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Abstract

This paper presents a method for segmenting a 3D point
cloud into planar surfaces using recently obtained discrete-
geometry results. In discrete geometry, a discrete plane is
defined as a set of grid points lying between two parallel
planes with a small distance, called thickness. Contrarily
to the continuous case, there exist a finite number of local
geometric patterns (LGPs) appearing on discrete planes.
Moreover, such a LGP does not possess the unique normal
vector but a set of normal vectors. By using those LGP
properties, we first reject non-linear points from a point
cloud, and then classify non-rejected points whose LGPs
can have common normal vectors into a planar-surface-
point set. From each planar-surface-point set, we also esti-
mate parameters of a discrete plane by minimizing its thick-
ness.

1. Introduction

This paper presents a method for segmenting a 3D point
cloud into planar surfaces using recently obtained discrete-
geometry results. Conventional approaches are classi-
fied into three categories: region-based approach, edge-
based approach and hybrid approach. The first one merges
points that have similar region properties calculated from
their neighboring points such as normal vectors and cur-
vatures [1]. Because calculated properties are sensitive to
noise and quantization errors, it is known that they cause
over segmentation. In the second approach, edges are
searched for such that they separate regions by using depth
discontinuities [9]. Because edges are not always extracted
as connected curves, they cause under segmentation, con-
trary to the first ones. The third approach is hybrid be-
tween the two approaches, so that they import both their
merits [7, 8]. For a special case in the third approach, a
planar segmentation method is proposed based on locally
planar points, considering points that are not locally planar
to be potentially edge points [7].

In this paper, we present a discrete version of the hybrid
method. In discrete geometry, a discrete plane is defined as
a set of grid points lying between two parallel planes with a
small distance, called a thickness [5]. Contrarily to the con-
tinuous case, there exist a finite number of local geometric
patterns (LGPs) appearing on discrete planes, called linear
LGP [3]. In fact, points that have linear LGP can be con-
sidered to be discrete version of locally planar points [7].
In addition, such a linear LGP does not possess the unique
normal vector but a set of normal vectors [2]. By using
those LGP properties, we present a segmentation method
following the two steps: first reject non-linear points from a
point cloud (edge-based part), and then merge non-rejected
points whose LGPs have common normal vectors (region-
based part). It thus uses only precalculated look-up tables
with respect to LGP, and does not require any parameter
setting. Furthermore, our method is less sensitive to noise
as well as quantization errors. Indeed linear LGPs already
take into account quantization errors for their generation.
We show such advantages by applying our algorithm to 3D
point clouds such as range images. In order to evaluate our
segmentation results, we also present a method for estimat-
ing discrete plane parameters from each segmented planar
surface by minimizing its thickness. Because the thickness
indicates the segmentation inaccuracy, namely the curved-
ness of a segmented planar surface, we consider that the
thinner the thickness, the better the segmentation result.

2. Non-linear point rejection using LGP

2.1. Discrete planes

Let R be the set of real numbers. A plane P in the 3D
Euclidean space R

3 is defined by the following expression:

P = {(p, q, r) ∈ R
3 : αp + βq + γr + δ = 0}

where α, β, γ, δ ∈ R. Let Z3 be the set of grid points whose
coordinates are integers in R

3. A discrete plane, which is a
digitization of P, is then defined such that

D(P) = {(p, q, r) ∈ Z
3 : 0 ≤ αp+βq+γr+δ < ω} (1)
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where ω = max (|α|, |β|, |γ|), called the thickness [5].

2.2. Linear LGP on discrete planes

We consider a cubical grid-point set Q(x) whose edge
length is 2 around a point x ∈ Z

3 such that

Q(x) = {y ∈ Z
3 : ‖x− y‖∞ ≤ 1}.

