an active wearable vision sensor for versatile
man-machine interactions based on understanding human
intention and activities. The sensor consists of the detector
of person’s viewing lines and two active cameras.

We first proposed a method for calibrating the sensor so
that it detects person’s blink points accurately even in a real
situation such that the depth of blink points changes. We
then proposed a method for incrementally estimating the
motion trajectory of a person wearing the sensor. In the for-
mer method, we aimed at acquiring information from the
person’s viewpoint where the vision sensor shares the com-
mon field of view with the person. In the latter method,
on the other hand, we aimed at autonomously acquiring in-
formation for understanding the person’s motion trajectory
where the field of view of the vision sensor is independent
of that of the person. In this way, our active wearable vi-
sion sensor enables us to versatilely acquire information for
understanding human intention and activities.

Eliminating the accumulation errors in estimating the
motion trajectory and improving the accuracy of the esti-
mation are included in the future work. We also plan to de-

velop methods for estimating the position of a person wear-
ing our active wearable vision sensor and for identifying the
fixation of his/her viewing lines to make the computer un-
derstand his/her interests.
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