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Abstract. We exploit the framework of diverging viewing-lines where cam-
eras do not share the common field of view, and propose a method for
incrementally estimating ego motion using two mounted active cameras.
Our method independently controls the two cameras so that each camera
automatically fixates its optical axis to its own fixation point. This camera
control allows diverging viewing-lines of the two cameras and leads to ac-
curate ego-motion estimation independent of the baseline distance between
the two cameras. We show that the correspondence of the fixation point
over two frames together with the displacement field obtained from optical
flow nearby the fixation point gives us sufficient constraints to determine
ego motion.

1 Introduction

Multi-camera approaches to vision problems have been studied for decades [10,
11]. In particular, stereo vision is most famous and regarded as one of the most
important subjects in the computer vision literatures. In using multi-cameras, we
have taken it for granted that cameras are set up so that they share the common
field of view; the viewing lines of cameras are convergent. In other words, we
have paid little attention to the viewing lines of cameras. Almost all the existing
methods using multi-cameras are based on the camera setup where the viewing
lines of cameras are convergent.

We have, however, another framework in setting up cameras. It is the camera
setup where cameras do not share the common field of view; the viewing lines of
cameras are divergent [20]. This paper aims at investigating efficiency of employing
the framework of diverging viewing-lines and at promoting approaches to vision
problems viewed from the diverging viewing-line framework.

Omnidirectional cameras are recently actively investigated [2, 14, 15]. From the
viewpoint of viewing lines, omnidirectional cameras can be located in the diverging
viewing-line framework. The omnidirectional vision literatures, however, stress only
the point of enlarging the fields of view. Again they have paid little attention to
the viewing lines of cameras.

To show the effectiveness of the framework of diverging viewing-lines, we exploit
the problem of estimating ego motion using mounted cameras. This is because
computing three-dimensional camera motion from image measurements is one of
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the fundamental problems in computer vision and robot vision. In robot vision,
for example, mobile robot navigation and docking require the robot localization,
the process of determining and tracking the position (location) of mobile robots
relative to their environments [4, 9]. In the wearable computer, on the other hand,
understanding where a person is/was and where the person is/was going is a key
issue [6, 18] for just-in-time teaching, namely, for providing useful information at
the teachable moment.

Most successful approaches1 to estimating the position and motion of a moving
robot use landmarks such as ceiling lights, gateways or doors [16, 21] and are usually
based on the framework of stereo vision [7, 8, 13]. When we employ the stereo vision
algorithm, however, we have to make two cameras share the common field of view
and, moreover, establish feature correspondences across the images captured by
two cameras. This kind of processing has difficulty in its stability. In addition,
we have another problem in using the stereo vision framework. Namely, though
accuracy of the estimation is well known to highly depend on the baseline distance
between two cameras, keeping the baseline distance wide is hard when we mount
cameras on a robot or wear cameras. Therefore, accuracy of motion estimation is
limited if we employ the stereo vision algorithm.

In this paper, we employ the framework of diverging viewing-lines and propose
a method for incrementally estimating ego motion using two mounted active cam-
eras. In our method, the fixation control, the camera control in which a camera
automatically fixates its optical axis to a selected point (called the fixation point)
in 3D, plays a key role. Our method applies this fixation control independently to
each active camera. This camera control is called the binocular independentfixa-
tion control[17] (Fig. 1). The correspondence of the fixation point over two frames
together with optical flow nearby the fixation point gives us sufficient constraints
to determine ego motion in 3D.

In the binocular independent fixation control, each camera fixates its optical
axis to its own fixation point in 3D and two fixation points are not necessarily the
same. This indicates that the two cameras need not share the common field of view.
The viewing lines of the two cameras are divergent in this case in contrast to stereo
vision where convergence is always imposed on two viewing lines. Moreover, in the
binocular independent fixation control, estimation accuracy becomes independent
of the baseline distance between two cameras and is expected to become higher
than the case where we use the stereo vision algorithm. This can be understood as
follows. If we assume that we set a camera at each fixation point and that the optical
axis of each camera is toward a robot or a person, then the binocular independent
fixation control can be regarded as the situation where we apply the stereo vision

Fig. 1. Binocular independent fixation control.

