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Abstract Stochastic Context-Free Grammars (SCFG) have been shown to be useful for vision-based human ac-

tivity analysis. However, action strings from vision-based systems differ from word strings, in that a string of

symbols produced by video contains noise symbols, making grammar learning very difficult. In order to learn the

basic structure of human activities, it is necessary to filter out these noise symbols. In our work, we propose a new

technique for identifying the best subset of non-noise terminal symbols and acquiring the best activity grammar.

Our approach uses the Minimum Description Length (MDL) principle, to evaluate the trade-offs between model

complexity and data fit, to quantify the difference between the results of each terminal subset. The evaluation

results are then used to identify a class of candidate terminal subsets and grammars that remove the noise and

enable the discovery of the basic structure of an activity. In this paper, we present the validity of our proposed

method based on experiments with synthetic data.

Key words Grammatical Inference, Syntactic Analysis, Minimum Description Length Principle, Action Recogni-
tion

1. Introduction

The Context-Free Grammar (CFG) is a model that has

been widely utilized for natural language processing. How-

ever in recent years, it has been shown that CFGs are also

effective for modeling human activities extracted from video

( [1], [7], [3], [2]). The success of CFGs in analyzing natural

languages, is largely due to its ability to represent the hier-

archical structure found among words in a sentence. This

same hierarchical structure is also found in human activi-

ties [8] which makes an CFG a suitable model for human

activity analysis. While a variety of other non-hierarchical

finite-state machines (finite-state automata, hidden Markov

models, n-grams, etc.) have been used for human activity

analysis, they are limited in that they cannot describe hier-

archical structures.

One important task involved in using a CFG for activity

analysis is the task of defining the grammar. Previous works

that used CFGs for activity analysis defined their grammars

by hand-crafting their own grammars and have left the is-

sue of grammar learning unaddressed. Ivanov [1] extracted

primitive action words from a video sequence of a conductors

arm using HMMs and was able to recognize the rhythmic

meter using a Stochastic Context-Free Grammar (SCFG).

The grammar and it’s parameters however, were defined by

Ivanov himself. Moore [3] used a SCFG to recognize people

playing Black Jack and used the a prior information encoded

in the grammar to deal with errors in the string of action

words. Again, the grammar was defined by the author based

on the basic rules of the game. In the same vein, Minnen [2]

leveraged the a prior knowledge of a predefined grammar to

infer an action even when the agent under analysis is occluded

in the scene.

In contrast to the number of works that used predefined

grammars, research dealing with the issue of learning has

been minimal. Wang [7] used a similar experimental scenario

as Ivanov and implemented HMMs to produce action words

from a video segment of a conductors hand motions. The

actions produced by the HMMs were then fed into a CFG

learning algorithm COMPRESSIVE [4] to learn the action

grammar. Due to the fact that COMPRESSIVE presupposes

positive examples to generate the CFG, the system is very

sensitive to errors in the training data. That is, an unstable

detection would have a very adverse effect on the learning

process because the noise would be included into the learned

grammar. While a noise-less input stream may be a rea-

sonable assumption when learning a grammar from a string

of words, it is a naive assumption when learning an activity

grammar from a symbol string that has been generated using

probabilistic detectors on a noisy video source.
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In summary, most of the work using CFGs for activity anal-

ysis have used grammars designed by knowledge engineers

while research focused on grammar learning have only used

pre-exiting algorithms, assuming activities to be a noise-less

stream of symbols. Therefore, in this paper, we propose a

new grammar learning method that deals with the issue of

noise. Our method places an assumption of noise on the

training data and tests that assumption using the minimum

description length (MDL) principle. Then, using the results

of the MDL evaluation, our method finds a class of the best

set of terminal symbols that yields the most compact and

descriptive grammars.

2. Our Approach

In this section we first discuss the characteristics of noise

in 2. 1 and then we introduce the basic ideas behind our ap-

proach in 2. 2.

