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Abstract To build a full 3D model of a physical object,
multiple partially overlapping parts of an object model need
to be merged. Since modern range finder devices provide
color information in addition to the depth information, the
color can be used to help the registration process as well as
to qualitatively improve the reconstructed model by incorpo-
rating radiometric properties of its surface to the model de-
scription. We propose a novel method for a convex Lamber-
tian object which enables us to perform 3D registration and,
at the same time, to estimate radiometric properties of the
object. This is achieved in an iterative manner by extending
the Iterative Closest Point (ICP) algorithm by adding steps
recovering incident illumination and surface albedo. The it-
erative process is repeated until convergence similarly as in
the traditional ICP algorithm. The use of albedo in shape
registration improves convergence of the ICP algorithm and
reduces ambiguities caused by rotationally symmetric ob-
jects.

1 Introduction
Detailed models describing physical objects are used in
many areas such as in object recognition, quality control,
film or computer games industry. If the object of interest was
not designed using computer aided design software (CAD)
or there is no access to original CAD model, it is necessary
to obtain the model directly from the physical object.

Though it is possible to create the detailed 3D model us-
ing some modeling software, it can be very labor intensive
to realize. Thus automating the whole modeling process has
attracted a substantial interest in recent years.

A typical device for 3D shape acquisition – a range finder
– cannot reconstruct a full model of an object in a single
step, it can capture only a part of the object. Thus the object
of interest has to be captured many times – each time from
different viewpoint. Partial models acquired in individual
scanning steps have to be merged to form a full model of the
object.
In many applications, not only shape but also the radio-
metric properties of the object surface are required. Since
modern range finder devices can capture both depth and
color information at the same time, this task can be accom-
plished while modeling shape. Color properties of the object
shape may also help to merge partial models to a full model.

2 Problem Specification
In this work, we focus on reconstruction of a full 3D model
of a convex Lambertian object. Together with shape, we aim
to reconstruct the radiometric properties of the real world
object. Since we assume Lambertian surface, the radiomet-
ric properties correspond to albedo. We assume the complex
illumination is known up to a rotational transformation re-
lating illuminant coordinate system to the coordinate system
attached to a range finder device. The illumination distri-
bution, which is relatively distant, can include an arbitrary
combination of a point source, an extended source and dif-
fuse light. The convex shape of the object ensures that there
are no cast shadows or interreflections.

Since the object shape is captured in multiple steps – each
from different viewpoint – multiple overlapping 3D shapes
are captured. Each 3D shape describes a slightly differ-
ent part of the object. There is an unknown 3D Euclidean
transformation consisting of a rotation and translation which
brings each pair of overlapping 3D shapes into a correspon-
dence. Finding this transformation is called registration of
3D shapes. We say that the shapes are well registered when
they are geometrically close and their colors match.

The task of 3D shape registration is usually formulated
as an optimization problem. A cost function is based on
a metric estimating the distance between the overlapping
parts of the registered shapes. The optimization problem
is non-convex in general. Various methods have been pro-
posed in the computer vision literature to solve it. Obvi-
ously, registration of two 3D shapes can only be achieved
if there is a common surface area on both shapes. If the
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correspondences between points in different images were
known a priori then the solution to registration would be
obtained directly. In practice, the transformation register-
ing both surfaces has to be estimated indirectly from cor-
responding points on both surfaces. The method described
in this paper utilizes geometric as well as the radiometric
properties of both shapes to assist the process identifying
common points.

To solve a non-convex optimization problem, we assume
that the transformations coupling all 3D shapes pairs are
roughly known. This prevents local optimization method
from getting stuck in some local minima far from the opti-
mal position. The problem of estimating rough registration
has been addressed – among others – in works of Krsek et
al. [11, 10], Wyngaerd [23] or Sara et al. [20].