1 Several approaches to ego-motion estimation are carefully compared in [19].
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framework to estimating the position of the robot or the person from the two
fixation points. The baseline distance in this case is identical with the distance
between the two fixation points. (We can embed the baseline into the scene.) This
means that estimation accuracy is independent of the baseline distance between
two mounted cameras and that selecting fixation points as far as possible from
each other allows estimation accuracy to become high. Our intensive experiments
demonstrate this effectiveness.

2 Geometric constraints on ego motion

We here derive geometric constraints on ego motion based on information obtained
during the binocular independent fixation control. Between two mounted cameras,
i.e., a right camera and a left camera, we set the right camera is the base. Moreover,
for simplicity, we assume that the orientation of the camera coordinates does not
change even though we change pan and tilt of the camera for the fixation control.
This means that only the ego motion causes changes in orientation and translation
of the camera coordinates. We also assume that the ego motion is identical with
the motion of the base-camera coordinates. We thus develop a method to estimate
the motion of the right-camera coordinates.

We assume that the extrinsic parameters between the two cameras as well
as the intrinsic parameters of each camera are calibrated in advance. Namely,
we let the translation vector and the rotation matrix to make the left-camera
coordinates identical with the right-camera coordinates be T in in the left-camera
coordinates and Rin in the right-camera coordinates, respectively. T in and Rin are
both assumed to be known.

2.1 Constraints from fixation correspondence

The fixation control gives us the correspondence of the viewing lines of a camera
toward the fixation point over time-series frames. We call this correspondence a fix-
ation correspondence. The fixation correspondence enables us to derive a constraint
on the ego motion [17].

Let the projection centers of the left camera and the right camera be Ct
� and

Ct
r in 3D at time t. We assume that the both cameras have their own fixation

points P� and Pr, and that P� is different from Pr. We denote by vt
r the unit vector

from Ct
r to Pr in the right-camera coordinates at time t. We see that vt

r represents
the viewing line of the right camera toward the fixation point at time t. We also
denote by vt

� the unit vector from Ct
� to P� in the left-camera coordinates at time

t (Fig. 2).
We first focus on the right camera. We assume that the projection center of the

right camera moves from Ct
r to Ct+1

r in 3D due to the ego motion from time t to
t + 1 (Fig. 3). We also assume that the rotation and the translation of the right-
camera coordinates incurred by the ego motion are expressed as rotation matrix
R in the right-camera coordinates at time t and translation vector T in the world
coordinates. We remark that the orientation of the world coordinates is assumed
to be obtained by applying rotation matrix R−1

0 to the orientation of the right-
camera coordinates at time t. Our aim here is to derive constraints on R and T
using vt

r and vt+1
r , both of which are obtained from the captured images at time t

and t + 1.
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Fig. 2. Relationship between the
projection centers and the fixation
points at time t.

Fig. 3. Geometry based on the fix-
ation correspondence of the right
camera.

It follows from the fixation correspondence of the right camera that

det
[

R0v
t
r R0Rvt+1

r T
]

= 0, (2.1)

which gives the constraint on the ego motion, R and T , derived from the fixation
correspondence of the right camera.

On the other hand, vt
� in the left-camera coordinates at time t is identical with

Rinv
t
� in the right-camera coordinates at time t. The rotation R of the right-camera

coordinates from time t to t + 1 causes the translation −R0(R − I)RinT in of the
left-camera coordinates in the world coordinates where I is the 3 × 3 unit matrix.
This yields a counterpart of (2.1). The fixation correspondence of the left camera
gives the following constraint on the ego motion:

det
[

R0Rinvt
� R0RRinv

t+1
� T − R0(R − I)RinT in

]
= 0. (2.2)

(2.1) and (2.2) are the constraints on the ego motion in 3D derived from the
fixation correspondences obtained by the binocular independent fixation control.
When we have estimated the ego motion up to time t, we know R0. Then, the
unknown parameters in (2.1) and (2.2) are R and T . We see that (2.1) and (2.2)
give quadratic constraints on R and T respectively.

