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Abstract. The discrete epipolar line, a discrete version of the epipolar
line, is recently proposed to give geometric relationships between pixels
in two different views so that we can directly deal with pixels in digital
images. A method is then proposed to determine the discrete epipolar line
providing that fully calibrated images are available. This paper deals with
weakly calibrated digital images and proposes a method for determining
the discrete epipolar line using only weakly calibrated images. This paper
also deepens the work further, presenting a method for identifying the
corresponding region in a third view from a given pair of corresponding
pixels in two views.

1 Introduction

Understanding the geometry of corresponding primitives across different views
that arise from the perspective projection of 3D objects is fundamental for ap-
plications such as 3D reconstruction from stereo or motion, object recognition,
image synthesis, image coding. In particular, the relationships between different
views of a point in space have been deeply investigated and sufficient knowledge
about epipolar geometry, more generally multi-view geometry, is already well
established [3,8,9].

In the framework of multi-view geometry studied so far, points in images are
assumed to be directly handled. In other words, digitization of image points is
not concerned at all. In reality, however, we cannot deal with points themselves
in digital images because digital images involve some digitization process. The
smallest unit in digital images is not a point but a pixel. Therefore, even if geo-
metric features are perfectly detected, corresponding points across two views, for
example, do not necessarily satisfy the epipolar constraint because of digitization
of images [2,11]. This problem cannot be overcome without paying attentions to
pixels as the smallest unit of images.

Conventionally, digitization errors are always treated together with observa-
tion errors, and how uncertainty arising from errors propagates into the estima-
tion of geometrical information such as epipolar lines is statistically analyzed,
providing that knowledge of error statistics are known [7,13]. The employed sta-
tistical model for errors, however, is independent of the digitization scheme, and,
moreover, the justification of the employed model is not sufficiently discussed.
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Fig. 1. The dominated region by pixel i and its four corner vertices

Hamanaka et al. [5], on the other hand, proposed the discrete epipolar ge-
ometry, i.e., a discrete version of the conventional epipolar geometry where the
pixel is highlighted as the smallest unit of images. The discrete epipolar geom-
etry aims at rebuilding the conventionally known geometrical relationships on
points between multiple views in order to directly deal with pixels in images.
With its help, images with different resolutions can be handled simultaneously,
for example. Reconstruction ambiguity caused by image digitization alone can
be also clarified. However, the proposed method for determining from a given
pixel, its discrete epipolar line, is not practically useful. This is because it as-
sumes that images are fully calibrated in advance. This indicates that not only
intrinsic camera parameters but also extrinsic ones are required to identify the
discrete epipolar line for a given pixel.

This paper advances the direction of directly dealing with pixels, proposing a
method for determining the discrete epipolar line using only weakly calibrated
images. This paper also deepens the work further, presenting a method for identi-
fying the corresponding region in a third view from a given pair of corresponding
pixels in two views where images are assumed to be weakly calibrated. In the
both methods, we move a pixel across two views with making full use of the
fundamental matrix relating the two views. This allows us to obtain the discrete
epipolar line and the corresponding region with only two-dimensional computa-
tion. To show the advantage of our approach, we demonstrate some experiments
using images with different resolutions, which cannot be observed without paying
attentions to the size of the smallest unit of images.

2 Digitizing an Image into Pixels

The smallest unit of digital images is not a point but a pixel. This indicates that
an image is not continuous but digitized. We thus introduce a digitization to an
uncalibrated image to obtain a set of pixels as its representation.

For a given point with homogeneous coordinates x = (x, y, 1)� in an uncal-
ibrated image I, we define i = �rxx + 1

2� and j = �ryy + 1
2�, where rx, ry are

the resolutions of the x- and y-coordinate, respectively. i = (i, j)� are the coor-
dinates of the pixel representing x. Applying this digitization to all the points
in I leads to the digitization D of I. We note that various digitization schemes
exist to discuss geometric properties of digitized objects such as connectivities,
bubble-freeness or topologies (see [1,10], for example); any digitization scheme
causes no essential difference in subsequent discussion as far as any point in I
corresponds to the unique pixel in D.
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Fig. 2. Pixel-based geometry in the perspective projection

Conversely, the region dominated by a given pixel i = (i, j)� is a rectangle
and is easily computed. The four vertices determining the rectangle are called
the corner vertices of i and denoted by vκ(i) ∈ I (κ = 0, 1, 2, 3).

v0(i) =
(

1
rx

(i − 1
2
),

1
ry

(j − 1
2
), 1

)
, v1(i) =

(
1
rx

(i − 1
2
),

1
ry

(j +
1
2
), 1

)
,

v2(i) =
(

1
rx

(i +
1
2
),

1
ry

(j +
1
2
), 1

)
, v3(i) =

(
1
rx

(i +
1
2
),

1
ry

(j − 1
2
), 1

)
.

