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Abstract
We propose an ICP-based registration method for range

images that preserves fundamental features, i.e., local
structures and color, of object surfaces. The method em-
ploys local surfaces as an attribute for establishing corre-
spondences between range images where local surfaces are
evaluated geometrically and photometrically. In estimating
correspondences between range images, our method evalu-
ates consistency of shape patterns and chromaticity of local
surfaces together. In estimating transformation parameters
relating the coordinates between different range images, on
the other hand, our method evaluates skewness and chro-
maticity of correspondences. These two kinds of evaluation
enhances accuracy of the estimation and results in preserv-
ing local structures and color of object surfaces.

1. Introduction

Registration of range images followed by integration al-
lows us to capture the full geometry of a complicated ob-
ject and then to generate a 3D model of the object. That is
why registration plays an important role in many applica-
tions such as CAD or CG. The goal of range image registra-
tion is to find the rigid transformation that best aligns given
range images.

The iterative closest point (ICP) method proposed by
Besl et al. [2] is widely used for registration of range im-
ages [1, 4, 6, 10, 11, 12, 23]. Basically, it consists of a clos-
est point search and a matching error minimization which
are iteratively applied to two range images. To be concrete,
the ICP method iterates two steps. Each point in one range
image is transformed by a given transformation to find the
closest point in the other range image. These point corre-
spondences are then used to estimate the transformation that
minimizes matching errors.

Due to digitization depending on viewpoints, the same
points on an object surface cannot be measured in different
range images even if they are commonly observed. In ad-

dition, some points on an object surface observed from one
viewpoint are not observed from another viewpoint due to
self-occlusion. These facts make registration of range im-
ages difficult. That is, we have to establish correspondences
between range images for registration, providing that true
correspondences of measured points do not exist.

To overcome the above problem, the ICP method is ex-
tended in different ways. Zhang [26] eliminated false cor-
responding pairs of points by introducing a threshold for
distances of corresponding pairs. Chen et al. [3] used only
smooth surface parts and minimized the sum of distances
between each point in one image and a tangential plane
constructed from points in the other image. Masuda [15]
introduced a signed distance field to an object surface and
matched the fields across range images for registration and
integration.

To enhance robustness in searching corresponding fea-
tures, on the other hand, some other attributes are used in
addition to 3D coordinates themselves. They are geometri-
cal attributes [5, 7, 14, 22] computed from 3D coordinates
of measured points, intensity attributes [9, 18, 24] and color
attributes [8, 13, 17, 21, 25].

Normal vectors with/without curvatures at measured
points are evaluated in addition to the 3D coordinates of
points [5, 14, 22]. Such differential features, however, are
easy to be affected by errors in measuring, and realizing
accurate registration using these values themselves is not
promising. Godin et al. [7] used only the signs of mean
curvatures and Gaussian curvatures to reduce the computa-
tional cost in searching corresponding points. This method
does not pay any attention to the local connectivity of
points, which results in not preserving local structures of
object surfaces.

In contrast, intensity attributes, in particular, gradients
of intensity [18, 24], are introduced to complement geomet-
ric attributes. They leads to more sophisticated registra-
tion that cannot be attained with only geometric attributes.
Color attributes, which provide richer information than in-
tensity, become used for registration recently. Godin et
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al. [8], Johnson et al. [13] and Shütz et al. [21] proposed
a framework that incorporates color information into the
ICP method. They computed an extended distance between
measured points which is the weighted sum of norms of
the differences between their 3D coordinates or local cur-
vatures and that of RGB values representing their color.
RGB values themselves, however, are known to be sensi-
tive to changes in illumination. This indicates that RGB
values obtained in different viewpoints are not reliable. In
addition, summing attributes in different dimensions is not
reasonable. Wyngaerd et al. [25] used viewpoint and illu-
mination invariant color information within a local region
to search point correspondences but does not pay any atten-
tion to consistency of correspondences in any local region.