Let us assume that each point in Z
3 has a binary value such

as either 1 or 0. Such a pattern of binary points in Q(x) is
called local geometric patterns, abbreviated to LGP. There
are 226 different LGP for Q(x) providing that the central
point x always has the fixed value 1. This indicates that
x is considered not to be a background point but to be an
object point.
Among those different LGPs, we investigated which

LGP can appear on discrete planes [3]. This problem is
mathematically written as follows. Let F be a set of points
whose binary values are 1 in Q(x). If there is a plane P

such that

F=D(P) ∩Q(x)

= {(p, q, r) ∈ Q(x) : 0 ≤ αp + βq + γr + δ < ω},(2)

we say that F forms a discrete plane in Q(x). Therefore,
our problem is solved by looking for all possible F, namely
LGP, satisfying (2). Such LGP are called linear LGP. Since
this problem is considered to be the feasibility of the in-
equalities of (2) for all (p, q, r) ∈ F, we need to check if
there are feasible solutions α, β, γ, δ for each different LGP
of Q(x). If they exist, such LGP can appear on discrete
planes and become linear LGP.
However, [3] shows that we can avoid computing the fea-

sibility test for all 226 LGPs ofQ(x), by taking an approach
based on arithmetic planes [5], which are related to discrete
planes. An algorithm is then proposed to generate all lin-
ear LGPs, and it is found that there exist only 34 LGPs that
appear on discrete planes, called linear LGPs, up to transla-
tions, rotations and symmetries, as shown in Fig. 1. Note
that they are generated with the constraints

0 ≤ α ≤ β ≤ 1, γ = 1. (3)

In order to visualize the shapes of linear LGPs in Fig. 1, we
add polyhedral meshes generated by applying a discrete-
marching-cube-like method for the 18-neighborhood sys-
tem [4] to a digitized half space. Interior points of objects
are designated as black points in the figures.

2.3. Locally linear and non-linear points

Experimentally, those linear LGPs can be seen not only
on discrete planes but also on discrete smooth surfaces. In-
tuitively, this is not difficult to understand, since any local
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Figure 1. The 34 linear LGPs.

surface patch on a smooth surface can be approximated to
a planar surface when the size of the patch becomes small.
In the discrete space, even if a point has a linear LGP, we
are uncertain whether such a point appears on a planar sur-
face or a non-planar surface. Contrarily, if a point has a
non-linear LGP, it is exactly a point that never appears on a
planar surface. From this reason, if a point has a linear LGP,
it is called a locally linear point, otherwise, simply called a
non-linear point.

2.4. Non-linear point rejection

By simply checking the LGP linearity, we can therefore
reject non-linear points from a grid-point set, since the lin-
ear LGPs play an important role in filtering linear points.
Note that it is realized by looking up the binary table of
LGPs (linear or not). In actual experiments, we see that iso-
lated points that are considered to be noise are automatically
rejected as well as points around surface edges. However,
it is also observed that some points around an edge are not
rejected, especially when two adjacent surfaces joining the
edge intersect at an obtuse angle. This fact implies that a
simple post-processing, such as the connected component
labeling [5] of a non-rejected point set, does not always give
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Figure 2. Normal cells on the αβ-plane with
constraint (3).

satisfactory results for planar surface segmentation.

3. Planar surface segmentation of locally linear
points

In order to solve the above problem, we propose a
method using not only the point connectedness but normal
vectors derived from LGPs.

3.1. Feasible normal vectors of linear LGPs

A linear LGP is a discrete plane patch of D(P) in a
bounded space Q(x), denoted by DQ(x)(P). Given a
DQ(x)(P), we can find a set of Euclidean planes P such
that the digitization of each of those planes inQ(x) is equal
toDQ(x)(P). The set of all such Euclidean planes is called
the preimage and it is known that the correspondence be-
tween discrete plane patches and Euclidean planes is not
one-to-one but one-to-many [2]. Because of the one-to-
many correspondence, the preimage of DQ(x)(P) is rep-
resented by a set of parameters α, β, γ, δ. More precisely,
the preimage is obtained as a feasible solution set of the in-
equality set of (1) for all points ofDQ(x)(P). It means that
the preimage is given by a convex polytope in the parameter
space [2].
Because all interesting parameters in this paper are

translation-invariant, we focus on the three parameters
α, β, γ indicating the normal vector of P, distinguished
from the intercept δ of P. We thus apply the Fourier-
Motzkin elimination to the inequality set of (1) for all
(p, q, r) ∈ DQ(x)(P), so that a set of feasible normal vec-

tors is calculated from each linear LGP. Remark that all cal-
culations are done by using only integers, i.e., they cause no
rounding errors; the details are found in [3].