2.2 Constraints from optical flow nearby the fixation point

Ego motion has 6 degrees of freedom: 3 for rotation and 3 for translation. The
number of constraints on ego motion derived from two fixation correspondences
is, on the other hand, two ((2.1) and (2.2)). We therefore need to derive more
constraints to estimate the ego motion.

Sugimoto etal.[17] proposed to use line correspondences nearby the fixation
point to obtain other constraints on ego motion. This is because line correspon-
dences across images can be easily established due to the spatial extent of the line.
Using line correspondences, however, falls in a fatal problem unless lines in 3D
are carefully selected. In the case where ego motion is just translation or the case
where the projection center moves on the plane defined by an employed line and
the projection center, the constraints derived from the line correspondence become
the identical equations. Namely, the constraints in such a case do not make sense
and no more independent constraint on the ego motion is obtained. This indicates
that once a line is selected for obtaining constraints on ego motion, the ego motion
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Fig. 4. Optical flow nearby the fixation point of the right camera.

itself is restricted from that time. Estimating ego motion and selecting lines then
become a which-came-first-the-chicken-or-the-egg question.

To avoid falling in such a problem, we here employ optical flow2 nearby the
fixation point and use the point displacement obtained from the flow field. Since a
camera focuses on its fixation point during the fixation control, computing optical
flow only nearby the fixation point is not cost-consuming and not expensive. The
computed flow field then enables us to derive constraints on ego motion.

We first focus on the right camera. We assume that we compute optical flow
nearby the fixation point over time t and t + 1 where optical flow is incurred by
ego motion only. Let pt

r be the coordinates of a point nearby the fixation point in
the right-camera image at time t, and ut

r be the flow vector at the point (Fig. 4).
We now have the following relationship between optical flow ut

r and ego motion R
and T :

det
[

R0R(Mut
r + p̃t

r) R0p̃t
r T

]
= 0, (2.3)

where

M :=
(

1 0 0
0 1 0

)�
, p̃t

r :=
(
(pt

r)� fr

)�
,

and fr is the focal length of the right camera.
This constraint is derived as follows. From the relationship of the orientations

among the world coordinates, the right-camera coordinates at time t and the right-
camera coordinates at time t + 1, we have

αR0p̃t
r = α′R0Rp̃t+1

r + T ,

where α and α′ are unknown positive constants. On the other hand, the definition
of p̃t

r gives

p̃t+1
r = M�pt+1

r +
(
0 0 fr

)�
.

Combining the above two equations with the definition of optical flow ut
r := pt+1

r −
pt

r, we obtain

αR�p̃t
r = α′

[
Mut

r + p̃t
r

]
+ R�R�

0 T ,

2 A number of methods have been proposed for optical flow computations (see [1, 3] for
the current state of the art). Optical flow is now stably and accurately recovered with
simple computation [12].
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from which (2.3) follows.
In the similar way, optical flow obtained from the left camera gives us the

constraint on the ego motion:

det
[

R0RRin(Mut
� + p̃t

�) R0R
�
inp̃t

� T + R0(I − R)RinT in

]
= 0, (2.4)

where pt
� is a point in the left-camera image at time t and ut

� is the flow vector
at the point. Note that p̃t

� is defined by p̃t
� :=

(
(pt

�)
� f�

)� where f� is the focal
length of the left camera.

Whenever we obtain one flow vector (at a point in an image), we have one
constraint on ego motion in the form of (2.3) or (2.4) depending on the camera
that captures the image. This constraint is quadratic with respect to unknowns,
i.e., R and T .

