
Computing Admissible Rotation Angles from
Rotated Digital Images

Yohan Thibault1,2, Yukiko Kenmochi1, Akihiro Sugimoto1,2

1 Université Paris Est, A2SI-ESIEE, France
2 National Institute of Informatics, Japan

thibauly@esiee.fr, y.kenmochi@esiee.fr, sugimoto@nii.ac.jp

Abstract. Rotations in the discrete plane are important for many ap-
plications such as image matching or construction of mosaic images. In
this paper, we propose a method for estimating a rotation angle such
that the rotation transforms a digital image A into another digital image
B. In the discrete plane, there are many angles that can give the rotation
from A to B, called admissible angles for the rotation from A to B. For
such a set of admissible angles, there exist two angles α1, α2 that are its
upper and lower bounds. To find those upper and lower bounds, we use
hinge angles as used in Nouvel and Rémila [5]. Hinge angles are partic-
ular angles determined by a digital image, such that any angle between
two consecutive hinge angles gives the identical digital image after the
rotation with the angle. Our proposed method obtains the upper and
lower bounds of hinge angles from a given Euclidean angle and from a
pair of digital images.

1 Introduction

Rotations in the discrete plane are required in many applications for image
computation such as image matching or construction of mosaic images [4]. For
the moment, the method to estimate the rotation angle is to approximate the
rotation matrix by minimizing errors [4]. In the continuous plane, the Euclidean
rotation is well defined and possesses the property of bijectivity. This implies
that for two angles γ1, γ2 and a set of points A, if the Euclidean rotation of
angle γ1 applied to A gives the same result as the Euclidean rotation of angle
γ2 applied to A, then we have γ1 = γ2.

In the discrete plane, however, the property of bijectvity does not hold. To
understand this reason, we have to first define the discretized Euclidean rota-
tion, abbreviated to DER hereafter. DER is the discretization of the Euclidean
rotation, namely, the application of the rounding function after applying the
rotation matrix to a set of points. Thus two points in the Euclidean plane may
give the same point in the discrete plane after the discretization. Because of
this reason, two angles γ1, γ2 give the same result for a set of points A even if
γ1 �= γ2. In other words, we can define the admissible rotation angles S such
that any angle in S gives the same rotation result for a set of points A. Note
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that S depends on A. Another way to define the admissible rotation angles is for
two corresponding sets of points A and B, where B is the rotation of A by an
unknown angle, to find the set S of angles which transforms A into B. The two
most interesting angles in S are the upper and the lower bounds because with
only these two angles we can deduce the other angles in S. Therefore, the aim
of this paper is to find these two angles from a given rotation angle or from two
given corresponding sets of grid points. Because we identify the exact bounds,
we have to avoid computation with real numbers. Thus, in this paper, we only
work with discrete geometry tools which guarantee to avoid computation errors.
Moreover, because we assume that our data are discretized from continuous im-
ages of an object, the discrete rotation between two different sets of points has
to give the same result as DER.

Some work on discrete rotations already exists. The first discrete rotation is
the CORDIC algorithm [6]. Estimation of the rotation angle is done by addition
or subtraction using pre-computed values to achieve the needed precision. It
gives almost the same result as DER but an approximation of the angle. Andres
described in [1],[2] some discrete rotations such as the rotation by discrete circles,
the rotation by Pythagorean lines or the quasi-shear rotation. Computation done
during these rotations are exact, but they are bijective. Thus they cannot give
the same results as DER.

On the other hand, Nouvel and Rémila proposed in [5] another discrete rota-
tion based on hinge angles which gives the same results as DER. It is known that
hinge angles are particular angles determined by a digital image, such that any
angle between two consecutive hinge angles gives the identical rotated digital
image. This means that hinge angles correspond to the discontinuity of DER.
Nouvel and Rémila showed that each hinge angle is represented by an integer
triplet, so that any discrete rotation of a digital image is realized only with inte-
ger calculation. Because their algorithm gives the same results as DER, we see
that hinge angles represented by integer triplets give sufficient information for
executing any digital image rotation.

