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Abstract: This paper presents a method for segmenting a 3D point cloud into planar surfaces using recently obtained discrete-
geometry results. In discrete geometry, a discrete plane is defined as a set of grid points lying between two parallel planes with a small
distance, called thickness. In contrast to the continuous case, there exist a finite number of local geometric patterns (LGPs) appearing
on discrete planes. Moreover, such an LGP does not possess the unique normal vector but a set of normal vectors. By using those
LGP properties, we first reject non-linear points from a point cloud, and then classify non-rejected points whose LGPs have common
normal vectors into a planar-surface-point set. From each segmented point set, we also estimate the values of parameters of a discrete
plane by minimizing its thickness.
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1 Introduction

Recent progress in computer vision technologies allows
us to easily acquire a 3D point cloud of an object[1]. Let
us consider a simple case where our object of interest is
polyhedral. Then, reconstructing the whole 3D shape us-
ing several 3D point clouds taken from different viewpoints
requires extracting at least three common planar patches
from every 3D point cloud[2]. This extraction is known as
surface segmentation.

Conventional approaches to the surface segmentation
problem of a 3D point cloud are classified into three cat-
egories: region-based, edge-based, and hybrid approaches.
The first one merges points having similar region proper-
ties calculated from their neighboring points such as normal
vectors[3,4], curvatures[5], parameters of fitted planes[6−8] or
quadratic surfaces[6,9], and other indices corresponding to
local surface shapes[10]. As calculated properties are very
sensitive to noise and quantization errors, they cause over-
segmentation[11]. Thus, some merging procedures for re-
gions are needed after the initial segmentation[11,12] . In
the second approach, edges are searched by using depth
discontinuities so that they separate regions[13] . As edges
are not always extracted as connected curves, they cause
under-segmentation. Thus, in this case, splitting of regions
is needed after the initial segmentation. The third approach
is hybrid between the above two approaches[11,14,15] . One of
the interesting ideas for planar cases in the third approach
can be found in [14]; the notion of locally planar points are
proposed for a planar segmentation method. Locally pla-
nar points are used for detecting not only planar regions
but also edges, because points that are not locally planar
are considered to be potentially edge points. In fact, our
method proposed in this paper stands on an idea similar to
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this one.
The above three approaches possess a common problem

of using surface primitives or geometric features for the sur-
face segmentation. This is because we are obligated to set
parameters in order to approximate/select surface prim-
itives and calculate geometric features from 3D discrete
points. Such parameter setting/adaptation is not simple
work from the practical point of view. Actually, it depends
on the discreteness of a given 3D point cloud, such as data
resolution and noise. For example, we need to define a set
of neighboring points for calculating geometric features for
each 3D point. Note that, in this paper, a set of neighboring
points in a 3D point cloud is called a local geometric pat-
tern (LGP). The sizes and patterns of LGPs implicitly give
influences to other parameter values in the post-process of
region merging/splitting. This is because the calculated ge-
ometric features generally have some errors due to variation
of LGPs. However, in most cases, such parameter adaption
is realized empirically or experimentally under some statis-
tical hypothesis.

In this paper, we present a discrete version of the hybrid
method by using fixed-size LGPs in a discrete space. As a
consequence, once we set the LGP size, the size automat-
ically decides other parameter values due to the theory of
discrete geometry[16]. In discrete geometry, a discrete plane
is defined as a set of grid points lying between two paral-
lel planes with a small distance, called thickness[16]. LGPs
appearing on the discrete planes are called linear LGPs. In
fact, the points whose LGPs are linear can be considered
to be a discrete version of locally planar points[14]. The
difference from the continuous case is that the number of
linear LGPs in a discrete space is finite[17−19]. In addition,
each linear LGP does possess a set of normal vectors[18−20].
By using those discrete geometrical properties of LGPs, we
present a two-step segmentation method: first reject the
non-linear points from a point cloud (edge-based part), and
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then merge non-rejected points whose LGPs have common
normal vectors (region-based part). Our method thus uses
only precalculated look-up tables with respect to LGPs, and
does not require any parameter setting. Furthermore, our
method is robust against noise as well as quantization er-
rors. Indeed linear LGPs already take quantization errors
into account in their generation. We show the effectiveness
by applying our method to range images. In order to evalu-
ate our segmentation results, we estimate discrete plane pa-
rameters from each segmented planar surface by minimizing
its thickness. This problem is solved by a linear program-
ming method. As the thickness indicates the segmentation
inaccuracy, we consider that the lower the thickness, the
better the segmentation result.

2 Non-linear point rejection using LGP

2.1 Discrete planes

Let RRR be the set of real numbers. A plane PPP in the 3D
Euclidean space RRR3 is defined by the following expression:

PPP = {(p, q, r) ∈ RRR3 : αp + βq + γr + δ = 0}
where α, β, γ, δ ∈ RRR. Let ZZZ3 be the set of grid points whose
coordinates are integers in RRR3. A discrete plane, which is a
digitization of PPP , is then defined such that

DDD(PPP ) = {(p, q, r) ∈ Z3 : 0 � αp + βq + γr + δ < ω} (1)

where ω = max (|α|, |β|, |γ|), called the thickness[16].