2. 1 Characteristics of Noise

When considering the task of extracting action symbols

from video via image processing, it is reasonable to expect

different types of errors in the symbol string. Due to changes

in appearance, some symbols might be mistakenly inserted

into the string, while other symbols are deleted (not detected)

or substituted by a wrong symbol. In general, certain sym-

bols that are often inserted, deleted or substituted introduce

a lot of randomness into the string. It is symbols such as

these that we call noise symbols.

In this paper, we make the assertion that a symbols is ei-

ther a (1) noise symbols or a (2) non-noise symbol. We define

a non-noise symbol to be a symbol that shows non-random

behavior, meaning that the symbol is observed with regular-

ity with respect to frequency and its relative position to other

symbols. Noise symbols on the the other hand, display ran-

dom behavior. That is, noise symbols do not appear with a

constant frequency and they appear sporadically, unaffected

by the presence of other symbols.

2. 2 Basic Concept

We begin the explanation of our method with a concrete

example to show the basic concepts underlying our approach.

Given a symbol string S, we would like to find the most com-

pact grammar that yields a detailed description of the symbol

string. At first glance, no regularity is observed in the string:

S → a x b y c a b x c y a b c x.

Since we are assuming the presence of noise, we randomly

remove all y symbols from the stream making the presuppo-

sition that it is noise 1. This assumption allows us to shrink

the string into its new form:

1Here we delete the symbol for illustrative purposes. We do not actu-

ally delete symbols in our method.

S → a x b c a b x c a b c x.

It is observed that the substring c a b occurs twice in the

string but we still have not found a regularity (some rule)

that completely describes the symbol string. So we proceed

by making another arbitrary presupposition that x is also a

noise symbol, resulting in the string:

S → a b c a b c a b c.

Now it is clear that the substring a b c is repeated 3 times

in the symbol string. Thus we create a new rule A and encode

the symbol string S with the new rule, yielding the compact

description:

S → A A A

A → a b c

What we have observed through this example is that when

x and y are assumed a priori to be noise, we were able to

obtain a compact grammar (A → a b c) and a detailed de-

scription of the basic structure of the original symbol string

S → A A A. Thus we reason that it is highly probable that x

and y are in fact noise symbols.

If, as in the example, we can correctly guess which symbols

are noise symbols, we will be able to find the most compact

representation of the symbol string. However, this holds true

only when the following criteria are met:

( 1 ) noise symbols exist in the symbol string,

( 2 ) non-noise symbols exist in the symbol string,

( 3 ) noise and non-noise symbols are mutually exclusive,

( 4 ) non-noise symbols occur with regularity.

When these conditions are met and the noise symbols are

correctly identified, we will be able to obtain a compact gram-

mar and a detailed description of the basic structure of the

symbol string. Therefore, in our approach, we will identify

noise symbols by evaluating the complexity of the grammar

(model) and the ability of the grammar to fully describe the

symbol string (data).

The remainder of this paper is organized as follows. In

the next section 3., terminology and the basic concepts of

description length are introduced. In section 4., the imple-

mentation details of the proposed method are given and in

5., we show the validity of our method from experimental

results based on synthetic training data.

3. Preliminaries

3. 1 Defining a SCFG and the Input Data

A SCFG is defined by the quintuplet G = {T,N, S,R,Θ},
where T, N, R, Θ are the set of terminal symbols

{T1, . . . , Tm}, the set of nonterminal symbols {N1, . . . , Nn},
the set of production rules {R1, . . . , Rp}, the set of param-

eter of the production rules {θ1, . . . , θq}, respectively and S

— 2 —



Table 1 Pseudo-code for the algorithm

1 For every combination of terminal symbols Ck, k = 1 to 2m

2 CreateInitialGrammar(Ck, W) → G0

3 LearnGrammar(G0) → G

4 GrammarCodelength(G) → − log P (G)

5 EncodedDataCodelength(W′, G) → − log P (W′|G)

6 TotalCodelength → − log P (G|W′)
7 OutputGrammarCandidates → Ω

is the start symbol, where S ∈ N．A production rule takes

the form A → α∗, where the production rule probability

P (A → α∗), conforms to the condition
∑

k
P (A → α∗

k)) = 1,

where A ∈ N, α ∈ (Ni ∪ Tj) and Ni ∈ N.

