
ESTIMATING EGO MOTION BY FIXATION CONTROL OF
MOUNTED ACTIVE CAMERAS

Akihiro Sugimoto

National Institute of Informatics
Tokyo 101-8430, Japan

sugimoto@nii.ac.jp

Wataru Nagatomo, Takashi Matsuyama

Graduate School of Informatics
Kyoto University

Kyoto 606-8501, Japan

ABSTRACT

We propose a method for incrementally estimating ego mo-
tion by two mounted active cameras. Our method indepen-
dently controls the two cameras during the ego motion so
that each camera automatically fixates its optical axis to
its own fixation point. The correspondence of the fixation
point over two frames together with the correspondence of
lines nearby the fixation point gives us sufficient constraints
to determine the ego motion. Two cameras do not have
to share the common field of view in this case whereas in
stereo vision they have to do. Namely, our method allows
the diverging viewing-lines of two cameras that are prohib-
ited in stereo vision.

1. INTRODUCTION

Computing three-dimensional camera motion from image
measurements is one of the fundamental problems in com-
puter vision and robot vision, and it has many applications.
In the robot vision, for example, mobile robot navigation
and docking require the robot localization, the process of
determining and tracking the position (location) of mobile
robots relative to their environments [2]. In the wearable
computer, on the other hand, understanding where a per-
son was and where the person is/was going is a key is-
sue [1, 6, 7, 9] for providing the person with useful and
timely information.

Most successful approaches1 to estimating the position
and motion of a moving robot use landmarks such as ceil-
ing lights, gateways or doors [12, 13, 15] and are usually
based on the framework of stereo vision [3, 4, 10, 11]. When
we employ the stereo vision algorithm, however, we have
to make two cameras share the common field of view and,
moreover, establish feature correspondences between the im-
ages captured by two cameras. This kind of processing has
difficulty in its stability. In addition, we have another prob-
lem in using the stereo vision framework. Namely, though

1Several approaches to ego-motion estimation are carefully compared
in [14].

the accuracy of the estimation is well known to highly de-
pend on the baseline of two cameras, keeping the baseline
wide is hard when we mount cameras on a robot or wear
cameras. Therefore, the accuracy of the estimation of mo-
tion is limited if we employ the stereo vision algorithm.

In this paper, we propose a method for incrementally
estimating ego motion using two mounted active cameras
where the fixation control, the camera control in which a
camera automatically fixates its optical axis to a selected
point (called the fixation point) in 3D, plays a key role. Our
method applies the fixation control independently to each
active camera. We call this camera control the binocular in-
dependent fixation control (Fig. 1). The correspondence of
the fixation point over two frames together with the corre-
spondence of lines nearby the fixation point gives us suffi-
cient constraints to determine the ego motion in 3D.

In the binocular independent fixation control, each cam-
era automatically fixates its optical axis to its own fixation
point in 3D and two fixation points are not necessarily the
same. This indicates that the two cameras need not share the
common field of view. The viewing lines of the two cam-
eras are divergent in this case in contrast to stereo vision
where convergence is always imposed on two viewing lines.
Moreover, in the binocular independent fixation control, the
estimation accuracy becomes independent of the baseline of
two cameras and is expected to become higher than the case
where we use the stereo vision algorithm. This can be un-
derstood as follows. If we assume that we set a camera at
each fixation point and that the optical axis of each camera

Fig. 1. Binocular independent fixation control.



Fig. 2. Relationship between the projection centers and the
fixation points at time t.

is toward a robot or a person, then the binocular indepen-
dent fixation control can be regarded as the situation where
we apply the stereo vision framework to estimating the po-
sition of the robot or the person from the two fixation points.
The baseline in this case is identical with the distance of the
two fixation points. This means that the estimation accuracy
is independent of the baseline of two mounted cameras and
that selecting fixation points as far as possible from each
other allows the estimation accuracy to become high.

2. GEOMETRIC CONSTRAINTS ON EGO
MOTION

We here derive geometric constraints on ego motion based
on information obtained during the binocular independent
fixation control. Between two mounted cameras, i.e., a right
camera and a left camera, we set the right camera is the
base. Moreover, for simplicity, we assume that the orienta-
tion of the camera coordinates does not change even though
we change pan and tilt of the camera for the fixation con-
trol. This means that only the ego motion causes changes
in orientation and translation of the camera coordinates. We
also assume that the ego motion is identical with the motion
of the base-camera coordinates. We thus develop a method
to estimate the motion of the right-camera coordinates.

