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Abstract. We propose a coarse registration method of range images
using both geometric and photometric features. The framework of ex-
isting methods using multiple features first defines a single similarity
distance summing up each feature based evaluations, and then mini-
mizes the distance between range images for registration. In contrast, we
formulate registration as a graph-based optimization problem, where we
independently evaluate geometric feature and photometric feature and
consider only the order of point-to-point matching quality. We then find
as large consistent matching as possible in the sense of the matching-
quality order. This is solved as one global combinatorial optimization
problem. Our method thus does not require any good initial estimation
and, at the same time, guarantees that the global solution is achieved.

1 Introduction

Automatic 3D model acquisition of the real-world object is important for many
applications such as CAD/CAM or CG. A range sensor, which is a sensing
device directly measuring 3D information of an object surface, is a useful tool in
modeling 3D objects. An image of an object captured by a range sensor is called
a range image and it provides a partial shape of the object in terms of the 3D
coordinates of surface points in which the coordinate system is defined by the
position and orientation of the range sensor. To obtain the full shape of an object,
therefore, we have to align range images captured from different viewpoints. This
alignment, i.e., finding the rigid transformation between coordinate systems that
aligns given range images, is called range image registration.

Widely used methods for range image registration are the iterative closest
point (ICP) method proposed by [1] and its extensions [2,8,14,16]. These meth-
ods iterate two steps: Each point in one range image is transformed by a given
transformation to find the closest point in the other range image. These point
correspondences are then used to estimate the transformation minimizing match-
ing errors. In order to robustly1 realize range image registration, some features

1 The terminology “robust” in this paper means that the possibility of successful
registration is enhanced; registration is more successful.
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reducing matching ambiguity are proposed in addition to simply computed ge-
ometric features [4,5,6,7,12,13]. They are, for example, color attributes [5], chro-
maticity [7], normal vectors [4], curvatures themselves and their features [6,12],
and attributes representing overlapping areas of planes [13]. Combining different
kinds of features enhances robustness for registration; nevertheless, defining one
common meaningful metric for similarity using different kinds of features is still
even difficult.

On the other hand, a method using a graph-based optimization algorithm for
range image registration is proposed [11]. The method formalizes the matching
problem as a discrete optimization problem in an oriented graph so that optimal
matching becomes equivalent with the uniquely existing maximum strict sub-
kernel (SSK) of the graph. As a result, this method does not require any good
initial estimation and, at the same time, guarantees that the global solution is
achieved. In addition, it also has an advantage that a part of data is rejected
rather than forcefully interpreted if evidence of correspondence is insufficient
in the data or if it is ambiguous. The method, however, deals with geometric
features only and fails in finding matching for data of an object having insufficient
shape features.

In this paper, we extend the graph-based method [11] so that it does work
even for the case of data with insufficient shape features. We incorporate the
combination of geometric and photometric features into the framework to en-
hance the robustness of registration. Existing methods [4,5,6,7,12,13] combining
such features define a single metric by adding or multiplying similarity criteria
computed from each feature to find point matches. In contrast, our proposed
method first evaluates each point match independently using each feature, and
then determines the order of matching quality among all possible matches. To be
more concrete, for two point-matches, if similarity of one match is greater than
the other over all features, we regard that the former is strictly superior to the
latter. Otherwise, we leave the order between the two matches undetermined.
This is because both geometric and photometric features should be consistently
similar with each other for a correct match. Introducing this partial order on
matching quality to the graph-based method for range image registration al-
lows us to find as large consistent matching with given data among all possible
matches. The maximum SSK algorithm enables us to uniquely determine the
largest consistent matching of points with guaranteeing the global solution. This
indicates that our proposed method is useful for coarse registration.

2 Multiple Features for Reducing Matching Ambiguity

2.1 3D Point Matching Problem

A range image is defined as a set of discretely measured 3D points of an object
surface where each point is represented by the coordinate system depending on
a viewpoint and its orientation. Let xi

k be the coordinates of the k-th point in
the i-th image (i = 1, 2). We assume in this paper that RGB values ri

k of the
point (with coordinates xi

k) is also measured.
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Fig. 1. Point-based registration of two range images (a) and augmented triangular
mesh over 3 × 3 vertex neighborhood. (b) 24 elementary triangles sharing the central
vertex. (c) local surface vertices neighborhood used to estimate a local normal vector
from 332 triangles. (d) neighborhood for computing the triple and photometric features
(52 vertices). (e) neighborhood for computing the triple feature (604 triangles).