We note that only v0(i) is included into the rectangle (Fig.1).

3 Determining Discrete Epipolar Line

3.1 Discrete Epipolar Line

The concept of discrete epipolar lines was introduced in [5]. The discrete epipolar
line is geometrically defined as follows. A pixel in a calibrated image and the
viewpoint define a quadrangular prism in space, called a pyramidal ray of sight
for the pixel (Fig.2(a)). Projecting this pyramidal ray of sight onto the calibrated
image observed from another viewpoint forms a discrete epipolar line1 (Fig.2(b)).

As we can easily understand, the discrete epipolar line is bounded by two
among four epipolar lines, each of which corresponds to one of the four corner
vertices of the concerned pixel. The two epipolar lines that bound the discrete
epipolar line are called bounding epipolar lines in this paper. Effectively identi-
fying bounding epipolar lines under any viewpoint configuration thus becomes
crucial in order to determine the discrete epipolar line.
1 More precisely, the discrete epipolar line is the set of pixels intersecting with the

image region of a pyramidal ray of sight. Namely, digitization of the image region in
the second view is followed. The discrete epipolar line termed in this paper, however,
is used without followed digitization. It is thus a continuous region represented by
two inequalities. This causes no essential difference in discussion.
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Fig. 3. A given pixel and epipolar lines of its four corner points

Hamanaka et al. [5] proposed to use the epipolar planes of four corner vertices
and selected two among the four so that the pyramidal ray of sight is fully in-
cluded in between the selected epipolar planes. This is because the boundary of
the discrete epipolar line is identical with the projection of the selected epipolar
planes onto the second image. As images are assumed to be calibrated, how-
ever, not only intrinsic camera parameters but also extrinsic ones are explicitly
required to identify the discrete epipolar line for a given pixel. This prevents
discrete epipolar lines from their practical usefulness.

3.2 Identifying the Boundaries Using the Fundamental Matrix

A pair of corresponding points x1, x2 in two different uncalibrated images are
known to be related by fundamental matrix F1,2:

x�
2 F1,2 x1 = 0. (1)

All the information about camera parameters is aggregated into 3 × 3 matrix
F1,2. Eq.(1) indicates that from a given point x1 in the first image, we can de-
termine its corresponding epipolar line x�

1 F�
1,2 x′ = 0 in the second image if two

images are weakly calibrated, i.e., F1,2 is known, where x′ is the homogeneous
coordinates of a point in the second image. In the below, we assume that two
images are weakly calibrated.

An epipolar line divides an image into two parts. The projection of the pyra-
midal ray of sight is included in only one part if the line is a bounding epipolar
line, while it overlaps with two parts otherwise. This property allows us to dis-
criminate bounding epipolar lines from others. We investigate this not in the
second image but in the first image. This is because the given pixel is nothing
but the projection of the pyramidal ray of sight onto the first image. We note
that epipolar lines are pair-wisely determined in the first and second images.

Let I1, I2 be given two images, and D1 be the digitization of I1 (Fig.3). For a
given pixel i ∈ D1, we have four corner points vκ(i) ∈ I1 (κ = 0, 1, 2, 3), each of
which determines epipolar line �2(vκ(i)) in I2. We then select any point yκ(∈ I2)
on the epipolar line �2(vκ(i)). yκ together with F1,2 determines epipolar line
y�

κ F1,2 x = 0 in I1, where x ∈ I1. We see that two epipolar lines �2(vκ(i))
and y�

κ F1,2 x = 0 are pair-wisely corresponding with each other, and, therefore,
y�

κ F1,2 x = 0 is independent of the choice of yκ.
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Once y�
κ F1,2 x = 0 is obtained, it is easy to check the geometrical relationship

between the region dominated by the given pixel i and two parts of I1 divided
by y�

κ F1,2 x = 0. Since y�
κ F1,2 x = 0 always goes through the corner vertex

vκ(i), we have only to check the sign of y�
κ F1,2 vμ(i) for the rest corner vertices

vμ(i) (μ = 0, 1, 2, 3; μ �= κ) to see whether or not the region dominated by i
exists in only one part divided by y�

κ F1,2 x = 0.
The algorithm below computes the discrete epipolar line from a given pixel.