2.2 Linear LGP on discrete planes

We consider a cubical grid-point set QQQ(xxx) whose edge
length is 2 around a point xxx ∈ ZZZ3 such that

QQQ(xxx) = {yyy ∈ ZZZ3 : ‖xxx − yyy‖∞ � 1}. (2)

Let us assume that each point in ZZZ3 has a binary value such
as either 1 or 0. Such a pattern of binary points in QQQ(xxx) is
called LGP. There are 226 different LGPs for QQQ(xxx) provid-
ing that the central point xxx always has the fixed value 1.
This indicates that xxx is considered not to be a background
point but to be a surface point.

Among those different LGPs, we investigated which LGP
can appear on discrete planes[19]. This problem is mathe-
matically written as follows. Let FFF be a set of points whose
binary values are 1 in QQQ(xxx). If there is a plane PPP such that

FFF = DDD(PPP ) ∩QQQ(xxx) =

{(p, q, r) ∈ QQQ(xxx) : 0 � αp + βq + γr + δ < ω} (3)

we say that FFF forms a discrete plane in QQQ(xxx). Therefore,
our problem is solved by looking for all possible FFF , namely
LGPs, satisfying (3). Such LGPs are called linear LGPs.
Since this problem is considered to be the feasibility of the
inequalities of (3) for all (p, q, r) ∈ FFF , we need to check
if there are feasible solutions α, β, γ and δ for each differ-
ent LGP of QQQ(xxx). If they exist, such LGP can appear on
discrete planes and become linear LGP.

However, we suggested in [19] to avoid computing the
feasibility test for all 226 LGPs of QQQ(xxx), by taking an ap-
proach based on arithmetic planes[16,21], which are related

to discrete planes. Similar work can also be found in [17].
An algorithm is then proposed to generate all linear LGPs,
and it is found that there exist only 34 LGPs that appear
on discrete planes, called linear LGPs, up to translations,
rotations, and symmetries, as shown in Fig. 1. Note that
they are generated with the constraints

0 � α � β � 1, γ = 1. (4)

In order to visualize the shapes of linear LGPs in Fig. 1, we
add polyhedral meshes generated for planar surface points
by applying a discrete-marching-cube-like method for the
18-neighborhood system[22] to a digitized half space. Inte-
rior points of planar surfaces are designated as black points.

Fig. 1 The 34 linear LGPs

2.3 Locally linear and non-linear points

Experimentally, those linear LGPs can be seen not only
on discrete planes but also on discrete smooth surfaces. In-
tuitively, this is not difficult to understand, since any local
surface patch on a smooth surface can be approximated to
a planar surface when the size of the patch becomes small.
In the discrete space, even if a point has a linear LGP, we
are uncertain whether such a point appears on a planar
surface or a non-planar surface. Contrarily, if a point has a
non-linear LGP, it never appears on a planar surface. From
this reason, if a point has a linear LGP, it is called a locally
linear point, otherwise, it is called a non-linear point.
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2.4 From a point cloud to a grid point set

Before executing the non-linear point rejection to a grid-
point set, we explain how to transform a 3D point cloud
into a grid-point set. Our input in this paper is a range im-
age represented by a 2D digital image each of whose pixels
(x, y) ∈ [X1, X2] × [Y1, Y2] of ZZZ2 has a depth information
d(x, y) from a 3D scanner to an object surface. We trans-
form such a range image into a 3D triple-valued image by
quantizing depth d(x, y) as follows: for each point (x, y, z)
in a finite subset XXX = [X 1,X2] × [Y1,Y2] × [Z1, Z2] of ZZZ3,
we define a triple-valued function such that

t(x, y, z) =

⎧
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2, if z = �d(x, y)

r
+
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1, if z > �d(x, y)

r
+

1

2
�

0, otherwise

(5)

where r is a sampling interval for depths. Note that the
value r is set to be almost equal to the pixel intervals which
are generally regular along both x and y directions.

Grid points whose values are 2 are closest to input points
(x, y, d(x, y)) so that they are considered to be discrete sur-
face points and to be visible from a 3D scanner. Thus, we
call them visible surface points and define a set of visible
surface points such that

VVV = {(x , y , z ) ∈ XXX : t(x , y , z) = 2}. (6)

Concerning grid points whose values are 1, they are in-
visible from a 3D scanner so that we do not know whether
they are surface points or not. Therefore, we simply call
them invisible points. Since the rest of grid points whose
values are 0 are visible and background points, a set of po-
tential points for an object is defined as a union of visible
surface points and invisible points such that

WWW = {(x , y , z) ∈ XXX : t(x , y , z ) �= 0}.
Thus, a set of surface points is obtained as a border point
set of WWW such that

∂WWW = {x ∈ XXX : NNN6(x) ∩WWW �= ∅} (7)

where
NNN6(xxx) = {yyy ∈ ZZZ3 : ‖xxx − yyy‖1 � 1}

and WWW is the complement of WWW . Note that VVV ⊆ ∂WWW and
the equality does not always hold.