In this paper, we propose an ICP-based registration
method for range images that preserves fundamental fea-
tures, i.e., local structures and color, of object surfaces. The
method employs local surfaces as an attribute for establish-
ing correspondences between range images where local sur-
faces are evaluated from both geometric and photometric
aspects. Our method introduces two geometric features [16]
to evaluate local structures of object surfaces: shape pat-
terns of local surfaces and skewness of correspondences.
Our method also introduces chromaticity of local surfaces
as a photometric feature. Chromaticity eliminates the lu-
minance from color of surfaces and is thus robust against
changes in illumination. We make full use of these geo-
metric and photometric features in our registration method.
In estimating correspondences across range images, our
method evaluates consistency of shape patterns and chro-
maticity of local surfaces together. In estimating transfor-
mation parameters between different range images, on the
other hand, our method evaluates skewness and chromatic-
ity of correspondences. These two kinds of evaluation en-
hances accuracy of the estimation and results in preserving
local structures and color of object surfaces.

2. Structural and Color Features for Local Sur-
faces

2.1. Local surfaces as an attribute

A range image is defined as a set of the 3D coordinates
of discretely measured points where the coordinates depend
on the viewpoint and its orientation. Let xi(u, v) denote
the coordinates of the measured point that corresponds to
the (u, v)-th pixel in the i-th range image (u = 1, . . . , N ;
v = 1, . . . ,M ; i = 1, 2). Note that xi(u, v) depends on the
position and the orientation of the viewpoint.

Searching good feature correspondences between range
images is crucial in registration. Though measured points
across range images do not have true correspondences, lo-
cal surfaces do have. This is because a range image includes
densely measured points and this makes the local connec-
tivity of measured points of an object surface invariant un-
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Figure 1. Neighboring points on a local sur-
face and their measured points in range im-
ages.

der the change in position and orientation of an viewpoint∗

(Fig.1). We thus employ local surfaces as an attribute of
points for establishing correspondences between range im-
ages.

In our method, for each measured point xi(u, v), we first
construct a local surface Si(u, v) from xi(u ± k, v ± k)
(k = −1, 0, 1) in the eight neighboring pixels of (u, v) and
attach Si(u, v) to xi(u, v) as an attribute. We then use geo-
metric and photometric features of the local surface together
to search correspondences across range images. Here we
focus on a structural feature from the geometrical point of
view whereas focus on chromaticity of surfaces from the
photometric point of view.

2.2. Shape patterns

Correct correspondences facilitate accuracy of registra-
tion while false correspondences lead to inaccurate regis-
tration. How to eliminate false correspondences is thus an
important issue.

If a pair of points is correctly corresponding, shape
patterns of the attached surfaces, such as convex or con-
cave, are identical with each other. Therefore, among es-
tablished pairs of correspondences we eliminate the pairs
whose shape patterns are different from each other to ob-
tain only the pairs with identical shape patterns.

For each local surface Si(u, v), we compute the mean
curvature Hi(u, v) and the Gaussian curvature Ki(u, v) to
identify the shape pattern of xi(u, v). We use only the signs
of these curvatures to classify shape patterns as shown in
Table 1. This is because errors incurred in measuring af-
fect curvatures and their values are not expected to be accu-

∗The case exists where measured points observed in neighboring pix-
els are not neighbor on the object surface. In such a case, the measured
points are on different surfaces with large difference of distances from the
viewpoint due to a special position and orientation of the viewpoint. We
do not care about such a special case. In fact, our method does not con-
struct a local surface when the distance between measured points observed
in neighboring pixels is large.
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Table 1. Shape pattern classification.

K > 0 K = 0 K < 0
H > 0 convex convex cylindrical convex
H = 0 − planar saddle
H < 0 concave concave cylindrical concave

rate while the signs of these curvatures are robust and reli-
able. Accuracy in establishing corresponding pairs is thus
enhanced.

Employing only the corresponding pairs of points with
identical shape patterns preserves local surface structures
during registration processes. We remark that we only have
to construct local surfaces and classify their shape patterns
once and for all in advance. This is because the construction
of local surfaces and the classification into shape patterns
are both independent of correspondences and transforma-
tions between range images.

2.3. Chromaticity

From the geometrical point of view, corresponding pairs
of points with identical shape patterns contribute to accurate
and robust registration. From the photometric point of view,
however, they are not sufficient because a pair of points
with identical shape patterns exists where their color is com-
pletely different from each other. We thus have to guaran-
tee consistency of not only structural features but also color
features to establish good correspondences.