We assume that the extrinsic parameters between the
two cameras as well as the intrinsic parameters of each cam-
era are calibrated in advance. Namely, we let the translation
vector and the rotation matrix to make the left-camera coor-
dinates identical with the right-camera coordinates be T in

in the left-camera coordinates and R in in the right-camera
coordinates, respectively. T in and Rin are both assumed to
be known.

2.1. Constraints from fixation correspondence

The fixation control gives us the correspondence of the view-
ing lines of a camera toward the fixation point over time-
series frames. We call this correspondence a fixation corre-
spondence. The fixation correspondence enables us to de-
rive a constraint on the ego motion.

Let the projection centers of the left camera and the right
camera be C t

� and Ct
r in 3D at time t. We assume that the

Fig. 3. Geometry based on the fixation correspondence of
the right camera.

both cameras have their own fixation points P� and Pr. We
denote by vt

r the unit vector from C t
r to Pr in the right-

camera coordinates at time t. We see that v t
r represents the

viewing line of the right camera toward the fixation point at
time t. We also denote by vt

� the unit vector from C t
� to P�

in the left-camera coordinates at time t (Fig. 2).
We first focus on the right camera. We assume that

the projection center of the right camera moves from C t
r

to Ct+1
r in 3D due to the ego motion from time t to t + 1

(Fig. 3). We also assume that the rotation and the translation
of the right-camera coordinates incurred by the ego motion
are expressed as rotation matrix R in the right-camera co-
ordinates at time t and translation vector T in the world
coordinates. We remark that the orientation of the world
coordinates is assumed to be obtained by applying rotation
matrix R−1

0 to the orientation of the right-camera coordi-
nates at time t. Our aim here is to derive constraints on R
and T .

It follows from the fixation correspondence of the right
camera that

λR0v
t
r = λ′R0Rvt+1

r + T ,

where λ and λ′ are positive unknown constants. This equa-
tion is rewritten by

det
[

R0v
t
r R0Rvt+1

r T
]

= 0, (2.1)

which gives the constraint on the ego motion, R and T , de-
rived from the fixation correspondence of the right camera.

On the other hand, v t
� in the left-camera coordinates at

time t is identical with Rinv
t
� in the right-camera coordi-

nates at time t. The rotation R of the right-camera coordi-
nates from time t to t + 1 causes the translation −R0(R −
I)RinT in of the left-camera coordinates in the world coor-
dinates where I is the 3 × 3 unit matrix. This yields

det
[
R0Rinvt

�|R0RRinv
t+1
� |T − R0(R − I)RinT in

]

= 0. (2.2)

(2.2) is the constraint on the ego motion derived from the
fixation correspondence of the left camera.

(2.1) and (2.2) are the constraints on the ego motion in
3D derived from the fixation correspondences obtained by
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Fig. 4. Geometry based on the line correspondence of the
right camera.

the binocular independent fixation control. When we have
estimated the ego motion up to time t, we know R0. Then,
the unknown parameters in (2.1) and (2.2) are R and T . We
see that (2.1) and (2.2) give homogeneous quadratic con-
straints on R and T respectively.
Naive parameter counting: Suppose first that the 3-D po-
sitions of the fixation points are known. Then it is easy to
see that the fixation directions of the camera restrict the rig
to a 2-parameter locus (consider a simple example here).
However, there are two additional degrees of freedom: in
practice, we do not know the 3-D positions of the fixation
points (we know only their directions), so there is an ad-
ditional degree of freedom for each fixation point. Hence
the rig has four degrees of freedom, which explains why we
have only two constraints.

2.2. Constraints from line correspondence

Ego motion has 6 degrees of freedom: 3 for a rotation and
3 for a translation. The number of constraints on the ego
motion derived from two fixation correspondences, on the
other hand, is two ((2.1) and (2.2)). We therefore need to
derive more constraints to estimate the ego motion.