2.3 Estimation of ego-motion

In the binocular fixation control, two fixation points have no relationship. This
indicates that two constraints, (2.1) and (2.2), are algebraically independent. An
optical-flow vector obtained nearby a fixation point has no relationship with the
fixation point except that the direction of the flow vector may be similar to that at
the fixation point. The constraint derived from the flow vector is, thus, algebraically
independent of the constraints derived from the fixation correspondences. We can
therefore estimate ego motion if we have optical-flow vectors at more than four
points.

To be more concrete, we form a simultaneous system of nonlinear equations that
consists of the constraints derived from the fixation correspondence of each camera,
the constraints derived from optical flow and the orthogonality constraints imposed
on rotation, i.e., RR� = I, and then apply a nonlinear optimization algorithm such
as the Levenberg-Marquart method to solve the system. Parameters optimizing the
system give the estimation of ego motion.

3 Algorithm

Based on the discussion above, we present here the algorithm for estimating ego
motion based on the binocular independent fixation control. In the algorithm be-
low, ego motion is assumed to occur just before Step 3.

Step 1: Capture an image by each camera, and set t = 1 and C := {r, �}.
Step 2: While C �= φ, do the following procedures for each i ∈ C.

(a) Detect fixation point Pi by camera i and control camera i so that its optical
axis is toward Pi, and compute vt

i.
(b) In the image captured by camera i, set a small region Ri whose center is

the projection of Pi.
(c) C := C − {i}

Step 3: Capture an image by each camera.
Step 4: For i = r, �, do the following procedures.

(a) Compute optical flows in Ri.
(b) Control camera i so that its optical axis is toward Pi, and compute vt+1

i .
If camera i cannot capture Pi, go to Step (c). Otherwise, goto Step 5.
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(c) Add i to C and then return to Step 2.
Step 5: Select at least four points whose flow vectors are computed at Step 4.
Step 6: Estimate ego motion by combining (2.1), (2.2), (2.3), (2.4) and RR� = I.
Step 7: Set t = t + 1, and return to Step 3.

4 Experiments

4.1 Numerical evaluation on estimation accuracy

To verify the potential applicability of the proposed method, we here present two
kinds of numerical evaluation on estimation accuracy: one is on estimation accuracy
depending on the distance between two fixation points, and the other is on noise
sensitivity with a fixed distance between two fixation points.

The parameters in the simulation is as follows. Two cameras are set with the
baseline distance of 1.0 where each camera is with 21o angle of view and with the
focal length3 of 0.025. The two cameras are in the same pose: the orientation of
the camera coordinates is the same. The size of images captured by the cameras is
512 × 512 pixels. For each camera, we generated one fixation point at 10.0 depth
forward from the projection center. Note that the Newton-Raphson algorithm was
used in the nonlinear optimization.
A. Accuracy depending on the distance between two fixation points

In the first experiment, we changed distances between two fixation points and
then evaluated estimation accuracy at each distance.

We set a distance between two fixation points and generated two fixation points
in 3D for the two cameras satisfying the distance. We also randomly generated 2
points in 3D nearby each fixation point for the optical flow computation. The
images of the two points were within the window of 20× 20 pixels whose center is
the image of the fixation point. We then randomly generated a translation vector
with the length of 0.25. We also generated a rotation matrix where the rotation
axis is vertical and the rotation angle is within 1.0 degree. The restrictions imposed
in generating translations and rotations come from the realization of the fixation
control and the optical flow computation in the practical situation. Based on the
generated translation and rotation, the cameras were moved.

Before and after the motion, we projected all the points generated in 3D onto
the image plane to obtain image points that were observed in terms of pixels. To all
the image points, we added Gaussian noise. Namely, we perturbed the pixel-based
coordinates in the image by independently adding Gaussian noise with the mean
of 0.0 pixels and the standard deviation of 2.0 pixels. Next, we computed optical
flow of the points generated nearby the fixation points to obtain the flow vectors.
We then applied our algorithm to obtain ego-motion estimation: rotation matrix
R̂ and translation vector T̂ .