Table 1. Linear LGPs and their normal cells.
linear LGP normal cells

1 0 25
2 1 9 11 12
3 4 5 7 10 23
4,5 0 1 16 17 18 24
6,17 2 3 4 5 7 8
7 2 3 5 8
8,9 6 9 10 11 14 15 21 23
10,12 8 19 20 25
11 8 17 18 19 20
13,28 2 3 4 5 6 7 9 10 11 12 13 14 15 21 22 23
14 2 3 6 13 14 15 16 21 22 24
15 2 3 6 11 12 13 14 22
16 4 5 7 10 23
18,19 0 18 19 25
20,23 0 1 3 8 12 13 16 17 18 19 20 22 24 25
21,22 3 8 16 17 20 22
24,25 1 9 11 12 13 14 15 24
26,34 2 4 5 6 7 10 21 23
27 2 5 6 7 21 23
29,30 0 17 18 19 20 25
31,32 1 12 13 16 22 24
33 6 9 11 14 15 21

The results are derived in the space (α, β) from linear
LGP with the constraints (3). The feasible region for each
linear LGP is obtained as a convex polygon in the trian-
gle region whose vertices are (0, 0), (0, 1) and (1, 1) of the
space (α, β) because of (3). Figure 2 illustrates that the
inequality set of (1) for all (p, q, r) ∈ DQ(x)(P) divides
the triangular region in the space (α, β) into triangular or
quadrilateral polygons, called normal cells. The feasible re-
gion of each linear LGP is given as a set of normal cells that
constitutes a convex polygon in the space (α, β). Table 1
shows such a set of normal cells whose union corresponds
to a convex polygon representing a set of feasible normal
vectors for each linear LGP depicted in Fig. 1.

3.2 Discrete Gaussian sphere

The 26 normal cells in Fig. 2 are generated with the con-
straints (3). We embed these normal cells into the 3D space
(α, β, γ) with γ = 1, as illustrated in Fig. 3 (left). The tri-
angle surrounded by thick lines in Fig. 3 (left) corresponds
to the triangular region that is the union of normal cells in
Fig. 2. Once the normal cells are embedded into the space
(α, β, γ), we make the congruous ones by applying to them
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Figure 3. The cubical Gaussian sphere and
the discrete Gaussian sphere.

48 transformations of rotations and symmetries of a cube of
edge length 2, centered at the origin of the 3D space. We
see, in Fig. 3 (left), that there are the 48 triangles on the
cube, so that the whole cube contains 1248 normal cells.
Such a cube is called the cubical Gaussian sphere.
We now project normal cells tiled on the cubical Gaus-

sian sphere onto a unit sphere centered at the origin, as
illustrated in Fig. 3 (right). The unit sphere separated by
normal cells is called the discrete Gaussian sphere, because
the size of normal cells indicates the resolution of digitized
normal vectors calculated from linear LGPs. The triangle
surrounded by red lines in Fig. 3 (right) corresponds to the
triangle surrounded by thick lines in Fig. 3 (left) that corre-
sponds to the union of normal cells in Fig. 2. In the remain-
der, we denote G the set of all normal cells on the discrete
Gaussian sphere. Remark that we use only integer or ratio-
nal numbers to calculate all normal cells, which are related
to a cubical Gaussian sphere.

3.3 Unified discrete Gaussian image

By using the discrete Gaussian sphere, we give a dis-
crete version of extended Gaussian images that are useful
for representing surface shapes [6], called unified discrete
Gaussian images. Let us first consider a discrete version of
the Gaussian image that is the mapping from an object sur-
face point to its normal vector on the Gaussian sphere. Let
V be a locally linear point set in Z3. For a point x ∈ V,
we define a discrete Gaussian image I(x) as the set of nor-
mal cells corresponding to the linear LGP of x. Choosing
a normal cell c ∈ G, we now consider a point subset of V
such that

R(c) = {x ∈ V : c ∈ I(x)}. (4)

Figure 4. A synthetic 3D image of a box (top)
and its unified discrete Gaussian image (bot-
tom).