In this paper, we propose a discrete method for finding the lower and upper
bounds of admissible rotation angles. Our method uses hinge angles, because we
can obtain the same result as DER and they allow exact computations. The input
data of our method is two sets of points A and B, where point correspondences
across the two sets are known. The output of the algorithm is two hinge angles
that give the lower and upper bounds of the admissible rotation angles for A
and B.

In the following of this paper, we first introduce the notion of hinge angles
and their properties. Then, we show how to obtain such a hinge angle from a
given angle so that we can efficiently obtain a rotated digital image from the
integer triplet. We then present a method for obtaining from a pair of digital
images, two hinge angles which constitute the upper and lower bounds of the
admissible rotation angles from the pair of digital images.
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2 Hinge Angles

Let us consider points of �2 as centers of pixels and rotate them such that the
rotation center has integer coordinates. Hinge angles are particular angles which
make some points of �2 rotated to points on the frontier between adjacent pixels.
In this section, we give the definition of hinge angles and their properties related
to Pythagorean angles.

2.1 Definition of Hinge Angles

Let x be a point in �2 such that x = (x, y). We say that x has a semi-integer
coordinate if x − 1

2 ∈ � or y − 1
2 ∈ �. The set of points each of which has

a semi-integer coordinate is denoted by H , and is called the half grid. Thus,
H represents the set of points on the frontiers of all pixels whose centroids are
points in �2.

Definition 1. An angle α is called a hinge angle if at least one grid point in �2

exists such that its image by the Euclidean rotation with α belongs to H .

Because H can be seen as the discontinuity of the rounding functions, hinge
angles can be regarded as the discontinuity of the discretized Euclidean rotation.
More simply, hinge angles determine a transit of a grid point from a pixel to its
adjacent pixel during the rotation.

The following proposition is important because it shows that we can represent
every hinge angle with three integers.

Proposition 1. An angle α is a hinge angle if there is an integer triple (P, Q, K)
such that

2Q cosα + 2P sin α = 2K + 1. (1)

The proof is given in [5].
Geometrically, a hinge angle α is formed by two rays that go through (P, Q)

and a half-grid point such as (K + 1
2 , λ) respectively sharing the origin as their

endpoints as shown in Figure 1 (left). From this proposition, all calculations
related to hinge angles can be done only with integers. Hereafter, α indicates a
hinge angle.

We denote by α(P, Q, K) the hinge angle generated by an integer triple

(P, Q, K). Setting λ =
√

P 2 + Q2 − (K + 1
2 )2, the following equations can be

easily derived from (1) and Figure 1 (left).

cosα =
Pλ + Q(K + 1

2 )
P 2 + Q2

, sin α =
P (K + 1

2 ) − Qλ

P 2 + Q2
. (2)

Note that we can have a half grid point (λ, K + 1
2 ) instead of (K + 1

2 , λ). In such
a case, the above equations become

cosα =
Qλ + P (K + 1

2 )
P 2 + Q2

, sin α =
Pλ − Q(K + 1

2 )
P 2 + Q2

. (3)
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Fig. 1. A hinge angle α(P, Q,K) (left) and four symmetrical hinge angles (right)

The symmetries on hinge angles are important, because it allows us to restrict
rotations in the first quadrant of the circle such that α ∈ [0, π

2 ].

Corollary 1. Each triple (P, Q, K) corresponds to four symmetrical hinge an-
gles such as α + πk

2 where k = 0, 1, 2, 3.

Figure 1(right) gives an example of Corollary 1. In order to distinguish the case
(K + 1

2 , λ) from the case (λ, K + 1
2 ), we change the sign of K; we use α(P, Q, K)

for the case of (K + 1
2 , λ), and α(P, Q,−K) for the case of (λ, K + 1

2 ). Note that
the symmetries allow us to restrict α to the range [0, π

2 ]. Thus we know that K
is always positive.

2.2 Properties Related to Pythagorean Angle

Because hinge angles are strongly related to Pythagorean angles, properties of
Pythagorean angles are needed to prove some properties of hinge angles. Thus,
we first give the definition of Pythagorean angles and their properties.

Definition 2. An angle θ is called Pythagorean if both its cosine and sine belong
to the set of rational numbers �.