3 Related Work
As our work incorporates recent results on illumination anal-
ysis to a 3D shape registration process we divided this sec-
tion in two separate parts. In Section 3.1 we summarize state
of the art methods for 3D shape registration, particularly we
concern on ICP algorithm which has become most popu-
lar method used to register 3D shapes. In Section 3.2 we
provide a brief overview of current state of the illumination
analysis in computer vision.

3.1 3D Shape Registration
Registration of 3D shapes – especially with only a partial
overlap – is a difficult task. In 1992, Besl and McKay intro-
duced the Iterative Closest Point (ICP) algorithm for rigid
registration of two shapes [2]. Independently to Besl and
McKay, Chen and Medioni described a similar method for
3D shape registration [3].

The ICP algorithm became very popular and many im-
proved variants of the original approach appeared since its
original publication. The basic principle of all ICP versions
is a repetition of matching potentially corresponding points
on both shapes and minimizing the distance between them.
The matching step followed by a minimization step is re-
peated until a convergence criterion is reached. The individ-
ual variants differ in (1) the way they select and (2) match
points on the two shapes, (3) how they weight pairs of points
or even reject some points, (4) used error metric based on
the point pairs, (5) and minimization of the error metric. The
ICP variants also differ in the kind of information they use in
the registration process – some use only geometric features,
others use texture features in addition to geometric features.

3.1.1 Registration with Geometric Features Only
Rusinkiewicz and Levoy provided [19] an overview and
a comparison of many variants of ICP algorithms. They
concentrated mainly to effectiveness and speed, not to
robustness. They showed that a random point sampling
based on the surface normal distribution provides more
robust results than a uniform sampling. Further, selecting
point pairs by projecting points from one shape on the other
one results in faster but less robust approach. Weighting
of corresponding pairs has only a small effect on the ICP
speed or robustness and is data-dependent. Rejection of
2

potential outliers influences more the robustness than the
convergence speed. According to the investigation, they
proposed a new efficient ICP variant suitable for a real-time
application.

The original ICP cannot be used in general to register
shapes with only partial overlap, which is the case of par-
tial 3D scans we deal with. To make registration of partly
overlapping shapes more robust, Turk [21] proposed a strat-
egy rejecting pairs that include points on shape boundaries.
Since the cost of forcing this constraint is usually low and
in most cases its use has few drawbacks, Rusinkiewicz and
Levoy proposed to always use this strategy.

Pajdla and Van Gool [14] proposed the Iterative Closest
Reciprocal Point (ICRP) algorithm that enforces symmetry
on similar/closest point selection – given a point p ∈ P on
first surface P and the closest point m ∈ M on the second
surface M , m is backprojected on P by finding closest point
p′ ∈ P . If |p − p′| > ε, the pair is rejected. Such modifi-
cation improved robustness of the original ICP algorithm.
However, the monotonic convergence is not guaranteed.

Chetverikov et al. [4] proposed the Trimmed Iterative
Closest Point (TrICP). The algorithm is based on the use
of Least Trimmed Square (LTS) approach. LTS [18] means
sorting the squared errors in an increasing order and mini-
mizing the sum of a certain number of smaller values. TrICP
provides results comparable to the ICRP algorithm when it
starts from a good initial position and performs better when
the initial position is not properly established. Unlike ICRP,
TrICP preserves the proven convergence [4] of the original
ICP. An alternative approach to robustify the ICP is to use
Least Median of Square estimator (LMS), which was pro-
posed by Masuda et al. [12]. However, LMS cannot be im-
plemented to ICP without breaking its guaranteed conver-
gence and, as shown in [4], LTS has better statistical effi-
ciency and smoother objective function which is less sensi-
tive to local defects.

Okatani and Sugimoto [13] classified a surface surround-
ing each point on the shape to one of eight classes based on
the local curvature properties. Corresponding pairs contain-
ing points from different classes were rejected. Further, to
reduce risk of getting stuck in a local minima, the objective
function describing the distance between the corresponding
points was extended by adding a skewness constraint. This
constraint ensures that the direction and the magnitude of
point movement caused by the transformation is becomes as
uniform as possible among neighboring points.