We employ lines nearby the fixation point to obtain other
constraints on the ego motion. This is because

(i) we find many lines in the indoor scene, for exam-
ple, the boundaries between walls and a ceiling, the
boundaries of windows and those of doors,

(ii) we can easily and accurately detect lines with less
computation by using the Hough transformation,

(iii) we can easily establish line correspondences over time-
series frames due to their spatial extents, and

(iv) constraints on the ego motion derived from line cor-
respondences depend only on the rotation as seen in
detail below.

We first focus on the right camera. Let the projection
center of the right camera be C t

r in 3D. We then assume that
we establish the correspondence of images of line L r in 3D
over time t and t + 1, where line Lr is selected nearby the
fixation point of the right camera. Line L r is called a fo-
cused line in this paper. We denote by Lr the unit direction

vector of the focused line Lr in the world coordinates2. Ob-
serving a line in 3D is identical to determining the plane in
3D on which both the projection center at the observation
time and the line exist. We thus obtain the unit normal vec-
tor of the plane. For the focused line Lr, this unit vector
in the right-camera coordinates at time t is denoted by n t

r

(Fig. 4).
From the relationship of the orientations among the world

coordinates, the right-camera coordinates at time t and the
right-camera coordinates at time t + 1, we see that nt

r and
nt+1

r are expressed as R0n
t
r and R0Rnt+1

r in the world co-
ordinates. Since R0n

t
r and Lr are orthogonal, and R0Rnt+1

r

and Lr are also orthogonal, we obtain the following con-
straint on the ego motion from the line correspondence over
the two frames captured by the right camera:

µrLr = (R0n
t
r) × (R0Rnt+1

r ), (2.3)

where µr is an unknown non-zero constant and depends on
the focused line.

In the similar way, the line correspondence of the left
camera gives us the constraint on the ego motion.

µ�L� = (R0Rinnt
�) × (R0RRinn

t+1
� ), (2.4)

where L� denotes the unit direction vector, in the world co-
ordinates, of focused line L� in the left-camera case and
µ� is an unknown non-zero constant depending on the fo-
cused line L�. nt

� denotes the unit normal vector, in the
left-camera coordinates at time t, of the plane determined
when the focused line L� is observed by the left camera.

We see that the translation factors of the ego motion are
not involved in the constraints, (2.3) and (2.4), derived from
the line correspondence in each camera. We also see that
these constraints are linear homogeneous with respect to R
and the non-zero constants.

2.3. Estimation of rotation and translation

As investigated in Section 2.2, the constraints derived from
line correspondences depend only on the rotation of ego mo-
tion. We can thus divide the ego-motion estimation into two
steps: the rotation estimation and the translation estimation.

The first step is the rotation estimation of the ego mo-
tion. We suppose that we have correspondences of n fo-
cused lines over two time-series frames. Then, we have
n+3 unknowns (n are from scale factors and 3 are from ro-
tation) whereas we have 3n constraints in this case. There-
fore, we can estimate the rotation of the ego motion if we
have correspondences of more than two focused lines. To

2We assume here that the unit direction vector of a focused line in the
world is known. The vector, however, can be estimated from (2.3) during
the motion estimation. Namely, we can compute�r (with ‖�r‖ = 1) from
(2.3) because we know R0 and R if we have estimated the ego motion up
to time t + 1.



be more concrete, we form a simultaneous system of non-
linear equations that consists of the constraints derived from
line correspondences and the orthogonality constraints, i.e.,
RR� = I , and then apply a nonlinear optimization algo-
rithm such as the Levenberg-Marquart method to solve the
system. In general, a nonlinear system has multiple solu-
tions and the local minimum trap problem is serious. In our
case, however, employing redundant line correspondences
allows us to avoid being trapped in a local minimum. This is
because the constraints derived from line correspondences
are linear with respect to the unknown parameters (scale
factors and R) and because such linear redundancy excludes
spurious solutions3 (spurious solutions do not satisfy addi-
tional linear constraints).

When we finish estimating the rotation of the ego mo-
tion, we can move to the second step: the translation estima-
tion. The unknowns are now just the translation factors. The
constraint derived from the fixation correspondence thus be-
comes homogeneous linear with respect to unknown param-
eters. Hence, we can determine the translation up to scale
from two fixation correspondences with only linear compu-
tation4.

3. ALGORITHM

Based on the discussion above, we present here the algo-
rithm for estimating ego motion based on the binocular in-
dependent fixation control.

Step 0: Detect a fixation point by each camera and select
focused lines for each camera. Set t = 1.