The input symbol string (training data) W =

{W1, . . . , Wu} is made of u action sequences Wi extracted

from a long video sequence. Furthermore, the action se-

quence Wi = {ε0, w1, . . . , wv}, is made of v action words

(terminal symbols) wj , where each sequence is headed by a

ε0 that demarks the beginning of a new sequence.

3. 2 Relation between MDL and Bayes Rule

In the Bayesian framework, the optimal model G is found

by maximizing the product of the data likelihood P (W|G)

and the prior probability P (G) of the model, formally:

Ĝ = arg max
G

{P (W|G)P (G)}. (1)

In contrast, in terms of information-theoretic concepts, a

probability has another interpretation. That is, given a dis-

crete random variable X and an event x with a probability

distribution P (x), the number of bits needed to describe that

event x is given by the Shannon code:

DL(x) = − log2 P (x). (2)

Thus by taking the minus log of the argument (1) we obtain

a formulation of the minimum description length principle:

Ĝ = arg min
G

{- log2 P (W|G)- log2 P (G)}. (3)

In the MDL framework, the optimal model Ĝ is found by

minimizing the description length of the model - log P (G)

and the description length of the data encoded by the model

- log P (W|G).

4. Proposed Method

In this section we give a detailed explanation of the flow of

the algorithm as summarized in table 1.

4. 1 For each Combination Ck

Since we do not know a priori which symbols are noise,

we evaluate every possible combination of terminal symbols,

such that a combination of terminal symbols expresses a

certain presupposition (noise or non-noise) about the sym-

bols. For example, if we have two symbols x and y, there

are four possible combinations (four ways to divide the sym-

bols). The complete set of possible non-noise symbols would

be {∅}, {x}, {y} and {x, y}. We formalize this below.

Given m terminal symbols, it is possible to produce 2m dif-

ferent combinations. Each combination represents a presup-

position about the nature of each symbol. Formally, com-

bination Ck is defined by two sets, T+ = {T+
1 ，. . .，T+

u }
and T− = {T−

1 ，. . .，T−
v }, such that k = (1, . . . , 2m) and

u + v = m. The set T+ is the presupposed set of all non-

noise symbols, where each element T+
i is called an informa-

tive symbol. Similarly, the set T+ is the set of all presup-

posed noise symbols, where each element T−
i is called a non-

informative symbol. The two sets have the property such

that T = T− ∪ T+ and T− ∩ T+ = ∅.
4. 2 Creating the Initial Grammar G0

In the previous section, we set up presuppositions for each

terminal symbol and split up the terminal symbols into two

subsets. Before we start the MDL evaluation process, we

must create an initial grammar that reflects our presupposi-

tions about the terminal symbols.

First we create a set of preterminal production rules Ni →
T+

i for each element in T+, where Ni is a newly created

nonterminal. These preterminal rules effectively preserve the

unique identity of the symbol in the input string.

Next, we create a set of generic preterminal production

rules for non-informative symbols in the form ∗ → T−
i , where

the nonterminal ∗ is a generic nonterminal representing all

noise symbols. The generic absorption rule ∗ → ∗ ∗ is also

created, which has the effect of absorbing a series of adjacent

noise symbols.

Finally, we create a rule that contains the whole input sym-

bol string W headed by S, since the next grammar learning

step requires that the whole input string be the first rule

in grammar. The input symbol string W is a series of seg-

mented activity sequences, where each sequence Wi is headed

by a start marker εi. In our work, segmentation is done man-

ually for simplicity. However, there are various ways to seg-

ment activities in video, such as using a threshold on frame

to frame differences.