We then obtain the number of points in R(c) for every c ∈
G, called the unified discrete Gaussian image, such that

u(c) = |R(c)|. (5)

Note that u(c) and R(c) are generated by simply looking
up a table such as Table 1.
The concept of unified discrete Gaussian images is sim-

ilar to that of extended Gaussian images [6]. The differ-
ences from extended Gaussian images are the followings:
the function (5) is defined with respect to a normal cell c

on the discrete Gaussian sphere G, instead of a point n on
the Gaussian sphere; the value of (5) is the number of grid
points x such that I(x) includes c, instead of the area of
the surface whose normal vector is n. From the definition,
we see that our unified discrete Gaussian image represents
a distribution of normal cells of a digital object surface.
Figure 4 shows an example of the unified discrete Gaus-

sian images for a digitized box. Concerning cell colors on
the discrete Gaussian sphere in Fig. 4 (bottom), the darker
the blue cell, the larger the value of u(c), and the red cell
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has the maximum value. The length of the pale blue needle
for each cell c also corresponds to the value of u(c). On
a digitized box in Fig. 4 (top), red and blue points are lo-
cally linear, while green points are non-linear. Note that red
points correspond to the red cell in Fig. 4 (bottom). Figure
4 shows that we can extract a set of grid points that belong
to a digital plane D(P) by choosing a “right” normal cell,
for example, a red one. This is based on the following fact;
if (α, β, γ) is a normal vector ofD(P), (α, β, γ) is included
in the common normal cell(s) of I(x) for all x ∈ D(P).

3.4. Algorithm

By using the unified discrete Gaussian image u(c) and
the point setsR(c), we present our algorithm for planar sur-
face segmentation from a locally linear point set V. Our
problem is formulated as follows; each point x ∈ V is as-
signed into one of sets Si for i = 1, 2, . . . such that the
points in each Si constitutes a connected planar-surface set.
From the previous discussions, our method is founded on
the following hypothesis: if there is a connected point sub-
set S ⊆ V such that they have a common normal cell for all
x ∈ S, S may constitute a discrete plane.
Based on this hypothesis, we present Algorithm 1. we

look for the largest connected grid-point set Si, whose
points having a common normal cell by using u(c) and
R(c). Because each point has several normal cells, our
method cannot be processed in parallel with respect to nor-
mal cells. It must be a repeated procedure; once we ob-
tain Si, we remove all points of Si from every R(c), mod-
ify u(c), and repeat this procedure after the increment of i.
Practically, we would like to avoid obtaining a very small
surface patch, so that we set a parameter s that is the mini-
mum size for Si.
Algorithm 1 is thus a loop procedure of seeking planar

surfaces Si. Each Si is a maximally connected point set,
whose points have a common normal cell. Once we find Si,
we check the size of Si in Step 11, and if |Si| ≥ s, we re-
move all points of Si from everyR(c) and also modify u(c)
in Step 13. After such modification and incrementing i, we
seek a new Si. For finding each Si, we look for the max-
imum connected component C of each R(c), and then set
Si to be the maximum among all C. In order to reduce the
frequency of calculation of connected components, which
is a global operation, we make a priority queue Dk of nor-
mal cells with u(c) in Step 4. We then repeat dequeue of
a normal cell h fromDk to obtain the maximum connected
component C of R(h) in Step 8. Comparing the size of
C with the maximum among those of other normal cells
that are already dequeued from Dk, we finally obtain the
currently maximum point set Sl in Step 9. Note that this
loop is repeated until the size ofR(h) is less than s or more
than the size of Sl as described in Step 7. For calculating

Algorithm 1: Planar surface segmentation
input : a unified discrete Gaussian image u(c), point

sets R(c), and a minimum surface size s

output: planar-surface point sets Si for i = 1, 2, 3, . . .