A visible surface point set VVV can be considered to be a
digitization of a point cloud, while a surface point set ∂WWW is
necessary for making binary patterns of LGPs; the binary
value of a point xxx is set to be 1 if xxx ∈ ∂WWW ; otherwise, set
to be 0. This is why we also need ∂WWW as well as VVV .

2.5 Non-linear point rejection

By simply checking the LGP linearity, we can therefore
reject non-linear points from a grid-point set, since we know
that non-linear points never appear on any discrete plane.
In other words, the linear LGPs play an important role in
filtering linear points. Note that it is realized by looking up
the binary table of LGPs (linear or not).

For the experiment, we use a 3D point cloud taken by
a 3D scanner Konica-Minolta VIVID 910 with a resolution

320 × 240. We first quantized the z-coordinates with an
interval r that is almost equal to those of the x- and y-
coordinates from (5), and obtained two finite grid-point
sets, namely, a visible surface point set VVV and a surface
point set ∂WWW , from (6) and (7). Note that the LGP linear-
ity is checked for every point in VVV even if binary patterns
for LGPs are made from ∂WWW .

Fig. 2 shows an example of locally linear and non-linear
points, colored in light green and black, respectively, in
a 3D point cloud. We see that points appearing around
polyhedral-face edges are non-linear, i.e., rejected, as well
as isolated points that are considered to be noise. How-
ever, we also observe that some points around edges are
not rejected, because they are considered to be locally lin-
ear even if they are not linear in a larger region than their
LGPs. This fact implies that a simple post-processing, such
as the connected component labeling[16] of a non-rejected
point set, does not always give satisfactory results for planar
surface segmentation.

In fact, we can generalize the definition of a cubical grid-
point set QQQ(xxx) with an infinity norm that is not more than
k, instead of 1, in (2)[19]. If k = 2, for example, we obtain
1574 linear LGPs. However, larger LGPs are not so useful
for the non-linear point rejection. First, they are more sen-
sitive to noise because each point needs more neighboring
points to be locally linear. Therefore, we generally obtain
more black points in Fig. 2 if we use larger LGPs. Second,
from the practical point of view, we lose a privilege to use
a binary look-up table for checking the LGP linearity, be-
cause of the size of all binary patterns of LGPs. In the cases
where k is more than 1, we need to use another data struc-
ture such as a tree to store all linear LGPs and to check the
linearity of a given LGP. Because of these reasons, we use
LGPs for k = 1 in this paper.

3 Planar surface segmentation of lo-
cally linear points

In order to solve our segmentation problem, we propose
a method using not only the point connectedness but also
normal vectors derived from LGPs.

3.1 Feasible normal vectors of linear LGPs

A linear LGP is a discrete plane patch of DDD(PPP ) in
a bounded space QQQ(xxx), denoted by DDDQQQ(xxx)(PPP ). Given a
DDDQQQ(xxx)(PPP ), we can find a set of Euclidean planes PPP such that
the digitization of each of those planes in QQQ(xxx) is equal to
DDDQQQ(xxx)(PPP ). The set of all such Euclidean planes is called the
preimage and it is known that the correspondence between
discrete plane patches and Euclidean planes is not one-to-
one but one-to-many[20]. Because of the one-to-many cor-
respondence, the preimage of DDDQQQ(xxx)(PPP ) is represented by a
set of parameters α, β, γ, and δ. More precisely, the preim-
age is obtained as a feasible solution set of the inequality set
of (3) for all points (p, q, r) ∈ DDDQQQ(xxx)(PPP ). It means that the
preimage is given by a convex polytope in the parameter
space[20].

As all interested parameters in this paper are translation-
invariant, we focus on the three parameters α, β, and
γ indicating the normal vector of PPP , distinguished from
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the intercept δ of PPP . We thus apply the Fourier-Motzkin
elimination[23] to the inequality set of (3) for all (p, q, r) ∈
DDDQQQ(xxx)(PPP ), so that a set of feasible normal vectors is calcu-
lated from each linear LGP. Note that all calculations are
done by using only integers, i.e., they cause no rounding
errors; for the details, see [19]. Similar work can be also
found in [18].

The results are derived in the space (α, β) from linear
LGP with the constraints (4), since we use the 34 linear
LGPs in Fig. 1. The feasible region for each linear LGP is
obtained as a convex polygon in the triangle region whose
vertices are (0, 0), (0, 1), and (1, 1) of the space (α, β) be-
cause of (4). Each line in the triangle region in Fig. 3 corre-
sponds to a half plane represented by each inequality of (3)
for every (p, q, r) ∈ DDDQQQ(xxx)(PPP ) for every linear LGP. Fig. 3
shows that the inequality set divides the triangle region
into triangular or quadrilateral polygons in the space (α, β),
called normal cells. The feasible region of each linear LGP
is given as a set of normal cells that constitutes a convex
polygon in the space (α, β). Table 1 shows the set of nor-
mal cells whose union corresponds to the convex polygon
representing the set of feasible normal vectors for each lin-
ear LGP depicted in Fig. 1. Remark that there are some
pairs of linear LGPs both of which have the identical set
of normal cells. In addition, a normal cell corresponds not
only to a simple linear LGP but also to several linear LGPs.
Thus, the correspondence between linear LGPs and normal
cells is many-to-many.