Before we add the input symbol string to the grammar, we

would first like to partially encode the input string, to reflect

the presuppositions that we have made about the symbols.

We do this by replacing each terminal symbol wj in each se-

quence Wi ∈ W with the appropriate nonterminal symbol,

using the preterminal productions rules created earlier. The

partially encoded input string W′ is then used to create the

new rule S → W′. After all of the new rules have been in-

serted into the grammar, we obtain the set of initial rules

R0:
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R0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

S → W′ ∗ → ∗∗
N1 → T+

1 ∗ → T−
1

· · · · · ·
Nu → T+

u ∗ → T−
v

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

4. 3 Learning the Grammar

In order to test the presuppositions regarding the symbols,

we learn the grammar based on the presuppositions and use

the learned grammar as a measure of correctness. We use

Nevill-Manning’s COMPRESSIVE algorithm [4] to learn the

grammar, using the initial grammar G0.

COMPRESSIVE uses a formula that quantifies the change

in description length ΔDL to find the best N-gram in the

grammar that minimizes the overall size of the grammar. For

a N-gram ν with length m and occurrence n, the compression

function is given as:

ν̂ = arg max
ν

{m · n − (m + 1) − n}. (4)

In words, the change in description length is equivalent to the

decrease caused by the removal of ν (n occurrences of length

m), minus the increase of inserting a new rule m + 1, minus

the increase of inserting of the new nonterminal symbol n

times.

Once the best ν has been found and replaced by the new

nonterminal, the algorithm reprocesses the grammar until

there are no more N-grams can be found that decrease the

size of the grammar. During the iterative process, the occur-

rence counts for the best N-grams are stored and are used

later to calculate the rule probabilities.

Upon completion of COMPRESSIVE, the grammar is post-

processed and probabilities are calculated for each rule. First,

the S rule containing the compressed input string W′′ is sep-

arated back into the segments W ′′
i using the markers εi and

inserted back into the grammar as a new S rule (S → W ′′
i ).

Multiple occurrences of the same segment are inserted only

once while the counts are continually updated.

After post-processing, the production rule probabilities are

calculated with the follow equation:

P (A → λ∗
i ) =

c(A → λ∗
i )∑

j
c(A → λ∗

j )
, (5)

such that A ∈ N and λ = (Np ∪ Tq).

4. 4 Description Length of the Grammar

Once the grammar has been learned, we quantify it by cal-

culating the description length of the grammar. Later we will

see how this description length is used to evaluate the overall

correctness of the presuppositions on the symbols.

We used the same method as Stolcke [6] to calculate the

description length of the grammar. Since the probability of

the grammar is defined to be the joint probability of the

parameters and structure of the grammar P (GS ,ΘG) =

P (ΘG|GS)P (GS), we divide the computation of the descrip-

tion length into two parts.

DL(G) = DL(ΘG|GS) + DL(GS) (6)

To calculate the description length of the grammar, we use

a probabilistic interpretation for the parameters and a code-

length interpretation for the structure.

Grammar Parameters ΘG

The grammar parameter probability is calculated as

the product of Dirichlet distributions P (ΘG|GS) =∏n

j=1
P (θNj |GS), such that each Dirichlet distribution rep-

resents an equally distributed probability across all potential

productions of a given nonterminal. For a nonterminal N ,

P (θN |GS) =
1

B(α1, . . . , αt)

t∏
i=1

θαi−1
i , (7)

where the parameters of a given nonterminal is represented

by the multinomial distribution θN = (θ1, . . . , θt). Each rule

has a equality distributed probability θi and the prior weights

αi are also equally distributed, conforming to the conditions∑n

i=1
αi = 1 and αi < 1. The probability is converted to the

description length DL(ΘG|GS) using equation 2.