begin1

initialize a label such that l = 0;2

repeat3

make a queueDk of normal cells with4

priorities of values u(c);
increment l and initialize Sl = ∅;5

set h to be the highest priority cell in Dk and6

remove it from Dk;
while |R(h)| > max(s− 1, |Sl|) do7

set C to be the maximum connected8

component ofR(h);
if |C| > |Sl| then set Sl = C;9

reset h to be the highest priority normal10

cell in Dk and remove it from Dk;
if |Sl| ≥ s then11

forall c such that u(c) 	= 0 and12

R(c) ∩ Sl 	= ∅ do
resetR(c) = R(c) \ Sl and13

u(c) = |R(c)|;

until |Sl| < s;14

return Si for i = 1, 2, . . . , l− 1;15

end16

the maximum connected component of R(h), we apply a
simple method based on a depth-first strategy by using a
queue [5]. The time complexity is linear with respect to the
size ofR(h).

3.5. Experimental results

We show results of planar surface segmentation from six
range images of the same blocks, which are taken from two
different viewpoints with three different resolutions. The
results are illustrated in Figs. 5 and 6. In the cases of Fig.
5, the numbers of valid (measured) points are 12858 for (a),
51740 for (b) and 207448 for (c). Among those valid points,
we have 11343 locally linear points for (a), 47034 for (b),
and 185566 for (c), respectively. Similarly, in the cases of
Fig. 6, the numbers of valid (measured) points are 12142
for (d), 48802 for (e) and 195765 for (f). Among those
valid points, we have 10663 locally linear points for (d),
43981 for (e), and 176619 for (f), respectively. Table 2 show
the number of locally linear points that are assigned to each
segmented planar surface, and their corresponding color in
Figs.5 and 6. We see that 10, 9 and 12 planar surfaces are
found in Fig.5 (a), (b) and (c), and 8, 8 and 11 planar sur-
faces are found in Fig.6 (d), (e) and (f), respectively.
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(a)

(b)

(c)

Figure 5. Planar surface segmentation re-
sults from range images of blocks, which are
taken from the same viewpoint, with different
resolutions: the image sizes are 160× 120 (a),
320× 240 (b), 640× 480 (c). The minimum sur-
faces sizes s are set to be 100 (a), 500 (b), and
1000 (c), respectively.

(d)

(e)

(f)

Figure 6. Planar surface segmentation re-
sults from range images of blocks, which are
taken from a different viewpoint from that in
Fig. 5, with different resolutions: the image
sizes are 160× 120 (d), 320× 240 (e), 640× 480
(f). The minimum surfaces sizes s are set to
be 100 (d), 500 (e), and 1000 (f), respectively.
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Table 2. Colors and point numbers of seg-
mented planar surfaces in Figs. 5 and 6.

color (a) (b) (c) (d) (e) (f)
1 blue 1750 6529 23393 1914 6304 15823
2 yellow 1557 6125 19822 1280 4254 13809
3 pink 1536 5573 16645 1171 4006 12879
4 pale blue 1180 4408 14377 822 3505 12198
5 orange 595 2627 9375 800 2929 9098
6 green 579 1901 3022 638 2437 8867
7 brown 418 1620 2376 612 2321 5009
8 turquoise 361 1424 1609 220 844 2266
9 olive 197 799 1419 2169

10 purple 112 1418 1857
11 violet 1160 1212
12 moss green 1036

We see in Figs.5 and 6 that non-linear points, colored
light green, appear around edges of block faces, and some-
times appear in faces because of noise in the range images.
Because we set the minimum surface size s, there are lo-
cally linear points that construct no planar surface whose
size is not less than s around the points, colored black in the
figures. Locally linear points become black, if they are ob-
tained too sparsely in the 3D space to be connected, so that
they are seen as some of block faces in Figs.5 and 6. Oth-
erwise, they are considered to have bumps on the whole,
even though they are locally linear. From Figs. 5 and 6, we
can conclude that most of the block surfaces are segmented
by our simple algorithm, which require neither complicated
parameter setting nor parameter estimation.