We note that v0(i) is included into pixel i; thus the case of κ = 0 is distinctively
treated.

Input: pixel i in the first image and fundamental matrix F relating two images.
Output: discrete epipolar line DE for i in the second image.

Step 1 Let DE:= φ.
Step 2 For κ = 0, 1, 2, 3, compute corner vertex vκ(i) and epipolar line �2(vκ(i)).
Step 3 For κ = 0, 1, 2, 3, do

(1) let W := {0, 1, 2, 3} − {κ};
(2) select a point yκ on �2(vκ(i));
(3) if y�

κ Fvμ ≥ 0 for all μ ∈ W , then { if κ = 0, then put y�
κ Fx ≥ 0 into

DE; else put y�
κ Fx > 0 into DE };

(4) else if y�
κ Fvμ ≤ 0 for all μ ∈ W , then { if κ = 0 then put y�

κ Fx ≤ 0
into DE; else put y�

κ Fx < 0 into DE }.

4 Predicting Corresponding Region in a Third View

We assume that we are given two corresponding pixels in two different views.
The problem addressed here is to determine the positions of corresponding pixels
in a third view.

In the conventional framework, we can easily predict the position of the cor-
responding point in a third view from a given corresponding pair of points in
two views. Namely, we first determine epipolar lines in a third view from a given
pair of points in the first and second views, and then identify the intersection
point of the two epipolar lines in the third view. We remark that the intersection
point is always uniquely determined. This relationship between corresponding
points across three views is algebraically analyzed and obtained constraints are
called the trifocal tensor in the literature [4,6,12].

Once we accept the fact that the smallest unit of images is a pixel, however,
the problem becomes hard to analytically solve, as seen below. We therefore
algorithmically solve the problem.

4.1 Corresponding Pixels in Two Views and a Third View

When two corresponding pixels i1, i2 are given in two views, two pyramidal rays
of sight in space are determined. We denote them by P (i1) and P (i2). The region
in space that forms the given pixels as its image is identical with the intersection
of the two pyramidal rays of sight, which is denoted by P (i1) ∩ P (i2). When
a third viewpoint comes in, P (i1) ∩ P (i2) is projected onto the third view and
forms a region in the third view. This region corresponds to i1, i2 and is denoted
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by R3(i1, i2). We call R3(i1, i2) the corresponding region for i1 and i2. As we
easily see, R3(i1, i2) is not a point but a polygon.

The definition of a pyramidal ray of sight allows us to see that P (i1) and P (i2)
have four faces and that they are a convex polyhedron. Accordingly, P (i1)∩P (i2)
is a convex polyhedron with at most eight faces. Depending on not only the
positions of given i1 and i2 in two views but also the geometrical configuration
of two viewpoints, the number of faces of P (i1) ∩ P (i2) changes. This indicates
that the shape of R3(i1, i2) itself is not invariant against these factors. This
kind of changes does never arise in the conventional framework. In contrast,
convexity is preserved against any changes in positions of i1 and i2, and in
geometrical configuration of two viewpoints because the perspective projection
does not break convexity. These observations can be summarized as follows.

For given two pixels in two views, the corresponding region in a third view
– is a convex polygon under any configuration of viewpoints and any positions

of the given pixels;
– has at most eight edges, and the number of edges depends on the geometrical

configuration of viewpoints and also on the positions of the given pixels.

4.2 Identifying the Corresponding Region

Straightforwardly using discrete epipolar lines to predict a corresponding region
in a third view does not effectively work. This can be easily understood from the
fact that if we determine in a third view two discrete epipolar lines for a given
pair of pixels and then compute the intersection of the two discrete epipolar lines,
the obtained region is with at most four edges; this contradicts the property of
the corresponding region addressed in the previous section.

In fact, two pyramidal rays of sight for given pixels carve each other, and,
therefore, the corresponding region becomes strictly smaller than the simple in-
tersection of the two discrete epipolar lines. For a given pair of corresponding
pixels i1 and i2 in two views, let DER3(i1) and DER3(i2) be the regions satis-
fying the discrete epipolar line in a third view for i1 and i2, respectively. Then,
R3(i1, i2) ⊆ DER3(i1) ∩ DER3(i2).