3.1.2 Registration with Texture Features Weik [22]
proposed an algorithm that uses texture data in seeking for
corresponding point pairs. Given a point p ∈ P on the
shape P , a point mc ∈ M on the shape M is found by
projecting point p onto M . The texture intensity gradient
at mc is used to predict a position of a point m ∈ M with
the texture intensity most similar to p. This point is used to
form a corresponding pair (p, m).

Johnson and Kang [9] proposed an algorithm for regis-
tration of textured 3D shapes. They extended the original
ICP distance metric by incorporating a color similarity term.
The closest points are sought in 6D space – three spatial di-
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mensions and three color dimensions. Given a set of corre-
sponding point pairs, the Euclidean transformation is found
by minimizing the least square distance of the spatial coor-
dinates only.

Godin et al. [7] proposed another method that uses tex-
ture data in shape registration. Moreover, they generalized
the idea to use not only texture but arbitrary attributes of
a point on the shape – e.g., curvature properties. Attributes
play two roles in the proposed method. First, their distribu-
tion orients the random sampling of shape points. Second,
the determination of the closest point is constrained by the
attribute compatibility. To robustify search for correspond-
ing points, the random sampling is biased to favor points that
are more likely to appear in both images. This extension in-
creases the possibility they belong to an overlapping area in
both images. The sampling is driven by a probability density
function created as an intersection of attribute histograms of
both images.

Pulli et al. [15] described a new method that is not de-
rived from the ICP algorithm. Unlike ICP, the proposed
method does not divide optimization in two steps. They pro-
posed to directly minimize one objective function that takes
into account the distance between the registered shapes. In
their method, a virtual camera is rigidly attached to each
surface. One surface is then projected on the image plane
of the second camera and then compared with the image of
the second surface. The images are compared with respect
to range, color and silhouette properties. Correct transfor-
mation relating both surfaces is found by minimizing the
distance of the projected images.

3.2 Estimating Radiometric Properties of 3D Shapes
Basri, Jacobs [1] and Ramamoorthi, Hanrahan [17] showed
independently that the arbitrary complex, distant illumina-
tion can be described in a frequency domain using spheri-
cal harmonics. They showed that modeling illumination of
a convex Lambertian object is analogous to the convolution
of the lighting function using a kernel that represents Lam-
bertian reflection. This kernel acts as a low-pass filter with
99.2 percent of its energy in the first nine components – the
zero, first and second order harmonics. This yields to a com-
pact description of an arbitrary complex illumination.

In their later work Ramamoorthi and Hanrahan [17]
demonstrated the use of spherical harmonics description in
lighting simulation. They showed that global illumination
can be expressed in a very compact form using just a 4-by-4
matrix multiplication.

Du et al. [6] used the spherical harmonics description
in recovering properties of a moving Lambertian object un-
der unknown, complex illumination. Using geometry recon-
structed by a Shape-From-Motion method, they recovered
albedo and the illumination distribution.

4 Our approach
The proposed method consists of two steps. The two steps
are repeated until the geometrical distance of the registered
shapes reaches its minima.

In the first step, we fix the illumination coefficients as-
suming the illumination is known and minimize geomet-
rical distance of the 3D shape pair using traditional ICP
steps. The fixed illumination is used to derive albedo from
shape normals and recorded surface brightness. Estimated
albedo of surface points helps in finding good point corre-
spondences between the shapes.

In the second step, we fix the geometry assuming the
relative shape positions are known. We use shape points
viewed in different poses to estimate illumination. More
precisely, we assume that the complex illumination is al-
ready estimated and we seek a rotational transformation re-
lating global illumination to the coordinate system of the
range scanner.