We cannot evaluate color itself because color is sensi-
tive to illumination conditions. In capturing range images
of an object, we change viewpoints relative to the object,
which may cause great changes in illumination of a local
surface of the object. This indicates that evaluating consis-
tency of color directly using RGB values is not effective.
We, therefore, eliminate the luminance from color informa-
tion, and then use chromaticity of a local surface to evaluate
consistency of color. Chromaticity of a point is defined as a
2D vector that is obtained by projecting the intersection of
the RGB vector representing color of the point and the unit
plane† onto the RG plane.

Since points on an object surface are densely measured
in range images, a constructed local surface can be assumed
to have uniform color. We thus compute the average of
chromaticity of points over the surface to obtain chromatic-
ity of the local surface. This averaging is expected to stabi-
lize chromaticity of the local surface. We note that comput-
ing chromaticity of local surfaces should be conducted once
and for all in advance.

†The unit plane is defined as the plane going through the three points
(1, 0, 0), (0, 1, 0) and (0, 0, 1) in the RGB space.
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Figure 2. Correspondence vector.
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Figure 3. Correspondence vectors in a local
surface.

3. Skewness of Correspondences

For accurate and robust estimation of transformation pa-
rameters, a function evaluating transformation parameters
should have the minimum when true parameters relating
two range images are given, and it should not have local
minimums around the true parameters. Therefore, to reduce
local minimums of an evaluation function and, at the same
time, to preserve structures of local surfaces, our method in-
troduces skewness of correspondences [16]. The skewness
of correspondences is a criterion that evaluates how the end
point of a vector is affected by the displacement of the star-
ing point of the vector. With the skewness of correspon-
dences, we can evaluate rigidity of correspondences around
neighboring points.

Let T denote the transformation parameters that trans-
form the coordinates of the first range image to those of
the second. We assume here that correspondences of points
between the first and second range images are given. For
each corresponding pair of points x1(u, v) and x2(u′, v′),
we define a correspondence vector whose starting point is
T (x1(u, v)) and whose end point is x2(u′, v′), as shown in
Fig.2. We then evaluate consistency of the correspondence
vectors obtained in neighboring pixels of (u, v).

As a range image includes densely measured points, di-
rections and norms of the correspondence vectors obtained
in neighboring pixels become uniform if transformation pa-
rameters are correctly estimated. For example, Fig.3 shows
two cases in transformation estimation where two range im-
ages are sufficient close to each other and norms of corre-
spondence vectors are almost the same. (a) in Fig.3 is the
case where directions of correspondence vectors are uni-
form whereas (b) in Fig.3 is the case where the directions
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are scattered. We see that the transformation parameters
for (a) are preferred rather than those for (b). Skewness of
correspondences discriminates (a) from (b) with giving a
higher score to (a) and thus leads to reduction in local min-
imums of the evaluation function. We note that distance of
correspondences alone does not discriminates (a) from (b).

Skewness s(T (x1(u, v)), x2(u′, v′)) is defined as the
sum of eigenvalues of the skew tensor [20] which is com-
puted with the correspondence vectors in the eight neigh-
boring pixels of (u, v) in the first range image. This
value becomes smaller as correspondence vectors become
more uniform. We note that if transformation parameters
change, correspondence vectors also change, which results
in changes in skewness. Skewness should be thus computed
whenever transformation parameters change.

4. Registration with Geometrical and Photo-
metric Criteria

Our registration method iterates two steps as in the ICP
method. One is searching corresponding points and the
other is estimating transformation parameters. How to eval-
uate the distance between correspondences is an important
issue because the distance plays a central role in each of the
two steps. We introduce evaluation from the geometrical
point of view and the photometric points of view together.

At the beginning of registration, for each point xi(u, v),
we identify the shape pattern and compute chromaticity
ci(u, v) using Si(u, v). Because shape patterns and chro-
maticity remain invariant under the change in transforma-
tion, their classification and calculation are conducted only
once at the beginning of registration.