Step 1: Compute vt
r, vt

�, nt
r, and nt

�.

Step 2: For i = r, �, do the followings.

(a) Control camera i, and compute v t+1
i and nt+1

i .
If camera i cannot capture its own fixation point,
go to Step (b). Otherwise, goto Step 3.

(b) Detect a next fixation point and select new fo-
cused lines, and then return to Step 1.

Step 3: Estimate the camera rotation from (2.3), (2.4)
and RR� = I .

Step 4: Estimate the camera translation from (2.1) and
(2.2).

3In addition to this, we have another reason to employ the redundancy
in line correspondence. In the case where ego motion is just a translation
and where the projection center moves on the the plane defined by a fo-
cused line and the projection center, the constraints derived from the line
correspondence become the identical equation. Namely, the constraints
do not make sense and no independent constraint on the ego motion is ob-
tained. Employing the redundancy in line correspondence prevents us from
falling into such cases.

4Whenever we estimate the translation of the ego motion over two
frames, we have one unknown scale factor. The trilinear constraints [5]
on corresponding points over three frames enable us to adjust the unknown
scales with only linear computation.

Fig. 5. Active vision sensor.

(a) with a wide view (b) with a top view

Fig. 6. Ego-motion trajectory.

Step 5: Set t = t + 1, and return to Step 2.

4. EXPERIMENTS

We employed two off-the-shelf cameras (EVI-G20 from Sony)
as active cameras. To verify the potential applicability of
the proposed method, we applied to them the binocular in-
dependent fixation control to estimate ego motion.

We set up an active vision sensor where two cameras
with the baseline of about 27cm were mounted on the stage
of a tripod (Fig. 5). We then calibrated the intrinsic and ex-
trinsic parameters of the two cameras with the method pro-
posed by Zhang [16]. The size of images captured by each
camera was 640 × 480 pixels.

We moved the active vision sensor in the scene. The
trajectory of the right-camera motion is shown in Fig. 6. The
length of the trajectory was about 6m. We marked 35 points
on the trajectory and regarded them as samples during the
ego motion. (In other words, 35 points were sampled during
the ego motion of about 6m.) We then applied the binocular
independent fixation control only to the samples to estimate
the ego motion.

(a) left-camera image (b) right-camera image

Fig. 7. Example of images captured by the two cameras
during the ego motion.



 

 
 

(a) 3D representation (b) top-view representation

Fig. 8. Estimated trajectory of the ego motion.

In each image captured by each camera at the starting
point of the motion, we manually selected a point to set as
the fixation point. During the estimation, we updated fix-
ation points 8 times. This updating was also conducted by
hand. We used two focused lines for each camera (we thus
used four focused lines in total). In detecting lines, we ap-
plied the Hough transformation to the edges detected from
each image. Fig. 7 shows an example of image pair cap-
tured by the right and left cameras at a marked point. We
see that little field of view of the two cameras is common5.
We remark that the fixation point (the black circle) and two
focused lines (the black thick lines) are overlaid onto the
images in Fig. 7. In this example, the focused lines acciden-
tally go through the fixation point in each image.

Under the above conditions, we estimated the right-camera
motion at each marked point. Fig. 8 shows the trajectory of
the right-camera motion that was obtained by concatenating
the estimated motions at the marked points. We note that S
means the starting point of the motion.

The height from the floor was almost accurately esti-
mated over the trajectory. In fact, the estimated height was
almost constant. As for the component parallel to the floor,
however, the shape of the former part (from S to P in Fig. 8)
of the estimated trajectory fairly coincides with that of the
actual trajectory whereas the latter part (after P ) of the es-
timated trajectory has great aberration from the actual tra-
jectory. We have two reasons that may cause this aberra-
tion. One is the incorrect estimation of the motion at P and
the other is the effect of the estimation error at P upon the
subsequent estimations. In other words, since the motion
is incrementally estimated, the accumulation of estimation
errors and an incorrect estimation at just one marked point
cause aberration. The estimation error can be caused by
errors in the fixation correspondence or errors in the line
detection. Calibration errors of the two cameras also may
cause estimation errors.