Two coordinate systems representing two given range images are related with
each other by a rigid transformation (R, t), where R is a rotation matrix and t
is a translation vector. If two measured points, x1

k and x2
k′ , are the same point

(namely, corresponding), then x2
k′ = Rx1

k + t. The range image registration is
to find (R, t) using the corresponding points (Fig.1 (a)).

Searching for corresponding points is realized by comparing features between
measured points. If two points are corresponding, then invariant features against
rigid transformations should be equivalent with each other. In addition, geomet-
ric concordance should be preserved over all corresponding points, which can be
evaluated by covariant features.

Some cases exist where an object shape is too smooth to discriminate mea-
sured points and thus geometric features alone do not work for reducing ambigu-
ity in finding matching. We, therefore, employ photometric features in addition
to geometric features to achieve robust registration.

2.2 Employed Features for Registration

The features we will use are computed from the augmented triangular mesh [11]
which includes all possible triangles among triples of vertices in a small vertex
neighborhood (Fig.1 (b)). We have chosen four local features, three of which
are geometric and the other is photometric: (A) oriented surface normal, (B)
structure matrix, (C) triple feature, and (D) chromaticity. We note that (A) and
(B) are covariant features whereas (C) and (D) are invariant.

(A) Oriented surface normal. For each measured point xi
k, we compute its ori-

ented surface normal ni
k as the average over the oriented surface normals of neigh-

boring triangles. In our experiments, we used the augmented triangular mesh over
7 × 7 neighborhood as shown in Fig.1 (c). We remark that these computed ni

k’s
are used for computing structure matrix Si

k and triple feature F i
k.
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(B) Structure matrix. A set of surface normals nj ’s gives 3 × 3 structure
matrix S =

∑
j njn

�
j [11]. In our experiments, we used the augmented triangular

mesh over 7 × 7 neighborhood as shown in Fig.1 (c).
When x1

k and x2
k′ are corresponding, their structure matrices, S1

k and S2
k′ , sat-

isfy S2
k′ = RS1

kR�. Letting their SVD be S1
k = UDU� and S2

k′ = U ′D′(U ′)�,
we have two conditions:

U ′P = RU , D′ = D, (1)

where P is the 3 × 3 diagonal matrix P = diag(s1, s2, s1 · s2) (|s1| = |s2| = 1)
representing ambiguity in signs. We use this relationship to evaluate geometric
concordance of transformations over corresponding points.

(C) Triple feature. Given a surface as an augmented triangular mesh, the
triple feature F i

k = {f i
k(�), � = 1, 2, . . . , t} at point xi

k represents its neighboring
convexity/concavity and is defined by

f i
k(�) =

det[ni
k, ni

Δk
1 (�), ni

Δk
2 (�)]

‖(xi
Δk

1(�) − xi
k) × (xi

Δk
2(�) − xi

k)‖ , (2)

where three vertices of the �-th triangle are xi
k, xi

Δk
1(�), xi

Δk
2 (�) and their oriented

normal vectors are ni
k, ni

Δk
1 (�), ni

Δk
2 (�).

In our experiments, we computed F i
k[j] (j = 1, 2) using two augmented trian-

gular meshes (see Fig.1 (d), (e)). In our case, t = 52 for j = 1, while t = 604 for
j = 2.

(D) Chromaticity. Photometric features are useful for robust registration. In
particular, when an object has smooth surfaces or similar surfaces in shape,
geometric features are not sufficiently discriminative while photometric features
are sometimes discriminative.

In our method, as a photometric feature, we consider color distribution over
neighboring points. Since RGB values themselves are sensitive to illumination
conditions, we employ chromaticity which eliminates the luminance from color
information.

Letting ri
k, ri

Δk
1 (�), ri

Δk
2 (�) be RGB values respectively at measured points xi

k,

xi
Δk

1(�), xi
Δk

2(�), and r̄ = r
‖r‖ , we compute, for a measured point xi

k,

ci
k(�)[j] =

r̄i
k[j] + r̄i

Δk
1 (�)[j] + r̄i

Δk
2(�)[j]

3
, (3)

where ri
k[j] is the j-th entry of ri

k (j = 1, 2, 3). We then define chromaticity
distribution over neighborhood Ci

k[j] = {ci
k(�)[j], � = 1, . . . , t} (j = 1, 2, 3).