Grammar Structure GS

In contrast to the parameters, the structure is directly cal-

culated as a description length consisting of two parts: (1)

the length of the production rule code(k) and (2) the number

of symbols in the production rule code(s). code(k) is com-

puted from equation 8 assuming the length of the production

rule is assumed to be drawn from a Poisson distribution(we

use η = 3) shifted by one since the smallest possible rule is

of length two.

− log p(k − 1; η) = − log
e−ηηk−1

(k − 1)!
. (8)

Assuming all symbols have the same occurrence probabil-

ity, we need at least − log 1
|Σ| bits per symbol, such that

Σ = N ∪ T. Therefore, code(s) of a rule with k symbols re-

quires k log |Σ| bits to describe. The total description length

of the structure is:

DL(GS) =
∑
R∈R

(− log p(k − 1; η) + k log |Σ|) . (9)

4. 5 Input Data and Total Description Length

Using the learned grammar, we now calculate the de-

scription length of the input data encoded by the grammar

DL(W|G). DL(W|G) is another aspect of our test for cor-

rectness, that is, if our presuppositions are correct, the de-

scription length of the input data encoded by the grammar

will be short.

We use a chart of inside probabilities to calculate the likeli-

hood using the initialization equation (10, 11) and the recur-

sive equation (12), where N is a nonterminal, i is the start
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index, j is the length and k is the abstraction level of E. The

summation term is the sum of inside probabilities for every

permutation of {j1, . . . , jm} that sums to j.

β(T, i, 1, 1) = 1.0 (10)

β(N, i, 1, 2) = P (N → T ) · β(T, i, 1, 1) (11)

β(N, i, j, k) = P (N → N1 · · ·Nm) ·∑
mPm

{β(N1, i1, j1, k1) + · · ·

+β(Nm, im, jm, km)} (12)

The likelihood for one sequence Wi is calculated from equa-

tion (13) the sum of all S inside probabilities that start

at index one and the total likelihood is given by equation

(14). The likelihood is converted to a description length us-

ing equation 2.

P (Wi|G) =
∑

k

β(S, 1, jmax, k), (13)

P (W|G) =

n∏
i=1

P (Wi|G). (14)

Finally, we obtain the total description length of the gram-

mar and the data using the MDL equation (3). This descrip-

tion length can now be used as a score for the presuppositions

that were first imposed on the symbols. Thus, we now have

a framework to rank the correctness of the combination Ck.

4. 6 Grammar Candidates Ω

Up to this point, the description length has been computed

mechanically, yielding a method for scoring a combination of

terminal symbols. However, when we consider the perspec-

tive of the user, a ranked list of grammars is not the best

way to present the candidate grammars. Often times, the

user might wish to specify the number of terminals to use,

with a willingness to gaining expressiveness at the cost of an

increase in description length. Therefore, in this system, we

make the user-centered decision to output a set of candidate

grammars such that each grammar is the top scoring gram-

mar, for a given number of utilized terminal symbols (infor-

mative symbols). The user is then given the final authority

to choose the best grammar from those candidates.

5. Experimental Results

In this section, we show the validity of our approach by

learning a set of candidate grammars from synthetic training

data set.

5. 1 Simple Grammar with Noise

The first action grammar is a simple grammar (Table 2)

that outputs one non-hierarchical sentence that describes

the use of a printer. The basic pattern is door, computer,

printer and represents the activity of a person entering from

Table 2 Predefined Grammar (S2)
S → DOOR COMPUTER PRINTER (1.0)

DOOR → door INSERT (0.5)

DOOR → door (0.5)

COMPUTER → computer INSERT (0.5)

COMPUTER → computer (0.5)

PRINTER → printer INSERT (0.5)

PRINTER → printer (0.5)

INSERT → desk (0.5)

INSERT → shelf (0.5)

Table 3 Learned Grammar for 3 Symbols (S2)
S → J (0.100) G → J ∗ (1.000)