Fig. 2 An experimental example of non-linear point rejection

3.2 Discrete Gaussian sphere

The 26 normal cells in Fig. 3 are generated with the con-
straints (4). We embed these normal cells into the 3D space
(α, β, γ) with γ = 1, as illustrated in Fig. 4. The triangle
surrounded by thick lines in Fig. 4 corresponds to the trian-
gular region that is the union of normal cells in Fig. 3. Once
the normal cells are embedded into the space (α, β, γ), we
make the congruous ones by applying to them 48 trans-
formations of rotations and symmetries of a cube of edge
length 2, centered at the origin of the 3D space. We see,
in Fig. 4, that there are 48 triangles on the cube, so that
the whole cube contains 1248 normal cells. Such a cube is
called the cubical Gaussian sphere.

Table 1 Linear LGPs and their normal cells

Linear LGP Normal cells

1 0 25

2 1 9 11 12

3 4 5 7 10 23

4, 5 0 1 16 17 18 24

6, 17 2 3 4 5 7 8

7 2 3 5 8

8, 9 6 9 10 11 14 15 21 23

10, 12 8 19 20 25

11 8 17 18 19 20

13, 28 2 3 4 5 6 7 9 10 11 12 13 14 15 21 22 23

14 2 3 6 13 14 15 16 21 22 24

15 2 3 6 11 12 13 14 22

16 4 5 7 10 23

18, 19 0 18 19 25

20, 23 0 1 3 8 12 13 16 17 18 19 20 22 24 25

21, 22 3 8 16 17 20 22

24, 25 1 9 11 12 13 14 15 24

26, 34 2 4 5 6 7 10 21 23

27 2 5 6 7 21 23

29, 30 0 17 18 19 20 25

31, 32 1 12 13 16 22 24

33 6 9 11 14 15 21

Fig. 3 Normal cells on the αβ-plane with constraint (4)

Fig. 4 The cubical Gaussian sphere

We now project normal cells tiled on the cubical Gaus-
sian sphere onto a unit sphere centered at the origin, as il-
lustrated in Fig. 5. The unit sphere separated by projected
normal cells is called the discrete Gaussian sphere, because
the size of normal cells indicates the resolution of digitized
normal vectors calculated from linear LGPs. The triangle
surrounded by bold gray lines in Fig. 5 corresponds to the
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triangle surrounded by thick lines in Fig. 4 that corresponds
to the union of normal cells in Fig. 3. In the remainder, GGG
denotes the set of all normal cells on the discrete Gaussian
sphere. Note that we use only integer or rational numbers
to calculate all normal cells, which are related to the cubical
Gaussian sphere.

Fig. 5 The discrete Gaussian sphere

3.3 Unified discrete Gaussian image

By using the discrete Gaussian sphere, we give a discrete
version of extended Gaussian images that are useful for rep-
resenting surface shapes[24], called unified discrete Gaussian
images. Let us first consider a discrete version of the Gaus-
sian image that is the mapping from an object surface point
to its normal vector on the Gaussian sphere. Let VVV ′ be a
locally linear point set in ZZZ3. For a point xxx ∈ VVV ′, we define
a discrete Gaussian image III(xxx) as the set of normal cells
corresponding to the linear LGP of xxx. Choosing a normal
cell c ∈ GGG, we now consider a point subset of VVV ′ such that

RRR(c) = {xxx ∈ VVV ′ : c ∈ III(xxx)}. (8)

We then obtain the number of points in RRR(c) for every
c ∈ GGG, called the unified discrete Gaussian image, such
that

u(c) = |RRR(c)|. (9)

Note that u(c) and RRR(c) are generated by simply looking
up Table 1.

The concept of unified discrete Gaussian images is simi-
lar to that of extended Gaussian images[24] . The differences
from extended Gaussian images are the following: the func-
tion (9) is defined with respect to a normal cell c on the
discrete Gaussian sphere GGG, instead of a point nnn on the
Gaussian sphere; the value of (9) is the number of grid
points xxx such that III(xxx) includes c, instead of the area of
the surface whose normal vector is nnn. From the definition,
we see that our unified discrete Gaussian image represents
a distribution of normal cells of a digital object surface.