In our experiments, we used the augmented triangular mesh of Fig.1 (d) and
thus t = 52 in this case.

2.3 Distribution Based Similarity Evaluation

In our method, our employed triple feature and chromaticity are computed over
neighboring points and, therefore, they are defined as collections of computed
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values. The Kolmogorov-Smirnov distance (KS distance) [3] enables us to com-
pute the similarity between two collections2. For given triple features F 1

k [j] and
F 2

� [j], the similarity cF (x1
k, x2

�) of the triple feature between them is defined by

cF (x1
k, x2

�) =
2∏

j=1

(
1 − KS

(
F 1

k [j], F 2
� [j]

))
, (4)

where KS
(
F 1

k [j], F 2
� [j]

)
represents the KS distance between F 1

k [j] and F 2
� [j]. In

the same way, we define the similarity cC(x1
k, x2

�) of chromaticity by

cC(x1
k, x2

�) =
3∏

j=1

(
1 − KS

(
C1

k [j], C2
� [j]

))
. (5)

3 Graph-Based Registration Method Using Multiple
Features

We now extend the graph-based method [11] so that it can handle multiple fea-
tures within the same framework. The graph-based matching method [11] selects
as many consistent matches in best agreement with data as possible among all
possible matches. In line with this idea, we formalize the range image registration
problem using both geometric and photometric features in a graph. We note that
our method is distinguished from existing methods in the sense that each em-
ployed feature is independently evaluated only to determine the matching-quality
order and that the obtained order allows us to combinatorially determine the
best matching.

3.1 Generating an Unoriented Graph G

Along with [11], we first create an unoriented graph G representing unique-
ness constraint of matching and geometric concordance constraint of the rigid
transformation. In evaluating geometric concordance constraint, we use covari-
ant features.

The vertex set P of G is defined as all putative correspondences p = (x1
k, x2

�).
We remark that, in the case where a search range of rigid transformations is
known in advance, we can restrict putative correspondences further using our
covariant feature evaluation.

The edge set E represents uniqueness of matching and geometric concordance
of transformations. Namely, two vertices (i.e., two pairs of matches) are joined
if they cannot occur in a matching simultaneously or if no rigid transformation
exists that realizes the two pairs of matches simultaneously.

2 The choice of the KS distance as a similarity measure in fact allows us to combine
our triple feature and chromaticity by computing the product of cF and cC in Eqs.
(4) and (5). It should be stressed, however, that our approach is general and does
work for any other similarity measures and their combination.
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3.2 Generating an Oriented Graph D

It should be clear that if M ⊂ P is a solution of the matching problem, no
pair of entries in M should be connected by any edge in G. In other words,
every possible matching M is an independent vertex subset of G. Since many
independent vertex subsets exist in G, we, therefore, select the one that is in
best agreement with data.

To do so, we here add orientations to the edges of G to create oriented graph
D where we evaluate invariant features to determine the orientation of an edge.
In this evaluation, [11] uses a single feature alone while our method employs
multiple features.

For a putative correspondence p = (x1
k, x2

�) ∈ P , we denote by c(p) the 2D
vector whose entries are the similarities of the triple feature and chromaticity,
respectively. Based on c(·), we give the orientation to each edge in G to define
D = (P, A∪A∗). Here, A and A∗ represent bidirectional edges and unidirectional
edges, respectively. We note that A ∩ A∗ = ∅.

For two pairs of matches, p, q ∈ P , if c(p) − c(q) is positive for all entries
of c(·), then let (q, p) ∈ A∗ (i.e., an oriented edge from q to p). Inversely, if
c(p) − c(q) is negative for all entries of c(·), then let (p, q) ∈ A∗. Otherwise,
we define (p, q), (q, p) ∈ A. We remark here that we can incorporate robustness
further by testing if c(p) − c(q) > t, where t is a small positive constant.