4.1. Searching corresponding pairs

In searching corresponding points, we employ shape pat-
terns as a geometric feature and chromaticity as a photo-
metric feature. In addition, to avoid summing features in
different dimensions, we use chromaticity as a weight in
computing geometric distances between points. Geomet-
ric distance weighted by chromaticity gives us a criterion
measuring geometrical and photometric consistency of cor-
responding points.

For given transformation parameters T , corresponding
points are searched under the criterion of the geometric dis-
tance weighted by chromaticity. We then establish tentative
corresponding points.

Next, we check shape patterns of all the tentative corre-
sponding points, and then eliminate the pairs whose shape
patterns are not identical. We also check chromaticity be-
tween the tentative corresponding pairs, and eliminate the
pairs whose chromaticity is different from each other.

As a result, we obtain only the corresponding pairs of
points with consistent geometric structures and color. We
call them checked corresponding pairs of points to discrim-
inate them from tentative corresponding pairs.

Distance between points weighted by chromaticity. To
evaluate the distance between points based not only on the
geometrical viewpoint but also on the photometric view-
point, we introduce a geometric distance weighted by chro-
maticity.

Let x1(u, v) and x2(ũ, ṽ) be a tentative corresponding
pair of points. The distance of x1(u, v) and x2(ũ, ṽ) is then
defined by

dw(T (x1(u, v)), x2(ũ, ṽ))
=

∣∣c1(u, v) − c2(ũ, ṽ)
∣∣ · d(T (x1(u, v)),x2(ũ, ṽ)), (1)

where |c1(u, v) − c2(ũ, ṽ)| is the norm of c1(u, v) −
c2(ũ, ṽ), and d(T (x1(u, v)), x2(ũ, ṽ)) is the Euclidean dis-
tance between T (x1(u, v)) and S2(ũ, ṽ). We remark that in
computing the Euclidean distance of a corresponding pair
of points T (x1(u, v)) and x2(ũ, ṽ), we use the Euclidean
distance from T (x1(u, v)) to the local surface attached to
x2(ũ, ṽ). This is because no true point correspondences ex-
ist across range images.

4.2. Estimating transformation parameters

For given checked corresponding pairs of points, we esti-
mate the transformation parameters that minimize distances
between the checked corresponding pairs and, at the same
time, preserves consistency of the correspondences where
the distances are weighted by chromaticity and consistency
is evaluated in terms of skewness. We note that this estima-
tion also involves evaluation from the geometrical aspect
and the photometric aspect together.

To evaluate transformation parameters T , we define the
following function J(T ):

J(T ) = αJd + (1 − α)Js. (2)

where Jd is the distance term weighted by chromaticity, Js

is the skewness term, and α is a weighting function between
Jd and Js.

To reduce the influence of false correspondences not
eliminated in the step of searching corresponding pairs,
we employ ρ function which is commonly used in M-
estimator [19]. Accordingly, Jd and Js are expressed by

Jd =
∑
u,v

ρ[dw(T (x1(u, v)), x2(u′, v′)), dγ ],

Js =
∑
u,v

ρ[s(T (x1(u, v)),x2(u′, v′)), sγ ],

where dγ and sγ are thresholds for the geometric distance
weighted by chromaticity and skewness, respectively, and

ρ[t, γ] =
t2

(t2 + γ)
.

Note that x1(u, v) and x2(u′, v′) is a checked correspond-
ing pair of points.
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If corresponding pairs of points are fixed, differ-
ences of chromaticity between the corresponding pairs do
not depend on transformation parameters. As a result,
|c1(u, v) − c2(u′, v′)| does not change and it can be fac-
tored out as a constant in the computation. Note that
d(T (x1(u, v)), x2(u′, v′)) in (1) itself does change while
transformation parameters change even for fixed corre-
sponding pairs of points.

Weighting function between Jd and Js. We dynamically
determine the weighting function α using the coefficient of
variation of distances between checked corresponding pairs
of points. That is, we dynamically determine αk in the k-th
iteration by

αk =
1
2

σk

mk
/

σ0

m0
,

where mk and σk are respectively the mean and the standard
deviation of distances dw(T (x1(u, v)), x2(u′, v′)) over the
checked corresponding pairs of points in the k-th iteration,
and m0 and σ0 are those for the initial transformation pa-
rameters. This is based on the following observations.