To evaluate the errors in the estimation, we computed the rotation axis r̂

(‖r̂‖ = 1) and rotation angle θ̂ from R̂. We then defined the evaluation of the
errors of R̂ and T̂ by

‖θ̂r̂ − θr‖
|θ| and

‖T̂ − T ‖
‖T ‖ ,

3 When the baseline distance is 20cm, then the focal length is 0.5cm, for example.
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Fig. 5. Estimation errors depending on small changes in distance between two fixation
points (average with standard deviation).
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Fig. 6. Estimation errors depending on great changes in distance between two fixation
points (average with standard deviation).

where r (‖r‖ = 1) is the rotation axis and θ is the rotation angle of the ground
truth, and T is the true translation vector (‖T ‖ = 0.25). We iterated the above
procedures 200 times and computed the average and the standard deviation of the
errors in the estimation at the distance between two fixation points.

To see the performance of estimation accuracy depending on the distance be-
tween two fixation points, we changed the distance by 1.0 from 1.0 to 10.0. We also
changed the distance by 5.0 from 5.0 to 50.0. These results are shown in Figs. 5
and 6. The former can be regarded as the case where our method is applied to the
indoor scene while the latter is the case to the outdoor scene. This is because in
the indoor scene, the distance between fixation points is at longest 10 times of the
baseline distance, for example.

From Figs. 5 and 6, we see that rotations are almost accurately estimated re-
gardless of the distance between two fixation points. As for the translation esti-
mation, we observe the improving tendency in accuracy as the distance between
two fixation points become larger. In particular, this tendency is marked when the
distances are greatly changed (Fig. 6 (b)). This observation means that our method
is more effective when the distance between two fixation points is very large, i.e.,
when it is applied to the outdoor scene, for example. The standard deviations,
on the other hand, are a little bit large in the all cases. Local minimum traps in
the nonlinear optimization sometimes cause inaccurate estimation; this may lead
to a large standard deviation. Incorporation of a more sophisticated optimization
algorithm is required for more stable estimation results.
B. Robustness against noise

In the second experiment, we evaluated the robustness against noise in our
estimation. We focused here on the evaluation of accuracy of estimated translation
vectors. This is because we have found in the first experiment that rotations are
fairly accurately estimated by our method independent of the distance between two
fixation points, and because position information is more important for localization
of a mobile robot or a moving person.
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Fig. 7. Position errors in the estimation against noise level under the constant distance
between two fixation points.

(a) binocular vision sensor (b) ego-motion trajectory

Fig. 8. Experimentation setup.

In this experiment, we first set the distance between two fixation points to
be 10.0. We then generated points in 3D, i.e., fixation points and points for the
optical flow computation, and rotation and translation in the same way as the first
experiment.

We added Gaussian noise to all the image points. In this case, we perturbed
the pixel-based coordinates in the image by independently adding Gaussian noise
with the mean of 0.0 pixels and several standard deviation levels. The standard
deviations were changed by 0.5 pixels from 1.0 to 10.0 pixels. We then estimated
the translation vector and evaluated accuracy. The results are shown in Fig. 7 (a).
We also conducted the same experiment in the case where the distance between
two fixation points is 50.0, the results of which are shown in Fig. 7 (b).

Figure 7 shows that estimation accuracy remains stable up to the noise level
of 10 pixels. It is reasonable that when greater noises are added in observation,
estimation becomes less accurate. However, our results show that our method is
robust even against 10-pixels noise. We also observe large standard deviations in
estimation errors as in the case of the first experiment. Enhancing stableness in
estimation is left for the future work.

4.2 Ego-motion trajectory estimation using real images

We applied our method to estimating ego-motion trajectory in the real situation.
We employed two off-the-shelf cameras (EVI-G20 from Sony) as active cameras
and set up a binocular vision sensor where two cameras with the baseline distance
of about 20cm were mounted on the stage of a tripod (Fig. 8 (a)). We remark that
in our setup the viewing lines of the two cameras are divergent. We then calibrated
the intrinsic and extrinsic parameters of the two cameras with the method proposed
by Zhang [22]. The size of images captured by each camera was 640× 480 pixels.
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Fig. 9. A pair of captured images and computed optical flow.