3.3 Strict Sub-kernel of D

The maximum matching we are looking for is identical with the maximum strict
sub-kernel (SSK in short) [10] of oriented graph D = (P, A ∪ A∗) defined above.
We remind that the SSK, K ⊆ P , of D is an independent vertex subset in D
and that, for any p ∈ K, the existence of r ∈ K is ensured such that (q, r) ∈ A∗

for every (p, q) ∈ A ∪ A∗. Uniqueness of the SSK in D is guaranteed and an
polynomial algorithm for finding the SSK is known [9,10,11].

Finally we summarize the characteristics of our approach. First, for each fea-
ture, similarity between two points is independently evaluated. In other words,
for two pairs of matches, each feature independently gives the matching-quality
order only and our method focuses on the combination of matches based on this
order. Differently from other existing methods, our method does not either de-
fine any single metric for similarity using multiple features or minimize any cost
function derived from employed features. Secondly, employing geometric features
as well as photometric features in the graph-based method enhances robustness
in registration. If an object has insufficiently discriminative surfaces in shape,
the SSK using geometric features alone may find incorrect matching because two
points locally having similar shapes happen to generate the SSK. In contrast,
incorporating evaluation of photometric features as well leads to excluding the
possibility of generating the SSK that includes such points. Accordingly, am-
biguities in matching are reduced and robust registration is achieved. This can
be also understood from the fact that points included in the SSK have to be
superior in both geometric and photometric similarities to all competing points.
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4 Range Image Registration Using SSK

4.1 Interest Point Detection

We detect interest points using triple features among measured points. For each
measured point xi

k, we compute the standard deviation of triple features over its
neighborhood3: Li

k = std
⋃r

j=1 F i
k(j). Li

k becomes large for a point whose neigh-
boring surface shape is not uniform. We thus detect points with local maxima
of Li

k. We call them interest points in this paper.
Then, we use two sets of interest points, each of which is independently de-

tected from one of two given range images, and generate a table for all possible
matches. In generating the table, we eliminate matches that do not satisfy a
given search range of rigid transformations. To be more concrete, for a given
corresponding pair of points, we compute their structure matrices and then de-
compose them using SVD to find the rotation relating the pair (cf. Eq. (1)).
Next, we eliminate the pair from the table if the rotation is not admissible.

4.2 Maximum SSK and Matching

Based on the generated table, we consider all possible matches and then define
the vertex set of unoriented graph G. We then define edges along with uniqueness
of matching and geometric concordance. Next we give the orientation to the edges
in G using Eqs. (4) and (5).

As a result, we obtain oriented graph D representing our problem. The SSK
algorithm uniquely finds the best matching in D [11].

5 Experiments

To demonstrate the potential applicability of the proposed method, we applied
our method to synthetic range images.

We used a horse model provided by [17] and attached randomly generated
texture to it in order to generate its range images (Fig. 2). The body of the horse
model was scanned at 20 degree rotation steps with respect to the Y -coordinate
and 18 range images with the size of 200 × 200 pixels were obtained. We then
perturbed the Z-coordinate of each point in the range images by adding Gaus-
sian noise with zero mean and standard deviation of σ = 0.1. This implies that
if the height of the horse body is about 60cm, the added noise is about 1mm.

We applied our method to all adjacent pairs in the range image sequence
above. We set the search range of ration angles be ±15◦ different from the ground
truths just for reducing computational cost. We remark that we did not have
any assumption about the rotation axis to be found. To see the effectiveness
of our method, we also applied a method using geometric features alone to
the same data. The registration results are shown in Fig. 3 and Table 1. Fig. 3
presents selected interest points and their matches obtained by the two methods.

3 F i
k(1) and F i

k(2) are computed with Eq. (2) over 52 and 604 triangles respectively,
as shown in Fig. 1 (d), (e). Li

k is standard deviation over them.
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Fig. 2. Horse model and its synthetic range images