S → L (0.083) H → B ∗ D (1.000)

S → E (0.183) I → B A C (1.000)

S → H (0.067) J → B D (1.000)

S → F (0.167) K → H ∗ (1.000)

S → K (0.100) L → E ∗ (1.000)

S → G (0.233) A → computer (1.000)

S → I (0.067) B → door (1.000)

D → A ∗ C (1.000) C → printer (1.000)

E → B ∗ A C (1.000) ∗ → desk (0.516)

F → I ∗ (1.000) ∗ → shelf (0.484)

Table 4 Candidate Combinations (S2)

SYM Informative Symbols T+ DL(G) DL(W |G) DL(G|W )

3 computer door printer 328.62 202.137 530.756

2 door printer 117.85 400.438 518.284

1 computer 89.69 605.681 695.3758

the door, sitting down at the computer and then going to the

printer. We assume two unstable noise sources: (1) desk and

(2) shelf, which are hypothetically produced by the image

processing system when a person stands nearby either object.

Sixty artificial strings were produced using the grammar.

A complete list of results for each configuration is given in

Table 52. The top candidates selected from this list are given

in Table 4. It is observed that the true set of non-noise termi-

nal symbols has been correctly identified when three symbols

are utilized as informative symbols. The candidates for two

symbols and one symbol are also given. The learned gram-

mar when using three symbols is given in Table 2. Although

the learned grammar shows a false hierarchical structure, it

covers the equivalent string space as the predefined grammar

in Table 2.

5. 2 Three Pattern Grammar with Noise

This next grammar (Table 6) is taken from the short meal

used in [5]. The set of non-noise terminal symbols is given as

T+ = { chair, cupboard, door, fridge } and the set of

noise terminals is given as T− = { counter, table }.
This grammar can create 3 types of strings:

( 1 ) door-cupboard-fridge-chair-fridge-door,

( 2 ) door-cupboard-fridge-chair-door,

( 3 ) door-cupboard-fridge-door.

Again, the proposed algorithm is executed on 60 string cre-

ated by the original grammar. The results for the top can-

didates are given in Table 8. The true set of terminals when

four symbols are used has been identified as one of the top

candidate. The results for 3 symbols and below are also given.

2Only combinations with two or more noise symbols are shown.
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Table 5 Results for All Combinations (S2)
SYM Informative DL(G) DL(W |G) DL(G|W )

2 door, printer 117.85 400.44 518.28

3 computer, door, printer 328.62 202.14 530.76

2 computer, door 126.81 407.14 533.95

2 computer, printer 187.57 401.41 588.98

1 computer 89.69 605.68 695.38

1 door 85.58 610.59 696.17

3 desk, door, printer 388.81 317.44 706.25

3 computer, desk, door 399.04 323.04 722.08

3 door, printer, shelf 403.31 325.53 728.84

3 computer, door, shelf 418.21 331.21 749.43

2 computer, shelf 274.87 498.50 773.37

2 computer, desk 285.39 489.49 774.88

1 printer 113.80 665.42 779.22

2 door, shelf 241.25 544.14 785.39

2 desk, door 251.33 538.11 789.44

3 computer, printer, shelf 560.90 329.26 890.15

3 computer, desk, printer 576.80 313.78 890.58

2 desk, printer 362.22 563.55 925.77

1 70.82 855.73 926.54

1 desk 173.81 761.72 935.53

2 printer, shelf 362.22 577.68 939.90

1 shelf 173.81 779.90 953.71

2 desk, shelf 459.24 642.53 1101.77

3 computer, desk, shelf 791.53 316.38 1107.90

3 desk, printer, shelf 696.86 431.66 1128.52

3 desk, door, shelf 718.64 425.67 1144.31

Table 6 Short Meal Grammar（C2）
S → ENTER ACTION EXIT (0.5)

S → ENTER EXIT (0.5)

ENTER → DOOR CUPBOARD FRIDGE (1.0)