Fig. 6 shows an example of the unified discrete Gaussian
images for a digitized box. Concerning cell colors on the
discrete Gaussian sphere in Fig. 6 (b), the darker the blue
cell, the larger the value of u(c), and the red cell has the
maximum value. The length of the pale blue needle for
each cell c also corresponds to the value of u(c). On a digi-
tized box in Fig. 6 (a), red and blue points are locally linear,
while green points are non-linear. Note that red points cor-
respond to the red cell in Fig. 6 (b). Fig. 6 shows that we

can extract a set of grid points that belong to a digital plane
DDD(PPP ) by choosing a “correct” normal cell, for example, a
red one. This is based on the following fact: if (α, β, γ) is
a normal vector of DDD(PPP ), then (α, β, γ) is included in the
common normal cell(s) of III(xxx) for all xxx ∈ DDD(PPP ).

Fig. 6 A synthetic 3D image of a box (a) and its unified discrete

Gaussian image (b)

3.4 Algorithm

By using the unified discrete Gaussian image u(c) and the
point sets RRR(c), we present our algorithm for planar surface
segmentation from a locally linear point set VVV ′. Our prob-
lem is formulated as follows: each point xxx ∈ VVV ′ is assigned
into one of sets SSSi for i = 1, 2, · · · such that the points in
each SSSi constitute a connected planar-surface set. From the
previous discussions, our method is founded on the follow-
ing hypothesis: if there is a connected point subset SSS ⊆ VVV ′

such that they have a common normal cell for all xxx ∈ SSS,
then SSS may constitute a discrete plane.

Based on this hypothesis, we present Algorithm 1. we
look for the largest connected grid-point set SSSi, whose
points have a common normal cell by using u(c) and RRR(c).
As each point has several normal cells, our method cannot
be processed in parallel with respect to normal cells. It
must be a repeated procedure; once we obtain SSSi, then we
remove all points of SSSi from every RRR(c), modify u(c), and
repeat this procedure after the increment of i. Practically,
we would like to avoid obtaining a very small surface patch,
so that we set a parameter s that is the minimum size for
SSSi.

Algorithm 1. Planar surface segmentation.
Input: A unified discrete Gaussian image u(c), point sets

R(c), and a minimum surface size s.
Output: Planar-surface point sets Si for i = 1, 2, 3, · · · .

Step 1. Begin
Step 2. initialize a label such that l = 0;
Step 3. Repeat
Step 4. make a priority queue Dk of normal cells c with their

values u(c) that are not less than s;
Step 5. increment l and initialize Sl = ∅;
Step 6. set h to be the highest priority cell in Dk and remove

it from Dk;
Step 7. while u(h) > |Sl| do
Step 8. set C to be the maximum connected component

of R(h);
Step 9. if |C| > |Sl| then set Sl = C;
Step 10. reset h to be the highest priority normal cell in

Dk and remove it from Dk;
Step 11. if |Sl| � s then
Step 12. forall c such that u(c) �= 0 and R(c)∩Sl �= ∅ do
Step 13. reset R(c) = R(c) \ Sl and u(c) = |R(c)|;
Step 14. Until |Sl| < s;
Step 15. Return Si for i = 1, 2, · · · , l − 1;

Step 16. End
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Algorithm 1 is thus a loop procedure of seeking planar
surfaces SSSi. Each SSSi is a maximally connected point set,
whose points have a common normal cell. Once we find SSSi,
we check the size of SSSi in Step 11, and if |SSSi| � s, we re-
move all points of SSSi from every RRR(c) and also modify u(c)
in Step 13. After such modification and incrementing i, we
seek a new SSSi. To find each SSSi, we look for the maximum
connected component CCC of each RRR(c), and then set SSSi to
be the maximum among all CCC. In order to reduce the fre-
quency of calculation of connected components, which is a
global operation, we make a priority queue Dk of normal
cells c with their u(c) that are not less than s in Step 4. We
then repeatedly dequeue a normal cell h from Dk to obtain
the maximum connected component CCC of RRR(h) in Step 8.
Comparing the size of CCC with the maximum among those of
other normal cells that are already dequeued from Dk, we
finally obtain the currently maximum point set SSSl in Step
9. Note that this loop is repeated until u(h) is not more
than the size of SSSl as described in Step 7. For calculat-
ing the maximum connected component of RRR(h), we apply
a simple method based on a depth-first strategy by using
a queue[16]. The time complexity is linear with respect to
u(h).

3.5 Experimental results

For the experiment, we used six range images of the same
blocks, which are taken by a 3D scanner Konica-Minolta
VIVID 910 from two different viewpoints with three differ-
ent resolutions. The range images were transformed into
grid-point sets by following the explanation in Section 2.4.
First, we rejected all non-linear points, as described in Sec-
tion 2, and then applied Algorithm 1. The results are illus-
trated in Figs. 7 and 8. In the cases of Fig. 7, the numbers
of valid (measured) points are 207 459 for Fig. 7 (a), 51 739
for Fig. 7 (b), and 12 859 for Fig. 7 (c), respectively. Among
those valid points, we have 184 682 locally linear points for
Fig. 7 (a), 47 093 for Fig. 7 (b), and 11 346 for Fig. 7 (c), re-
spectively. Similarly, in the cases of Fig. 8, the numbers
of valid (measured) points are 195 768 for Fig. 8 (d), 48 797
for Fig 8 (b), and 12 139 for Fig. 8 (c), respectively. Among
those valid points, we have 176 697 locally linear points for
Fig. 8 (a), 44 266 for Fig. 8 (b), and 10 676 for Fig. 8 (c), re-
spectively. Tables 2 and 3 show the number of locally linear
points that are assigned to each segmented planar surface,
and their corresponding color in Figs. 7 and 8. It is seen
that 13, 12 and 13 planar surfaces are found in Figs. 7 (a),
(b), and (c), and 13, 10, and 13 planar surfaces are found
in Figs. 8 (a), (b), and (c), respectively.