Table 1. Evaluation of registration results (“−” means failure in estimation)

i 1 2 3 4 5 6 7 8 9
points 11616 10888 9913 9374 9442 9778 10503 11589 12118
IPs of i-th image 173 241 210 173 197 210 260 178 172
IPs of (i + 1)-th image 237 229 172 193 269 243 190 171 172

shape and color matches 11 5 7 7 8 11 9 7 9
estimated rotation [◦] 20.1 21.1 16.6 19.9 20.1 19.9 20.1 20.2 20.0
rotation error [◦] 0.2 1.0 5.5 0.3 0.8 0.2 1.2 0.3 0.3
translation error 0.2 1.5 4.4 0.1 0.2 0.1 0.4 0.2 0.2

shape only matches 3 13 11 11 9 13 10 17 4
estimated rotation [◦] 46.9 19.7 35.2 24.8 15.8 21.1 20.4 19.9 -168.9
rotation error [◦] 63.1 1.7 14.6 19.6 17.2 6.8 11.6 0.2 71.5
translation error 29.2 0.4 20.2 7.3 21.9 1.4 1.4 0.2 21.2

i 10 11 12 13 14 15 16 17 18
Points 11929 11464 10735 9779 8957 9198 10105 11228 11725
IPs of i-th image 179 256 302 331 250 178 145 166 135
IPs of (i + 1)-th image 225 285 328 307 154 140 165 153 156

shape and color matches 3 2 7 12 2 3 8 5 10
estimated rotation [◦] 19.9 - 19.6 19.8 - 19.9 19.9 20.0 20.1
rotation error [◦] 1.1 - 1.2 0.3 - 2.2 0.8 1.0 0.1
translation error 0.1 - 0.6 0.3 - 0.8 0.1 0.6 0.0

shape only matches 2 3 15 10 12 5 17 4 21
estimated rotation[◦ ] - 16.2 15.8 43.4 24.5 11.9 19.5 23.4 19.4
rotation error [◦] - 71.5 18.7 67.4 8.4 38.1 2.1 30.9 3.6
translation error - 38.9 7.1 40.8 8.5 19.9 0.6 10.7 1.3

In Table 1, the i-th column corresponds to the registration result of the i-th
and (i + 1)-th images. The number of measured points, the number of detected
interest points (IPs), the number of obtained matches (the number of vertices in
the obtained SSK), the estimated rotation angle, error of the estimated rotation
axes, and translation error are presented there. Errors of the estimated rotation
axes were evaluated by the difference from the ground truth while translation
errors were by the difference between norms. Since the rigid transformation was
estimated using the 3D coordinates of matched points [15], we need at least three
matches. “−” was used in the case of less than three matches, which means failure
in estimation.

Table 1 shows that over all the cases, the registration accuracy of our method
is not only significantly higher but also numerically more stable, compared with
the method using geometric features alone. In fact, in our method, errors of
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Fig. 3. Examples of registration results

estimated rotations were within ±1 degree and translation errors were within
1.0 except for two cases failing in estimation. These observations can be under-
stood by the fact that discriminative geometric features are not expected due
to smoothness of the shape of the horse body while photometric features are
discriminative even for such shapes in this case. Fig. 3 certificates this because
vectors connecting matched feature points have the uniform direction in our
method while they do not in the case of geometric features alone. Similarity de-
rived from our photometric feature reduces matching ambiguity using geometric
features alone and matching-quality of incorrect matches as well, which prevents
such matches from being included in the SSK. Here we remark again that we
did not assume any rotation axis to be found; this suffices to show that our
proposed method, differently from existing methods, does not require any good
initial estimation. We can thus conclude that our method achieves sufficiently
accurate registration without any good initial estimation.

6 Conclusion

We extended a graph-based range image registration method so that it can
handle both geometric and photometric features simultaneously. Namely, we
formulated registration as a graph-based optimization problem where we inde-
pendently evaluate geometric feature and photometric feature and then consider
only the order of point-to-point matching quality. We then find as large con-
sistent matching as possible in the sense of the matching-quality order. This is
solved as one global combinatorial optimization problem of polynomial complex-
ity. The advantage of our method is that each match is independently evaluated
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by each employed feature and the order of matching-quality is only concerned.
Differently from existing methods, our proposed method need not define any
single metric of similarity for evaluating matching. Our experimental results
demonstrate the effectiveness of our method for coarse registration.

The proposed method will reduce the possibility of finding an incorrect match-
ing but cannot be expected to increase the number of matches significantly. This
follows from the fact that both the two similarity criteria have to be consistent.
In principle, it is also possible to combine the two criteria in such a way that
when one of them strictly favors the match of q to p and the other is at least
indifferent between p and q, the edge joining p and q becomes unidirectional.
Such definition requires using a different matching algorithm from the one used
in this paper. This research direction is our ongoing work.
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