4.1 Estimating geometry
As a base of our geometry estimation step, we use the
Trimmed Iterative Closest Point (TrICP) method described
by Chetverikov et al. [4]. The TrICP method allows to regis-
ter only partially overlapping shapes while preserving guar-
anteed convergence of original ICP [2]. TrICP consists of
the following four basic steps:

1. matching step – pair each point p ∈ P to its closest point
m ∈M ,

2. filtering step – compute the mean square error (MSE) be-
tween the paired points, and keep only a certain number
of point pairs having the smallest squared errors,

3. optimizing step – compute the transformation minimizing
MSE between the remaining point pairs,

4. update step – apply the optimal transformation to P and
update MSE.

Our matching step is accomplished in two sub-steps. First,
for each point p ∈ P , the closest point mc ∈ M is found
using an Euclidean metric. Then, using point normals and
estimated illumination, an albedo of both points p and mc is
estimated. If the albedo is similar enough then point mc is
accepted as a corresponding pair (p, mc). On the other hand,
if albedo of points p and mc differ then the neighborhood
of the point mc is sought to find a point m ∈ M which
is compatible with point p. If such a point is found then a
corresponding pair (p, m) is created.

Next, this matching is repeated in reciprocal direction –
matching points from shape M to points at shape P .

At the beginning of our filtering step, all point pairs that
contain points on the shape boundary are rejected. Since
the cost of forcing this constraint is usually low and in most
cases its use has few drawbacks. We note that Rusinkiewicz
and Levoy [19] concluded that this is an efficient way to
remove outliers.

The remaining points are then sorted by their squared er-
ror – a squared Euclidean distance between the points in
a pair. Only a certain number of the least distant points is
kept. This step should remove remaining outliers and robus-
tify the whole registration process.

To compute the transformation minimizing MSE among
remaining point pairs in our optimizing step, we use an opti-
mization method proposed by Horn [8]. This method gives
a closed-form solution for estimating Euclidean transform
from a corresponding point pair set using quaternions.
3
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4.2 Estimating Illumination
Under normal conditions, light coming from all directions il-
luminates an object. Reflection of an incident light by a con-
vex Lambertian surface can be described in frequency do-
main using spherical harmonics [1, 17, 16]. Amount of light
reflected by a point on a surface is a function of the sur-
face normal, harmonic coefficients of illumination distribu-
tion and the surface albedo. Assuming the illumination, the
object surface and the range finder position do not change
during scanning process, we can form a set of equations.
Each equation relates light reflected by one surface point
viewed in two different poses. Having sufficiently many cor-
responding points, we can recover illumination rotation and
surface albedo from the pair of textured 3D shapes.

The global illumination is often represented by a light
probe. The light probe is an omnidirectional image record-
ing illumination at a particular point in space. Light probes
were proposed by Debevec [5]. Sometimes we use the term
light probe instead of the term global illumination in the fol-
lowing explanation.

4.2.1 Spherical harmonics representation Let L de-
note the distant illumination distribution. The irradiance E
is then a function of the surface normal n only and is given
by the integral over the upper hemisphere Ω(n),

E(n) =
∫

Ω(n)

L(ω)(n · ω) dω . (1)

Since n and ω are unit vectors, E and L can be parameter-
ized by direction (θ, φ) on the unit sphere.

The irradiance E is then scaled by the albedo ρ at the
surface point p yielding radiosity B, which corresponds di-
rectly to the image intensity.

B(p, n) = ρ(p)E(n) (2)

As proposed in [1, 17, 16], the illumination distribution L
can be expressed in a spherical harmonic representation,

L(θ, φ) =
∑
l,m

LlmYlm(θ, φ) , (3)

where Ylm(θ, φ) are spherical harmonics basis and Llm are
spherical harmonics coefficients.

The irradiance E can be then expressed in following form

E(θ, φ) =
∑
l,m

ÂlLlmYlm(θ, φ) , (4)

where coefficients Âl are

Âl =


2π
3 for l = 1

0 for l > 1, odd

2π (−1)
l
2−1

(l+2)(l−1)

[
l!

2l( l
2 !)2

]
for l even

. (5)

As noted in [17], Âl decays so fast that we need only first
coefficients of order l ≤ 2. Equivalently, the irradiance is
well approximated by only 9 parameters.