Figs. 7 and 8 show that non-linear points, colored in light
green, appear around edges of block faces, and sometimes
appear in faces because of small bumps in faces or noise
in the range images. As we set the minimum surface size
s, there are locally linear points that construct no planar
surface whose size is not less than s around the points,
colored in black in the figures. Note that we use 2D con-
nected component labeling in Algorithm 1, instead of 3D
connected component labeling, because locally linear points
are sparsely distributed in the 3D space, but not in the 2D
space.

Fig. 7 Planar surface segmentation results from range images of

blocks, which are taken from the same viewpoint, with different

resolutions: the image sizes are (a) 640× 480, (b) 320× 240, and

(c) 160 × 120. The minimum surface sizes s are set to be (a)

1000, (b) 500, and (c) 100, respectively.

There are physically 12 visible planar surfaces in Fig. 7
and 10 in Fig. 8; there are actually 11 planes in Fig. 7 be-
cause a table face is separated into two parts with a right
cube. Figs. 7 and 8 and Tables 2 and 3 show that all pla-
nar surfaces are segmented by our algorithm, which requires
neither complicated parameter setting nor parameter esti-
mation. We should mention that it may bring us rather
over-segmentation results when the resolution of an input
image is high. For example, the orange and cream points
in Fig. 7 (a) (respectively the pale blue and violet points in
Fig. 8 (a)) should be considered to be in the same region,
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even if they are separately segmented. We also see that our
method is less sensitive to image noise in lower image reso-
lutions; for example, in Fig. 7 (a), there are not many linear
points on the left cubic face colored in moss green, while
more olive and turquoise points are found in Figs. 7 (b) and
(c).

Fig. 8 Planar surface segmentation results from range images of

blocks, which are taken from a different viewpoint from that in

Fig. 7, with different resolutions: the image sizes are (a) 640×480,

(b) 320 × 240, and (c) 160 × 120. The minimum surface sizes s

are set to be (a) 1000, (b) 500, and (c) 100, respectively.

As we discussed in Section 2.5, we can use larger-size
LGPs for the planar surface segmentation. If we do so,
then we will have more normal cells on the discrete Gaus-
sian sphere[19]. This means that each normal cell becomes

Table 2 Point color and number of each segmented planar

surface in Figs. 7 (a), (b), and (c)

Planar surface color (a) (b) (c)

Blue 24649 6755 1770

Yellow 19865 6194 1578

Pink 17656 5540 1523

Pale blue 12724 4655 1191

Orange 12092 3097 699

Green 10246 2512 573

Brown 8974 2253 545

Turquoise 4734 1629 536

Olive 3787 1517 440

Purple 3567 985 248

Violet 3484 979 232

Moss green 1948 937 223

Cream 1734 101

Table 3 Point color and number of each segmented planar

surface in Figs. 8 (a), (b), and (c)

Planar surface color (a) (b) (c)

Blue 28053 6814 1850

Yellow 21931 6738 1583

Pink 15074 4315 1182

Pale blue 13414 4245 1161

Orange 9981 2994 787

Green 9153 2547 604

Brown 8905 2409 589

Turquoise 8525 2222 542

Olive 3689 1139 281

Purple 3470 943 218

Violet 1852 119

Moss green 1386 114

Cream 1145 112

relatively small so that we can see smaller differences be-
tween normal vectors for their distinction. However, we
may have a risk of obtaining over-segmentation results. Fur-
thermore, as mentioned before, there are other problems
such as obtaining less locally linear points because larger
LGPs are more sensitive to noise, and finding a good data
structure.

4 Estimation of discrete plane parame-
ters

4.1 Formulation

From each segmented planar-surface set SSSi, we estimate
its discrete-plane parameters. In this paper, we treat the
problem as a linear programming problem. The similar
method for the recognition of blurred discrete plane patches
can be found in [25].

In order to simplify our problem, we first consider the
case that ω = |γ|. From (1), we obtain a linear inequality
set such that, for all (x, y, z) ∈ SSSi,

0 � α′x + β′y + z + δ′ � ε (10)

where α′ = α
ω
, β′ = β

ω
, and δ′ = δ

ω
. Note that we derive

the constraints
−1 � α′ � 1
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−1 � β′ � 1

from these substitutes. We have another constraint

ε � 0.