As we see above, we may conclude that though the func-
tion to reduce the accumulation errors in estimation should
be incorporated into the proposed method for the accurate
estimation, our initial experiment demonstrates the potential

5It is therefore hard to apply the stereo vision algorithm to such input
image pairs. In addition, since there were not enough textures in the scene,
only few features could be detected. This also causes difficulty in applica-
tion of the stereo vision algorithm.

applicability of the proposed method.

5. DISCUSSION ON FIXATION CONTROL

To realize the fixation control, the computer should autonomously
select a point in 3D as the fixation point of a camera and then
control the camera so that the camera automatically fixates
its optical axis to the point. Moreover, updating fixation
points during the estimation is required. We discuss here
these problems.

5.1. Fixation-point detection

In the static scene, properties listed below are required for a
point that is selected as the fixation point of a camera. The
point satisfying the properties is suitable for a fixation point
and the computer has to automatically detect such a point.
How to formalize the criterion in selecting such a point is
the central issue. The method to find landmarks for mobile
robot navigation [13] may be helpful for this problem.

• Actual existence in 3D. (Two twisted lines in 3D, for
example, form a point in the image as the intersection
of their image lines. Such a point, however, should
not be selected as the fixation point since it does not
exist in 3D.)

• Easiness in identification in the image. A fixation
point should have a distinguished property to identify
in the image for the accurate fixation control.

• Having margins to fixate in the physical control of
the camera. The point should not easily disappear
from the field of view of the camera during the fix-
ation control.

• Having as a large distance as possible from the other
fixation point. As addressed above, the estimation ac-
curacy depends on the distance between two fixation
points in the binocular independent fixation control.

5.2. Camera control by template matching

When we select a point as the fixation point in the current
frame, to realize the fixation control we should first identify
the position where the point is in the next frame, and then
head the optical axis of the camera toward the new position
of the point. The template matching enables the computer
to effectively conduct these procedures.

When template-matching based tracking is applied to
the fixation point, appearance changes around the fixation
point due to ego motion may cause failure in accurate fixa-
tion control. With allowing affine warping of the template,
matching may become robust against such changes.

In capturing images during ego motion, motion blur may
occur. How to stabilize images is also an important issue.
Moreover, treating time-lag in camera action to realize a



smooth fixation control is indispensable. The method pro-
posed by [8] is promising for this problem.

5.3. Updating fixation point

To estimate ego motion in the scene, the binocular indepen-
dent fixation control should continue without any interrup-
tion. When a robot or a person widely moves in the scene
the case occurs during the motion where the camera cannot
capture the current fixation point due to its physical con-
straint, i.e., the angle limitation of pan and tilt of the cam-
era. In such a case, a new fixation point should be selected:
updating the fixation point is necessary.

The point that is newly selected as the fixation point
should also satisfy the properties listed in Section 5.1. We
remark that in the binocular independent fixation control,
each camera selects its new fixation point independently at
different time. This is because two cameras are indepen-
dently controlled.

In the implementation, before a camera cannot capture
the current fixation point due to its physical constraint, we
keep a point that can be a new fixation point in the image
of the camera. We replace the current fixation point by the
point to obtain a new fixation point as soon as the camera
loses the current fixation point. We then apply the fixation
control with respect to the new fixation point. In this way,
the estimation of ego motion continues without any inter-
ruption even though a robot or a person widely moves in the
scene.

6. CONCLUDING REMARKS

We proposed a method, the binocular independent fixation
control, for incrementally estimating ego motion by two
mounted active cameras. Our method independently con-
trols the two active cameras so that each camera automati-
cally fixates its optical axis to its own fixation point. The
correspondence of the fixation point over two frames to-
gether with the correspondence of lines nearby the fixation
point gives us sufficient constraints to determine the ego
motion in 3D.

In the binocular independent fixation control, two cam-
eras need not share the common field of view because each
camera fixates its optical axis to its own fixation point in
3D and because two fixation points are not necessarily the
same. In using binocular cameras, only the framework of
stereo vision has been studied for decades where the view-
ing lines of two cameras are convergent. In contrast, the
binocular independent fixation control stands in the other
framework where the viewing lines of two cameras are di-
vergent. We believe that the binocular independent fixation
control will open a new door to the diverging viewing-lines
paradigm in using multiple cameras.

Developing a fully automatic system that realizes the
binocular independent fixation control is the urgent future

work. Eliminating accumulation errors in estimating ego
motion and improving the accuracy of the estimation are
also included in the future work.
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