We moved the binocular vision sensor in the scene. The trajectory of the right-
camera motion is shown in Fig. 8 (b). The length of the trajectory was about 3m.
We marked 85 points on the trajectory and regarded them as samples during the
ego motion. (In other words, 85 points were sampled during the ego motion of
about 3m.) We then applied our method only to the samples, i.e., the marked
points, to estimate the ego motion.

In each image captured by each camera at the starting point of the motion, we
manually selected a point to serve as the fixation point. During the estimation, we
updated fixation points 4 times for each camera. This updating was also conducted
by hand. The distance between two fixation points for the binocular vision sensor
was about 3m. We remark that we selected fixation points so that the viewing lines
of the two cameras always become divergent. We computed optical flow within the
window of 100×100 pixels whose center is the image of the fixation point. We used
two optical-flow vectors for each camera (we thus used four optical-flow vectors in
total). The vectors were randomly selected within the windows of 30 × 30 pixels
whose center is the image of the fixation point. In computing optical flow, we used
the Kanade-Lucas-Tomasi algorithm [5, 12]. (a) and (b) in Fig. 9 show an example
of an image pair captured by the right and left cameras at a marked point. We
see that no field of view of the two cameras is common. (c) in Fig. 9, on the other
hand, shows the computed optical flow for the right camera at the marked point.
We remark that the fixation point (the black circle) and the window of 30 × 30
pixels are overlaid onto the images in Fig. 9.

Under the above conditions, we estimated the right-camera motion at each
marked point. Fig. 10 shows the trajectory of the right-camera motion that was
obtained by concatenating the estimated motions at the marked points. For the
comparison, the ground truth of the trajectory is shown in Fig. 11.

From the comparison of Figs. 10 and 11, we see that the shape of the trajectory
is almost correctly estimated. The shape of the estimated trajectory almost coin-
cides with that of the actual trajectory when viewed from some viewpoints. In fact,
the average of errors in position estimation over the marked points was 0.271cm and
the standard deviation was 0.349cm. (The distance between two adjacent marked
points was 4.20cm on the average.) The position error at the terminal marked point
was about 25cm. At some marked points, we observe great errors in estimation and
aberration from the actual trajectory. We have two reasons that may cause this
aberration. One is the incorrect estimation of the motion at the marked points
and the other is the accumulation of errors due to incremental estimation. The
estimation error can be caused by errors in the fixation correspondences or errors
in the optical-flow computation.
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Fig. 10. Estimated trajectory of the ego motion.
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Fig. 11. Trajectory of the ego motion (the ground truth).

As we see above, we may conclude that though we have some errors in estima-
tion and need some improvements on our method, our experiments demonstrate
the applicability of our method to the real situation.

5 Concluding Remarks

We proposed a method for incrementally estimating ego motion by two mounted
active cameras. Our method independently controls the two active cameras so that
each camera automatically fixates its optical axis to its own fixation point. The
correspondence of the fixation point over two frames together with the displace-
ment field obtained from optical flow nearby the fixation point gives us sufficient
constraints to determine ego motion in 3D.

In our method, two cameras need not share the common field of view because
each camera fixates its optical axis to its own fixation point in 3D and because
two fixation points are not necessarily the same. In using binocular cameras, the
framework of stereo vision has a long history in its usage and only that framework
has been studied so far where the viewing lines of two cameras are convergent. In
contrast, our method stands in the other framework where the viewing lines of two
cameras are divergent. We believe that our method puts the binocular vision in
a light and promotes the framework of diverging viewing-lines in using multiple
cameras.

Included in the future works are (1) enhancing stableness in estimation, (2)
incorporating a mechanism to eliminate accumulation errors in estimation and (3)
developing a fully automatic system that realizes the proposed method.
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