We can deduce from Definition 2 that each Pythagorean angle θ is defined by
an integer triplet (a, b, c) such that

cos θ =
a

c
, sin θ =

b

c
. (4)

In the following, θ indicates a Pythagorean angle. The following lemma is needed
for the proof of the next proposition.

Lemma 1. Let (a, b, c) be an integer triplet generating a Pythagorean angle with
| a |<| b |<| c |. If gcd(a, b, c) = 1, then c is odd.
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Proof. We assume that c is even such that c = 2d where d in �. Then we
obtain a and b are both odd because of a2 + b2 = c2 = (2d)2. Otherwise, we
would have gcd(a, b, c) = 2n for n ∈ �. Setting a = 2e + 1 and b = 2f + 1
where e, f ∈ �, we obtain (2e + 1)2 + (2f + 1)2 = 4d2, which can be rewritten
by e2 + e + f2 + f + 1

2 = d2. This indicates that d does not belong to Z. We
therefore conclude that c is odd.

If gcd(a, b, c) = i, then gcd(a
i , b

i ,
c
i ) = 1 and the triple of integers (a

i , b
i ,

c
i )

generates the same Pythagorean angle as (a, b, c).

Proposition 2. Let Eh be the set of hinge angles and Ep be the set of
Pythagorean angles. Then we have Eh

⋂
Ep = ∅.

Proof. Assume that there exists an angle α such that α ∈ Eh and α ∈ Ep.
Since α in Ep, we can find an integer triplet (a, b, c), generating α such that
gcd(a, b, c) = 1. By substitution of (4) in (2), we obtain

2
Qa + Pb

c
= 2K + 1, (5)

from which we derive 2Qa+Pb
c ∈ �. Because we know that c is odd according to

Lemma 1, we obtain Qa+Pb
c ∈ �. However, this contradicts the fact that for any

pair n, m in �, we never have 2n = 2m + 1. Therefore α cannot belong to both
Eh and Ep simultaneously.

This proposition shows that it is not possible to rotate from a point (i, j) in
�2 to a point (x, y) such as x = i + 1

2 , y = j + 1
2 , where (i, j) ∈ �2, if the angle

of the rotation is a hinge angle.

3 Computing the Lower Bound Hinge Angle from a
Pythagorean Angle

In this section, we propose a method for computing a lower bound hinge angle
α1 from a given angle for rotating a given digital image. Note that with minor
modifications, this method can also find the upper bound hinge angle α2, and
thus, by applying twice this method, we can obtain two hinge angles that enclose
the given angle. The set S of angles γ such that α1 ≤ γ ≤ α2 is called admissible
rotation angles, denoted by ARA. All rotations of the given digital image done
by an angle in S give the same result. Nouvel and Rémila presented a method
to compute all possible hinge angles for a grid point or a pixel in a digital image
[5]. Their method can be used for finding our interesting hinge angle which is the
lower bound of the admissible rotation angles. Its time complexity is O(n log(n))
where n is the number of all hinge angles for a given grid point. Note that n
depends on the coordinates of the grid point. In subsection 3.1, we improve their
method by using a tree structure for hinge angles, so that our method brings
the complexity O(log(n)). In subsection 3.2, we present a method for finding the
lower bound hinge angle for a given digital image, namely, for all pixels in the
image.
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3.1 Computing the Lower Bound Hinge Angle for a Grid Point

For each grid point p = (P, Q) in �2, there are less than n = �
√

P 2 + Q2 +
1
2� different hinge angles [5]. This means that we have a sequence of Ki, i =
0, 1, .., n − 1 in �, where 0 ≤ Ki < n for each p. Because we can compare
any pair of associated hinge angles αi(P, Q, Ki), we obtain a totally ordered set
{α1(P, Q, K1), α2(P, Q, K2), ..., αmax(P, Q, Kmax)} in the ascending order such
that α1 < α2 < ... < αmax. Given a Pythagorean angle θ, in order to find the
lower bound hinge angle αi such that αi < θ < αi+1, we use a tree structure.
Binary search allows us to find αi in O(log(n)), providing that we can compare
a hinge angle with a Pythagorean angle in a constant time. The algorithm is
described in Figure 2.