To see how two pyramidal rays of sight carve each other, we focus on each ridge
line of a pyramidal ray of sight and investigate how it intersects with the faces
of the other pyramidal ray of sight in order to obtain all the vertices of convex
polyhedron P (i1)∩P (i2). Investigating this in space is complicated whereas the
projection onto each view makes this analysis even simpler.

Let us focus on the investigation about a corner point vκ(i1) and pyramidal
ray of sight P (i2) (Fig.4). We consider epipolar line �2(vκ(i1)) for vκ(i1) in
the second view. We note that �2(vκ(i1)) is the projection of the line in space
going through the first viewpoint and vκ(i1). The fact that this line in space
intersects with P (i2) is identical with the fact that �2(vκ(i1)) intersects with
i2. Furthermore, if it intersects in space, the projection of intersection points in
space is identical with the intersection points of �2(vκ(i1)) and i2 in the second
view. This allows us to identify the projection of intersection points in space
onto the second view without directly dealing with 3D information.

Once we identify the projection of intersection points in space onto the second
view, it is then straightforward to predict the position of the corresponding point
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Fig. 4. Intersection points of two pyramidal rays of sight observed in three views

in a third view. Namely, using fundamental matrices relating the third view with
the first and second views, we determine epipolar lines in the third view for
vκ(i1) and also those for the obtained intersection points, and then compute
intersection points to identify their positions in the third view.

Iterating the above procedure with respect to the four corner points vκ(i1)
(κ = 0, 1, 2, 3) of i1 and then exchanging the roles of two views in the procedure
lead to identifying the positions of the vertices in the third view, i.e., the pro-
jection onto the third view of all the vertices of P (i1) ∩ P (i2). Computing the
convex hull of the obtained vertices in the third view enables us to identify the
corresponding region R3(i1, i2). We remark that R3(i1, i2) is a convex polygon
whose vertices are a subset of the obtained vertices.

The algorithm below identifies the corresponding region in a third view from
given two corresponding pixels in two views.

Input: corresponding pixels i1 and i2 in the first and second views and funda-
mental matrices relating two of three views: F1,2, F1,3, F2,3.
Output: corresponding region R3(i1, i2) in the third view.

Step 1. Let F2,1 := F�
1,2 and G := φ.

Step 2. For (α, β) ∈ {(1, 2), (2, 1)}, do
(1) for κ = 0, 1, 2, 3, do

(I) for τ = 0, 1, 2, 3, do
(i) letLβ

τ,τ+1bethelinesegmentconnectingvτ (iβ)andvτ+1(mod4)(iβ);
(ii) compute in view β the intersection point of line segment Lβ

τ,τ+1

and epipolar line v�
κ (iα)Fβ,α x = 0; let the intersection point be

t;
(iii) compute the intersection of vκ(iα)�F�

α,3x = 0 and t�F�
β,3x = 0;

put the intersection point into G.
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Step 3. Compute the convex hull of G; let R3(i1, i2) be the region inside of the
obtained convex hull.

5 Experiments

We demonstrate some experiments on predicting corresponding regions using
weakly calibrated images with different resolutions. We remark that images with
different resolutions are frequently obtained when they are captured using dif-
ferent digital cameras.

We set up experimental conditions as shown in Fig. 5 (a). Namely, for a ran-
domly selected point X0 in space, we first put two viewpoints, C1 and C2, so
that they together with X0 form the regular triangle in space, and obtained
its two image points using camera parameters. We then put a third viewpoint
C30 to form the regular tetrahedron together with X0, C1 and C2, and com-
puted fundamental matrices determined by these views. After digitizing the first
and second views, we applied our method to identify the corresponding region
in the third view. We also conducted experiments in the cases where the third
viewpoint is changed to C31 and C32 so that it becomes close to the first view-
point C1 and the second viewpoint C2, respectively. This is to evaluate how the
corresponding region depends on the viewpoint configuration in space. In our
experiments, we fixed the resolution of the first view, and changed that of the
second view to see how the corresponding region in the third view depends on
resolutions. The resolution ratio of the second view to the first view was set to
be 2k (k = −3, −2, −1, 0, 1, 2, 3). Under the same condition except for changing
X0 to X1 (Fig. 5 (b)), we conducted the same experiments.

The results for point X0 are shown in Fig. 6 while those for point X1 are
in Fig. 7. In these figures, (a), (c) and (e) illustrate the shape of the computed
corresponding region, where the horizontal axis and the vertical axis correspond
to the horizontal image coordinate and the vertical image coordinate, respec-
tively. (b), (d), (f), on the other hand, show the number of edges and the area
of the computed corresponding region, where the horizontal axis indicates the
image resolution. We note that the vertical axis for the area of the computed
corresponding region indicates the logarithm of the area to the base two.