At the beginning of registration, corresponding pairs of
points may not be so close to each other and we have a
wide variety of weighted distances between checked cor-
responding pairs. The distance weighted by chromaticity
should thus play an more important role than skewness. Af-
ter several iterations, on the other hand, weighted distances
between checked corresponding pairs are expected to be-
come small enough and we have almost uniform weighted
distances. Then, to preserve local surface structures and
to reduce local minimums, the skewness gradually become
more important.

This dynamic control of the weighting function α facili-
tates reduction of the number of iterations required for reg-
istration.

5. Description of Algorithm

Based on the discussion above, we present here our al-
gorithm for registration of range images. Our algorithm is
based on the framework of the ICP method.

Step 1: For each pixel (u, v) in each range image i (i =
1, 2), do the following procedures.

(a) Construct local surface Si(u, v) from the mea-
sured points xi(u ± k, v ± k)(k = −1, 0, 1)
that are observed in the eight neighboring pix-
els in range image i and store it as an attribute of
xi(u, v).

(b) Identify the shape pattern of Si(u, v).

(c) Compute chromaticity ci(u, v).
Step 2: Set initial values for transformation parameters.

(a) 1st range image (b) 2nd range image
Figure 4. Synthetic range images with color
(top view).

Step 3: Iterate the two steps below until the value of eval-
uation function J in (2) converges. If (2) converges,
then go to Step 4.

(a) i. For each point in the first range image,
search the closest point in the second range
image under the criterion of (1) to obtain
tentative corresponding pairs of points.

ii. Check consistency of shape patterns and
chromaticity of the tentative corresponding
pairs to obtain checked corresponding pairs
of points.

(b) Estimate the transformation parameters that min-
imize (2) using the checked corresponding points
obtained in Step 3(a)ii.

Step 4: Transform the coordinates of all the points in the
first range image to the second range image by using
the estimated transformation parameters, and align the
two range images.

6. Experiments

To demonstrate the potential applicability of the pro-
posed method, we applied the method to synthetic range
images and real range image. In these experiments, we fo-
cused on observing the effectiveness of evaluating geomet-
ric and photometric aspects together. As for the effective-
ness of introducing shape patterns and skewness, see [16].

6.1. Registration using synthetic range images

We generated a situation where we capture two range
images of a rotationally symmetric solid object with color.
This indicates that we cannot obtain successful registration
of the range images without color information. To generate
a synthetic range image of 20 × 20 points with color, we
first set a 3D coordinate system and regarded its origin as
the viewpoint. We then generated the 3D coordinates of
20 × 20 points according to

z = −
{

cos
( π

100
x2

)
+

π

100
y2

}
,

where x and y are uniformly sampled from [−2, 14] and
[−5, 9], respectively. We remark that the shape of an object
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Figure 5. Synthetic range images from differ-
ent viewpoints.
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(a) before registration
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(b) after registration
Figure 6. Registration results.

is like a vase or a saddle and it is rotationally symmetric
with respect to the x-axis. Next, we segmented points into 4
regions based on their x and y coordinates, to each of which
we attached one set of RGB values to obtain a range image
with color. We also rotated all the points by 22.5o with re-
spect to the z-axis to obtain another range image with color.
Finally, we perturbed z-coordinate of each point in the first
and second images by independently adding Gaussian noise
with the mean of 0.0 and the standard deviation of 0.01. In
this way, we prepared two range images with color. They
are shown in Figs. 4 and 5. Fig. 4 shows color information
attached to the points in the two range images. Fig. 5 clearly
show how points in the images are distributed in 3D where
the viewpoint was selected just for this presentation.

To these two range images, we applied our registration
method, the result of which is shown in Fig.6. Note that two
viewpoints were selected again for a clear presentation. We

(a) with color (b) without color
Figure 7. Behavior of J around the true
transformation parameters (darkness means
smallness; the z-axis is horizontal).

observe that our method realizes successful registration of
the two range images. We see that combining geometric and
photometric features together in all aspects of registration
leads to our successful result.

To confirm the effectiveness of incorporating geometric
and photometric aspects together, we compared our method
with the method ignoring color. In both the methods, check-
ing consistency of shape patterns and chromaticity are used
for establishing correspondences (the same point correspon-
dences are thus used for the evaluation of transformation pa-
rameters), and skew of correspondences is also evaluated.