The nine illumination coefficients can be computed from
measured illumination by integrating against the spherical
4

Ll,m Red Green Blue
L0,0 0.078908 0.043710 0.054161
L1,−1 0.039499 0.034989 0.060488
L1,0 -0.033974 -0.018236 -0.026940
L1,1 -0.029213 -0.005562 0.000944
L2,−2 -0.011141 -0.005090 -0.012231
L2,−1 -0.026240 -0.022401 -0.047479
L2,0 -0.015570 -0.009471 -0.014733
L2,1 0.056014 0.021444 0.013915
L2,2 0.021205 -0.005432 -0.030374

Figure 1: Light probe image of Grace Cathedral we used in our
experiments and its first nine spherical harmonics coefficients.

harmonics functions. Each color channel is treated sepa-
rately.

Llm =
∫ π

θ=0

∫ 2π

φ=0

Llm(θ,φ)Ylm(θ, φ) sin θ dθ dφ (6)

Since we are considering only l ≤ 2, the irradiance is
simply a quadratic polynomial of the coordinates of the nor-
malized surface normal. With setting n = (x y z 1), we can
rewrite the irradiance equation in the form

E(n) = nT Mn , (7)

where M is a symmetric 4-by-4 matrix. Each color chan-
nel has its own matrix M . The matrix M is obtained by
expanding equation (4),

M =


c1L22 c1L2−2 c1L21 c2L11

c1L2−2 −c1L22 c1L2−1 c2L1−1

c1L21 c1L2−1 c3L20 c2L10

c2L11 c2L1−1 c2L10 c4L00 − c5L20

 ,

(8)
where Llm are first nine coefficients of the spherical har-
monics representation and

c1 = 0.429043 c2 = 0.511664

c3 = 0.743125 c4 = 0.886227 c5 = 0.247708 .

To rotate the illumination, we can simply apply inverse
rotation to the normal n. Thus irradiance induced by the
illumination rotated by R−1 can be expressed using

E(n) = nT RT MRn , (9)

or
E(n) = nT M ′n , (10)

where M ′ = RT MR is a rotated light probe expressed in
terms of spherical harmonics.
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4.2.2 Estimating light probe rotation In this step, we
assume geometry is fixed and correctly registered. For each
point p ∈ P its closest point m ∈ M is found using an
Eucledian metric. Measured brightness of points p and m
can be expressed using

B(p) = ρpn
T
p Mnp

B(m) = ρmnT
mMnm . (11)

Since both points p and m represent the same point on the
3D shape viewed in a different pose, albedo of those points
must be equal – ρp = ρm. Thus, we can rewrite (11) in

B(p)nT
mMnm = B(m)nT

p Mnp . (12)

Having sufficiently many corresponding points p and m
we can solve linear equation system (12) for unknown sym-
metric matrix M .

Since we assume we already know illumination up to the
unknown rotation, we need to find the rotation R transform-
ing measured light probe matrix L to the light probe matrix
M estimated in the previous step. By solving linear system

LR′ −R′Mc = 0 , (13)

where c ∈ r, g, b represents three color channels, we obtain
transformation matrix R′. We use singular value decompo-
sition

R′ = USV T (14)

to enforce that the estimated transformation R is a rotation,

R = UV T . (15)

5 Experiments
To simulate a range finder device, we created synthetic ob-
jects using a 3D modeling software. We used the 3D Studio
Max to render depth-map and texture images from differ-
ent view-points. To have better control over the illumination
and not to rely on the shading algorithms in 3D Studio Max,
the texture images were rendered with uniform illumination.
Since the texture does not contain any shading effects, it can
be used as a representation of the surface albedo. The effect
of incident illumination was simulated later in our software.
We applied illumination with the light probe shown in Fig-
ure 1 to every mesh point according the equation (7).