C31(5.05,-10.7,2.80)

C1(5.00,-10.7,2.89)

C32(-5.05,-10.7,2.80)
C2(-5.00,-10.7,2.89)

C30(0.00,-10.7,5.77)

X0(0.00,-2.50,2.89)

C32(-5.05,-10.7,2.80)

C30(0.00,-10.7,5.77)
C1(5.00,-10.7,2.89)

X1(2.50,0.00,2.00)

C31(5.05,-10.7,2.80)

C2(-5.00,-10.7,2.89)

(a) case for a point X0 (b) case for a point X1

Fig. 5. Configuration of viewpoints C1, C2, C30, C31 and C32
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Fig. 6. Shape, edges and area of the corresponding region depending on image resolu-
tions (case with viewpoints C1, C2 and point X0)

Figures 6 and 7 show that in any case, as the resolution becomes higher the
shape and the area of the computed corresponding region monotonically de-
crease. As we expect, the shape and the area tends to eventually converge to a
point and zero, respectively. We also observe that the shape of the correspond-
ing region itself changes depending on image resolutions even for the same point
configuration. Furthermore, we observe some correlation exists between changes
in number of edges and those in area; this observation is independent of the posi-
tion of a third viewpoint. Namely, with a certain image resolution, both the area
and the number of edges of the corresponding region significantly change at the
same time and the changes depend on only the configuration of the first and the
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Fig. 7. Shape, edges and area of the corresponding region depending on image resolu-
tions (case with viewpoints C1, C2 and point X1)

second viewpoints. These observations come from the fact that the intersection
of two pyramidal rays of sight varies with image resolutions, and in particular,
the shape of the intersection drastically changes with a certain image resolution.

Figure 6 (a), (b), (e) and (f) indicate the existence of the cases in which the
area of the corresponding region has the same changes in shape depending on
image resolutions though their viewpoint configurations are different from each
other. This implies that when a third viewpoint is far from the first viewpoint,
changes in resolution of the second view are irrelevant to the viewpoint config-
uration. This observation is also supported by Fig. 7 (a), (b), (e) and (f).



480 H. Natsumi, A. Sugimoto, and Y. Kenmochi

On the other hand, we observe in (c) and (d) in Figs. 6 and 7, the existence of a
critical resolution of the second view. Namely, when a third viewpoint is allocated
closely to the first viewpoint, the area of the corresponding region remains almost
invariant until the critical resolution, and once the second view achieves the
critical resolution, the area then decreases significantly. This observation can be
understood as follows. When the resolution of the second view is lower than
that of the first view, the intersection of two pyramidal rays of sight is almost
dominated by the pyramidal ray of sight of the first view, and, therefore, the
image of the intersection is projected with the size of almost one pixel. This is
because the image of the pyramidal ray of sight of the first view is exactly one
pixel in the first view and because the third viewpoint is very close to the first
viewpoint. As the resolution of the second view becomes higher than that of the
first view, the intersection becomes gradually affected by the pyramidal ray of
sight of the second view. The discrete epipolar line corresponding to the second
view then chips in the third view the image of the pyramidal ray of sight of the
first view to cause significant changes in area of the corresponding region.

The observations above are distinguished properties in dealing with pixels, and
they cannot be obtained without paying attentions to the size of the smallest
unit of images.

6 Concluding Remarks

This paper dealt with weakly calibrated images, focusing on pixels as the smallest
unit of images. This paper then presented two methods: one for determining
the discrete epipolar line from a given pixel, and the other for identifying the
corresponding region in a third view from a given pair of corresponding pixels
in two other views. Using fully calibrated images means that 3D information in
the Euclidean sense is implicitly required while it is not in the case of weakly
calibrated images. This indicates that our proposed methods do not require any
three-dimensional computation at all; in fact, computation required here is just
checking intersection between lines and points in images.

In the conventional approach, digitization errors and observation errors are
not discriminated from each other and they are always treated together typically
in the statistic framework. Our proposed methods, on the other hand, exactly
identify how digitization errors propagate into the epipolar line estimation and
how the ambiguity region looks like in a third image. Investigating practical su-
periority of our method to existing methods, in particular, the sub-pixel based
method, is our next step. More detail analysis of the properties of the corre-
sponding region from the theoretical point of view is also left for future work.
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