If ε < 1, the above inequalities are the same as (1). A
solution set (α′, β′, δ′) is then obtained by minimizing ε un-
der the above constraints. In this framework, if we find a

minimum where ε < 1, SSSi is recognized as a discrete plane
patch exactly; otherwise, SSSi is recognized as a set of grid-
points between two parallel planes whose distance is wider
than the thickness of a discrete plane. Geometrically, our
method looks for two parallel planes such that the z-axial
distance between them becomes minimum.

For all the other cases such that ω = |β|, |α|, we simply
need to modify (10), so that the following inequalities are

Table 4 Parameter estimation results of each segmented planar surface in Figs. 7 (a), (b), and (c)

(a)

Planar surface color ε α β γ δ

Blue 7.63025 –0.490022 –0.0829111 1 1860.94

Yellow 8.57463 1 –0.450926 –0.801559 –1354.71

Pink 6.06245 0.149226 0.410093 1 1843.06

Pale blue 3.98103 0.0159472 1 –0.565851 –1316.86

Orange 8.3099 1 0.408854 0.9880208 –508.393

Green 2.33824 –0.00719424 1 –0.561265 –1310.44

Brown 2.81801 0.0333703 1 –0.387603 –622.829

Turquoise 4.49286 1 0.357483 0.70034 1114.11

Olive 2.17708 1 –0.10359 0.224703 369.444

Purple 3.31523 1 –0.086893 –0.182444 –477.839

Violet 7.37345 0.0296537 1 –0.496269 –927.824

Moss green 3.11816 1 –0.482456 –0.998452 –2065.32

Cream 2.79155 0.991549 0.388732 1 1860.43

(b)

Planar surface color ε α β γ δ

Blue 3.892 –0.492524 –0.086179 1 929.503

Yellow 5.03589 1 –0.4446571 –0.811005 –685.885

Pink 5.34254 1 0.401473 0.889503 829.663

Pale blue 3.32006 0.150978 0.412382 1 921.322

Orange 2.53489 0.0164474 1 –0.565789 –657.193

Green 1.30514 –0.00773908 1 –0.559978 –653.21

Brown 1.51124 0.0353933 1 –0.387453 –310.698

Turquoise 2.53411 1 0.352827 0.699805 557.324

Olive 1.79852 –0.992593 0.471111 1 1035.22

Purple 3.67901 0.0308642 1 –0.5 –462.827

Violet 1.30846 1 –0.0997783 0.228121 188.7

Moss green 1.84748 1 –0.0942873 –0.1797 –235.85

(c)

Planar surface color ε α β γ δ

Blue 2.17386 –0.491985 –0.0850801 1 465.34

Yellow 2.60494 1 –0.444444 –0.802469 –339.074

Pink 3.03361 1 0.403361 0.886555 414.945

Pale blue 1.9854 0.153285 0.416058 1 461.65

Orange 1.50204 0.00816327 1 –0.595918 –343.045

Green 0.763006 –0.0115607 1 –0.560694 –327.104

Brown 0.839786 0.307076 1 –0.387183 –154.698

Turquoise 1.22973 1 –0.486486 –0.986486 –510.216

Olive 1.39538 1 0.352798 0.701946 280.937

Purple 0.639312 1 –0.103905 0.224355 93.0285

Violet 1.65236 0.0729614 1 –0.592275 –273.73

Moss green 0.75812 1 –0.0811966 –0.184615 –119.833

Cream 1.05861 1 0.556777 0.798535 363.923
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obtained, respectively

0 � α′x + y + γ′z + δ′ � ε

0 � x + β′y + γ′z + δ′ � ε

where γ′ = γ
ω

. From this substitute, we also derive

−1 � γ′ � 1.

Practically, we simultaneously use the above 3 types of in-
equality sets to find a parameter set by minimizing ε.

4.2 Experimental results

We used a free linear programming solver, lp_solve[26],
for our experiments. Tables 4 and 5 show the estimation
results for segmented planar surfaces obtained in the pre-
vious section, as illustrated in Figs. 7 and 8. Note that we
set ω = 1, so that we have α = α′, β = β′, and γ = γ′.We
first see that the parameter values of α, β, and γ that are
obtained for the corresponding planar surfaces, segmented
from the range images with different resolutions, are very
similar. For example, the first (respectively second) planes
in Table 4, colored in blue (respectively yellow) in Fig. 7,

Table 5 Parameter estimation results of each segmented planar surface in Figs. 8 (a), (b), and (c)

(a)

Planar surface color ε α β γ δ

Blue 4.77218 0.00593316 1 –0.572602 –1324.12

Yellow 7.05204 0.508394 0.464186 1 1941.96

Pink 5.69396 –0.222336 0.398329 1 1880.98

Pale blue 6.50482 –0.986742 –0.221419 1 1825.7

Orange 3.56018 1 0.0444174 0.633088 1216.06

Green 3.77427 1 –0.211773 –0.319397 –441.095

Brown 3.36252 0.0244554 1mm1 -0.389848 –622.181

Turquoise 6.14341 0.630906 0.492496 1 1781.11

Olive 7.38064 0.0762753 1mm1 –0.487918 –896.895

Purple 2.71832 1 –0.225553 –0.466272 –979.645

Violet 2.72636 1 0.276569 –0.882008 –1577.06

Moss green 2.79741 1 0.0718447 0.083657 –67.6895

Cream 2.91297 0.115591 1mm1 –0.291331 –758.164

(b)