To see the effectiveness of the proposed method, we eval-
uated its ability of establishing the correct light probe rota-
tion as well as the object shape registration. To show the ad-
vantage of using surface albedo properties in the shape reg-
istration, we registered a rotationally symmetric object, see
Figure 2. Both registered shapes have roughly 60 000 mesh
points. To obtain the best results, we used all mesh points,
although it might be possible to use some decimated mesh in
order to reduce the computational time. Before running our
algorithm, we manually established rough pre-alignment of
both shapes by selecting a few corresponding points with
hand and minimizing the squared distance between them.
The TrICP culling rate was set to 30% so that 70% of best
correspondences remained in each iteration.
Figure 2: Rendered images used to simulate the range finder out-
put. Images on the right side shows the object rotated by 20 de-
grees. Upper row shows the albedo map (without illumination ap-
plied), bottom row shows the rendered depth-map.

Figure 3: (left) shape of the rotationally symmetric object regis-
tered without the use of albedo properties, (right) the same shape
registered using the albedo properties.

In the illumination estimating step, we simulated perfect
texture data by taking albedo value from the first point in
each correspondence pair, applying illumination to it ac-
cording the normal of the second point in the pair and storing
the shaded value as the texture of the second point in corre-
spondence pair. This enables us to control the quality of the
texture. In each iteration we used LTS approach to filter out
the outliers and robustify our solution. First, we kept only
70% pairs with smallest Euclidean distance. Second, we an-
alyzed normals mismatch among all pairs and kept only 50%
pairs with most similar normal direction.

It was sufficient to run just three iterations of our algo-
rithm to reach convergence. In the experiments, we used
identity as the true light probe rotation. The estimated probe
rotation found by our algorithm was

1.00015 −0.000764272 −0.00038349 0
−0.00076271 1.004 0.00205964 0
0.00151472 −0.00807858 0.995859 0

0 0 0 1

 .

(16)
It can be concluded, that the estimate is very close to the
ground truth. Figure 3 shows the result of a registration of
the rotational symmetric object. Image on the left is the re-
sult of registration without the use of albedo properties, im-
5
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age on the right is the result of our method, which utilizes
albedo to help the process of finding good point correspon-
dences. We note that both registrations were started from
the same initial position.

We also experimented with a noisy data to test the robust-
ness of the proposed method. We added normally distributed
noise with mean zero to the texture value of each mesh point
and tested the convergence of our algorithm. In each test, we
added noise with a different standard deviation. Similarly,
we added noise to the surface normal of each mesh point –
we rotated each normal by the random angles, in each direc-
tion X, Y, Z independently. We used normally distributed
noise with mean zero and, in each experiment, we used dif-
ferent value of standard deviation. It showed up, that the
the algorithm diverges when the value of standard deviation
of the texture noise exceeds 0.001 and standard deviation of
the normal noise exceeds 0.01.

6 Conclusions
We proposed a novel method that enables us to build a 3D
model of a convex Lambertian object. We showed that it
is possible to estimate the shape registration together with
estimating of the illumination and photometric properties of
the object surface. We showed that using albedo informa-
tion in the registration process can help to resolve ambigui-
ties caused by rotationally symmetric objects. The proposed
method fits well in the traditional ICP scheme, thus it can be
easily incorporated in many existing applications.

7 Future Work
We observed that the proposed method might be sensitive
to noise in normal directions as well as the noise in albedo
values. The method should be further examined to find out
whether the problem could be ill conditioned. In that case,
some stabilization method needs to be found.

The future work can also aim at improving the seek for
compatible corresponding points in the geometry optimiza-
tion step. Current version simply compares albedo values
and does not incorporate the point neighborhood or some
higher level features.

To robustify estimation of light probe rotation only points
from areas with uniform normal distribution and albedo
properties should be used. This step can be accomplished
by filtering correspondences using some criterion before
solving linear system (12). Another robustification may be
reached by implementing some closed form solution to esti-
mate a probe rotation instead of finding general transforma-
tion and enforcing the rotation using SVD.

To verify the applicability of the proposed method under
a real conditions, the method should be tested on the real
data from a range finder device.
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