4. Estimation of discrete plane parameters

4.1 Formulation

From each segmented planar-surface set Si, we estimate
its discrete-plane parameters as follows. In order to sim-
plify our problem, we first consider the case that ω = γ.
From (1), we obtain a linear inequality set such that, for all
(x, y, z) ∈ Si,

0 ≤ α′x + β′y + z + δ′ ≤ ε (6)

where α′ = α
ω
, β′ = β

ω
, δ′ = δ

ω
, ε ≥ 0. A solution set

(α′, β′, δ′) is then obtained byminimizing ε under the above
constraints. In this framework, if ε < 1, Si is recognized as
a discrete plane patch exactly; otherwise, Si is recognized
as a set of grid-points between two parallel planes whose
distance is wider than the thickness of a discrete plane. Ge-
ometrically, our method looks for two parallel planes such
that the distance between them becomes minimum.
For all the other cases such that ω = −γ, β,−β, α,−α,

we simply need to modify (6), so that the following inequal-
ities are obtained respectively

0 ≤ −α′x− β′y − z − δ′ ≤ ε,

Table 3. Parameter estimation results of seg-
mented planar surfaces in Fig. 5

(a)
ε α β γ δ

1 2.30846 0.0895522 0.512438 1 -480.756
2 2.51369 0.444688 1 0.779847 345.085
3 3.47581 -0.475806 -1.16935 1 -480.306
4 2.01022 -0.434227 -0.157088 1 -477.374
5 1.26786 -0.482143 1 -0.946429 -508.393
6 1.47327 1 0.0178218 -0.558416 -335.198
7 1.125 0.351563 1 0.664062 274.57
8 0.605714 1 -0.0114286 -0.554286 -334.337
9 0.5 1 0 -0.5 -305.5

10 1.51563 -0.78125 -1.32812 1 -468.875

(b)
ε α β γ δ

1 3.90025 0.0910617 0.51279 1 -962.483
2 4.89735 0.4446018 1 0.780531 691.458
3 6.31767 -0.474464 -1.16547 1 -963.488
4 3.24647 -0.433281 -0.153846 1 -954.964
5 1.54492 1 0.0212766 -0.554374 -668.843
6 1.72454 -0.478588 1 -0.956019 -1027.81
7 2.23761 0.356076 1 0.671419 555.339
8 0.791798 1 -0.0126183 -0.536278 -651.688
9 0.717703 1 -0.00956938 -0.564593 -680.029

(c)
ε α β γ δ

1 7.38188 0.086763 0.507398 1 -1926.6
2 9.66667 0.444444 1 0.777778 1378.33
3 6.23908 -0.422621 -0.149001 1 -1910.67
4 10.8503 -0.487362 -1.15165 1 -1924.55
5 2.1997 1 0.0222728 -0.558241 -1347.4
6 2.44488 -0.479921 1 -0.955906 -2056.17
7 2.26689 0.375 1 0.726351 1217.36
8 0.886656 1 -0.0103611 -0.562951 -1358.17
9 0.875 1 -0.00961538 -0.572115 -1376.38

10 0.808511 1 -0.0141844 -0.529255 -1290.44
11 4.24536 1.81477 0.0910698 1 -1930.37
12 2.17989 0.39418 1 0.626984 1009.64

0 ≤ α′x + y + γ′z + δ′ ≤ ε

0 ≤ −α′x− y − γ′z − δ′ ≤ ε,

0 ≤ x + β′y + γ′z + δ′ ≤ ε

0 ≤ x− β′y − γ′z − δ′ ≤ ε,

where γ′ = γ
ω
. Practically, we simultaneously use the above

6 types of inequalities to find a parameter set minimizing ε.

4.2 Experimental results

Tables 3 and 4 show the estimation results for segmented
planar surfaces obtained in the previous section, as illus-
trated in Figs. 5 and 6. We see that the parameter values of
α, β and γ that are obtained for the corresponding planar
surfaces, segmented from the range images with different
resolutions, are very similar. Concerning to the parameter
δ, the values in Table 3 (b) and Table 4 (e) (resp. Table 3 (c)
and Table 4 (f)) are almost twice (resp. four times) as large
as those in Table 3 (a) and Table 4 (c). The reason is that
the grid space of Fig. 5 (b) and Fig. 6 (e) (resp. Fig. 5 (c)
and Fig. 6 (f)) is twice (resp. four times) as large as that of
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Table 4. Parameter estimation results of seg-
mented planar surfaces in Fig. 6