ACTION → CHAIR FRIDGE (0.5)

ACTION → CHAIR (0.5)

EXIT → DOOR (1.0)

DOOR → door INSERT (0.5)

DOOR → door (0.5)

CUPBOARD → cupboard INSERT (0.5)

CUPBOARD → cupboard (0.5)

FRIDGE → fridge INSERT (0.5)

FRIDGE → fridge (0.5)

CHAIR → chair INSERT (0.5)

CHAIR → chair (0.5)

INSERT → table (0.5)

INSERT → counter (0.5)

Table 7 Learned Grammar for 4 Symbols (C2)
S → I C ( 0.02 ) S → I O ( 0.02 )

S → I M ( 0.02 ) S → V C ( 0.02 )

S → N Q ( 0.02 ) S → L M ( 0.02 )

S → X ( 0.05 ) E → G B ( 1.00 )

S → L P ( 0.02 ) F → E ∗ D ( 1.00 )

S → F G ( 0.03 ) G → C ∗ ( 1.00 )

S → N M ( 0.02 ) H → C B D ( 1.00 )

S → I Q ( 0.03 ) I → L ∗ ( 1.00 )

S → N G ( 0.02 ) J → C B ∗ D ( 1.00 )

S → V P ( 0.02 ) K → A ∗ ( 1.00 )

S → F O ( 0.03 ) L → E D ( 1.00 )

S → R ( 0.08 ) M → A G ( 1.00 )

S → T ( 0.07 ) N → F ∗ ( 1.00 )

S → L C ( 0.03 ) O → K G ( 1.00 )

S → U ( 0.07 ) P → A C ( 1.00 )

S → H O ( 0.03 ) Q → K C ( 1.00 )

S → S ( 0.07 ) R → I G ( 1.00 )

S → N O ( 0.02 ) S → F C ( 1.00 )

S → J C ( 0.03 ) T → H C ( 1.00 )

S → H M ( 0.02 ) U → H G ( 1.00 )

S → L Q ( 0.03 ) V → J ∗ ( 1.00 )

S → H ∗ P ( 0.02 ) W → F M ( 1.00 )

S → H ∗ G ( 0.02 ) X → L G ( 1.00 )

S → F P ( 0.03 ) Y → N C ( 1.00 )

S → V O ( 0.02 ) A → chair ( 1.00 )

S → Y ( 0.05 ) ∗ → counter ( 0.49 )

S → I P ( 0.02 ) B → cupboard ( 1.00 )

S → J G ( 0.02 ) C → door ( 1.00 )

S → V Q ( 0.02 ) D → fridge ( 1.00 )

S → W ( 0.05 ) ∗ → table ( 0.51 )

In Table 7 the learned grammar for 4 symbols is given and

can be shown to be equivalent to the original grammar.

Table 8 Top Candidates (C2)

SYM Informative Symbols T+ DL(G) DL(W |G) DL(G|W )

4 chair cupboard door fridge 1182.9 397.5 1580.4

3 chair cupboard fridge 326.1 756.8 1082.9

2 cupboard door 216.9 700.6 917.4

1 door 133.0 930.2 1063.2

6. Conclusion

When one takes on the task of grammatical inference from

a string of symbols produced from the results of a vision-

based image processing system, the difficulty of the task is

increased by the potential presence of noise symbols. Noise is

introduced into the string by errors in the image processing

system as well as non-regular actions symbols in the input

string. In this paper, we addressed the issue of noise and

presented a method for identifying the best set of non-noise

terminals. Our approach was based on a type of hypothesis

testing using the MDL principle to test the overall correctness

of the hypothesis. We presented the details of our approach

along with experimental results to show the validity of our

work. We were able to show that non-noise terminals were

identified correctly and resulted in learning a grammar equiv-

alent to the original grammar used to produce the artificial

input string. As for future works, we plan to test the robust-

ness and practicality of our method by using real data.
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