Planar surface color ε α β γ δ

Blue 2.52068 0.00593786 1 –0.573693 –662.817

Yellow 3.75621 0.503386 0.465011 1 971.786

Pink 4.43575 1 0.229012 –0.990006 –898.568

Pale blue 3.29534 –0.216321 0.409326 1 940.894

Orange 2.88372 0.613953 0.47907 1 893.614

Green 1.99154 1 0.0444047 0.62931 605.345

Brown 1.9594 1 –0.212029 –0.321437 –222.269

Turquoise 1.63415 0.0243902 1 –0.390244 –311.049

Olive 1.46143 1 –0.226508 –0.464236 –487.532

Purple 3.10073 0.0680581 1 –0.493648 –454.253

(c)

Planar surface color ε α β γ δ

Blue 2.45884 0.51417 0.460189 1 487.51

Yellow 2.20412 0.013526 1 –0.57055 –328.931

Pink 2.59351 1 0.228652 –0.997177 –451.424

Pale blue 1.99307 –0.228571 0.393939 1 471.536

Orange 1.82812 0.617188 0.476562 1 447.953

Green 1.18626 1 0.0463576 0.631623 304.741

Brown 0.935347 1 –0.21142 –0.316659 –108.528

Turquoise 0.938095 0.0238095 1 –0.390476 –155.233

Olive 0.746032 1 –0.222222 –0.460317 –241.714

Purple 1.2268 0.0515464 1 –0.474227 –217.897

Violet 1.04615 1 0.282051 –0.866667 –385.815

Moss green 0.545455 1 0.0606061 0.0909091 –12.8788

Cream 0.831683 0.108911 1 –0.316832 –201.564
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have similar values of α, β, and γ.
With regard to the parameter δ, the values in Tables 4 (a)

and 5 (a) (respectively Tables 4 (b) and 5 (b)) are almost
four times (respectively twice) as large as those in Tables 4
(c) and 5(c), respectively. The reason is that the grid space
of Figs. 7 (a) and 8 (a) (respectively Figs. 7 (b) and 8 (b)) is
four times (respectively twice) as large as that of Figs.7 (c)
and 8 (c), because of their image resolutions. Note that we
set the grid interval to be 1 for the parameter estimation.

From Tables 4 and 5, we also see that it is rare that ε
becomes less than 1, especially when the image resolution is
high. In other words, our segmented planar surfaces can be
exactly discrete planes, when the resolution becomes lower.
Tables 4 and 5 show that the higher the image resolution is,
the larger the value ε is. Since each segmented planar sur-
face contains many grid points when the image resolution is
high, as seen in Tables 2 and 3, it can generate a thicker dis-
crete plane. Fig. 9 illustrates the estimated discrete plane
with a minimum thickness, namely, the two parallel planes
with a minimum distance, for each segmented point set in
Fig. 7. We see that there is no isolated point in any seg-
mented point set, due to the non-linear point rejection and
the connected component labeling in Algorithm 1. There-
fore, the thickness may be related to the surface curvedness
of a segmented point set, as well as the shape and the size. It
might be interesting to study how we can reduce the thick-
ness ε by changing the image resolution, with the aim of
inventing a multiscale method for range image registration
by using planar surfaces.

5 Conclusions

In this paper, we present a discrete version of the hybrid
method for planar surface segmentation from a 3D grid-
point set. Our method simply requires two types of look-
up tables, i.e., the binary LGP table (linear or non-linear)
and the normal cell list with respect to each linear LGP, and
does not require any parameter setting/estimation. The ex-
perimental results in Figs. 7 and 8 show that our method is
useful for planar surface segmentation from a point cloud.
This comes from the fact that our method takes into ac-
count not only quantization errors but also noise. In our
method, we reject all non-linear points, which are consid-
ered as noise, in the edge-based step, before going into the
region-based segmentation step.

We also present a method for estimating discrete-plane
parameters, which is also based on discrete geometry. The-
oretically, exact discrete planes are obtained if input is an
ideal image, i.e., if it involves only quantization errors.
However, our estimation results in Tables 4 and 5 show
that exact discrete planes are rarely obtained for practical
images. It means that our non-linear point rejection is not
enough to remove all noise so that segmented images may
still contain noise. Therefore, we need to eliminate such
noise, for example, by reducing image resolutions, before
applying our method.

As our method is fully discrete and such discreteness may
help us build up a multiscale approach, we will reorient our
future work to inventing a multiscale method for range im-
age registration by using discrete planes, for example. We
expect that our approach will provide a rough registration

result with less computation.

(a)

(b)

(c)

Fig. 9 Two estimated parallel planes with a minimum
thickness for each segmented point set in Fig. 7
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