(d)
ε α β γ δ

1 2.53866 -0.481622 -0.539924 1 -505.439
2 2.78801 -0.235546 1 0.940043 446.441
3 2.02985 -0.41791 0.238806 1 -489.358
4 1.02676 1 0.0126761 -0.550235 -331.395
5 1.92059 -0.505882 -0.638235 1 -464.826
6 0.760252 1 -0.0115668 -0.539432 -326.766
7 1.74775 -0.0720721 -1.63964 1 -500.802
8 0.660584 -0.0720721 1 -0.448905 -245.204

(e)
ε α β γ δ

1 4.0725 -0.486857 -0.541143 1 -1010.1
2 5.03725 -0.232787 1 0.936131 890.082
3 3.22654 -0.417907 0.232147 1 -978.429
4 1.75286 1 0.0111605 -0.549891 -663.497
5 3.50924 -0.50308 -0.652977 1 -927.704
6 3.09351 -0.073294 -1.64027 1 -1000.16
7 1.07945 1 -0.00797011 -0.546077 -660.958
8 1.20741 -0.237037 1 -0.451852 -493.904

(f)
ε α β γ δ

1 4.88192 -0.462209 -0.519922 1 -2020.35
2 6.38296 -0.413744 0.231031 1 -1956.85
3 8.11213 -0.227372 1 0.948015 1804.6
4 2.76525 1 0.0120939 -0.553442 -1335.69
5 6.59621 -0.51084 -0.651762 1 -1854.09
6 5.85422 -0.0745445 -1.64605 1 -1998.81
7 4.33574 -0.520009 -0.586203 1 -2016.94
8 0.981103 1 -0.0106891 -0.559076 -1350.38
9 0.888889 1 -0.0121382 -0.531279 -1294.01

10 1.06774 1 -0.00811321 -0.55717 -1346.02
11 0.921053 1 -0.0115132 -0.541118 -1314.11

Fig. 5 (a) and Fig. 6 (d), because of their image resolutions.
Note that we always set the grid interval to be 1, when we
make a grid space from a range image.
From Tables 3 and 4, we also see that it is rare that ε be-

comes less than 1. In other words, most of our segmented
planar surfaces cannot be exactly discrete planes. More-
over, the tables show that the higher the image resolution,
the larger the value ε. Since each segmented planar sur-
face contains many grid points when the image resolution
is high, as seen in Table 2, it can generate a very thicker
discrete plane. It is possible that the thickness is related to
the spread of grid points in a segmented planar surface as
well as the point number. It might be interesting to study
how we can reduce the thickness ε by changing the image
resolution, with the aim of inventing a multiscale method
for range image registration by using planar surfaces, for
example.

5. Conclusion

In this paper, we present a discrete version of the hybrid
method for planar surface segmentation from a 3D grid-
point set. Our method simply requires two types of look-up

tables, such as the binary LGP table (linear or non-linear)
and the normal cell list with respect to each linear LGP, and
does not require any parameter setting/estimation. The ex-
perimental results in Figs. 5 and 6 show us that our method
is useful for planar surface segmentation from a point cloud,
because it takes into account not only quantization errors
but also noise. We also present a method for estimating
discrete-plane parameters, which is also based on discrete
geometry. Our estimation results in Tables 3 and 4 show us
that exact discrete planes are rarely obtained for practical
images, because of their noise. Theoretically, exact discrete
planes must be obtained if input is an ideal image, i.e., it
does not contain noise, but contains only quantization er-
rors. However, practically, it is no wonder that input image
contains noise as well as quantization errors. Therefore, we
have to derive a conclusion that we need to eliminate such
noise, for example, by reducing image resolutions, before
applying our method based on discrete geometry. Because
our method is fully discrete and such discreteness helps us
to build up a multiscale approach, we will reorient our fu-
ture work to inventing the multiscale method for range im-
age registration by using discrete planes, for example. We
expect that our approach will provide a rough registration
result with less computation.
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