Behaviors of J , which is the function to evaluate trans-
formation parameters, around the true transformation pa-
rameters are shown in Fig.7 in terms of level curves. While
the transformation has 6 parameters, Fig.7 shows the values
of J only with respect to the angle around the x-axis and
the displacement along the z-axis. (a) is for the proposed
method, and (b) is for the method ignoring color. We ob-
serve that ambiguity remains along the angle around the x-
axis in (b) while such ambiguity does not exist in (a). This
observation verifies that our J correctly identifies the true
transformation parameters.

6.2. Registration using real range images

We evaluated our registration method using real range
images. We employed the PS-3300C from LDI as a range
sensor and obtained two range images of a vessel (Fig.8)
from two different viewpoints, which are shown in Fig.9.
We selected about 3000 points from each range image
(about 20000 points) for our registration. The angle be-
tween two viewing directions was about 15 degrees. Note
that this vessel is rotationally symmetric and that these
range images cannot be successfully aligned without color
information.

We first aligned the two range images with manually se-
lected initial transformation parameters (Fig.10). We then
applied our method to these two images. To confirm the
effectiveness of combining the geometrical and photomet-
rical aspects in evaluation, we compared our method with a
method ignoring color. The other method is different from
ours in the only sense that it ignores chromaticity of lo-
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Figure 8. The vessel used in the experiment.

Figure 9. Two range images of the vessel.

cal surfaces. The registration results of our method and the
other method are shown in Fig.11 and Fig.12, respectively.
In these figures, the left ones are presented in the front view
and the right ones are presented in the bottom view to show
how points in the images are distributed in 3D.

We see a gap between two range images in Fig.10. In
particular, it appears remarkably around the brim of the ves-
sel, marked with a blue square. The both methods correctly
removed the gap in the geometrical sense. In the photomet-
rical sense, on the other hand, our method is satisfactory
while the other method is not. The boundary area between
yellow and brown surfaces, marked with a white square in
Fig.8, is correctly aligned by our method as seen in Fig.11,
while the other method failed (Fig.12). We may thus con-
clude that our method realizes successful registration not
only geometrically but photometrically.

Fig.13 shows the evaluation function J depending on
iterations, comparing our method with the other method.
Note that their evaluation functions are different from each
other. Both the methods actually converge at a global mini-
mum. Our method converges with about 20 iterations, while
the other method with 8 iterations. The reason why our
method requires more iterations may be that the initial trans-
formation parameters used in the experiment had an advan-
tage in geometrical registration.

7. Conclusion

We propose an ICP-based registration method for range
images that incorporates local connectivities and color
into both evaluation on correspondences and evaluation on
transformation parameters. The method employs local sur-
faces as an attribute for establishing correspondences be-
tween range images where local surfaces are evaluated from
both geometric and photometric aspects. To preserve local

Figure 10. Before registration.

Figure 11. After registraion by our method.

Figure 12. After registration by the method
ignoring color.

structures of object surfaces, our method introduces two ge-
ometric features: shape patterns of local surfaces and skew-
ness of correspondences. To preserve consistency of color
between corresponding points, it also introduces chromatic-
ity of local surfaces as a photometric feature. Chromaticity
eliminates the luminance from color of the surfaces and pro-
vides robustness against changes in illumination.

We make full use of the introduced geometric and pho-
tometric features in our registration method from the geo-
metrical point of view and also from the photometric point
of view. In estimating correspondences between range im-
ages, our method evaluates consistency of shape patterns
and chromaticity of local surfaces together. In estimating
transformation parameters, on the other hand, our method
evaluates skewness and chromaticity of correspondences.
These two kinds of evaluation enhances accuracy and ro-
bustness of estimation and results in preserving fundamen-
tal features, i.e., local structures and color, of object sur-
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Figure 13. The value of J in the estimation
depending on iterations for the real range im-
ages.

faces.
Estimated transformation parameters can be used to pre-

dict changes in luminance between two range images. In-
corporating these changes into evaluation on corresponding
pairs of points will lead to more accurate registration. An
extension of our method into this direction is left for future
work.
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