Function: Find a hinge angle
Input (Point p(P, Q), Pythagorean angle θ)
Output (α(P, Q, K))
var Kmax = �

√
P 2 + Q2 − 1�;

var Kmin = 0;
var K = �Kmax+Kmin

2
�;

While (Kmax − Kmin �= 1)
if (α(P, Q, K) > θ)

Kmax = K;
else

Kmin = K;
K = �Kmax+Kmin

2
�;

end while
return α(P, Q, K);

Fig. 2. Function for finding a hinge angle

The following proposition shows that the comparison between a hinge angle
and a Pythagorean angle is executed in a constant time.

Proposition 3. Let α be a hinge angle and θ be a Pythagorean angle. We can
check whether α > θ in a constant time with integer calculation.

Proof. Let α(P, Q, K) be a hinge angle in [0, π
2 ] and θ(a, b, c) be a Pythagorean

angle in [0, π
2 ]. From (2) and (4), we obtain

cosα − cos θ =
P (K + 1

2 ) + Qλ

P 2 + Q2
− a

c
.

If θ is greater than α, cosα − cos θ > 0. Thus

cP (2K + 1) − 2a(P 2 + Q2) > −2cQλ. (6)

Since we know that c, Q, λ are positive, the right-hand side of (6) is always
negative. Thus, if the left-hand side of (6) is not negative, then θ > α. Otherwise,
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we take squares of (6), so that we only have to check whether the following
inequality holds:

[
cP (2K + 1) − 2a(P 2 + Q2)

]2
< 4c2Q2λ2. (7)

Note that because λ =
√

P 2 + Q2 − (K + 1
2 )2, we see that 4λ2 in the right-hand

side of (7) contains only integer values. Therefore, we can also verify (7) with
integer calculation. If it is true, θ > α; otherwise α > θ. Note that because of
Proposition 2, it is impossible to obtain θ = α.

We mention the importance of the rotation with angle π
2 and its multiples. In

fact, if the angle of a rotation is equal to π
2 , π, 3π

2 , we just have to flip x and/or
y-coordinates by changing their signs. It gives the reason that we can restrict
the input angle θ to 0 < θ < π

2 .

3.2 Computing the Lower Bound Hinge Angle for a Set of Points

In this subsection, we present an algorithm, based on the previous one, for com-
puting the lower bound hinge angle from a given Pythagorean angle θ for a
digital image consisting of m grid points such that A = {p1, p2, ..., pm}. The
output is a triplet of integers that represents a hinge angle. The algorithm com-
putes all hinge angles for all points in A, and sorts them to keep the largest one.
More precisely, we first compute the lower bound hinge angle for the first point
of A, and store it as the reference. Then, we compute the hinge angle for the
second point in A and compare it with the reference to keep the larger one. Af-
ter repeating this procedure for all points in A, our algorithm returns the lower
bound hinge angle α such that α < θ. The time complexity of this algorithm is
O(m log(n)) because we call m times the function of binary search (Figure 2)
whose time complexity is O(log(n)). Figure 3 illustrates our algorithm. As shown
in the following proposition, the comparison between two hinge angles is realized
in a constant time, so that it does not change the global complexity.

Proposition 4. Let α1, α2 be two hinge angles. We can check if α1 > α2 in a
constant time and with full integer calculation.

The proof is similar to that of Proposition 3.
Note that our input is a Pythagorean angle, as the one in [5], in this paper.

However, we can replace it by an Euclidean angle because there exists a method
in linear time complexity O(m) to approximate a given Euclidean angle with a
Pythagorean angle with a precision of 1

10m [3].

4 Digital Image Rotation by a Hinge Angle

In this section, we present an algorithm for rotating a digital image with a
given lower bound hinge angle, which is obtained by the algorithm described in
Subsection 3.2. It is already proved in [5] that we can obtain the same result as
the DER with respect to the original angle. Note that our input is a hinge angle
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Function: Find hinge angle for a digital image
Input (Digital image A, Pythagorean angle θ)
Output (hinge angle)
var HA,HAtemps \* hinge angle *\;
HA = Find hinge angle(first point of A, angle

of rotation);
for each p ∈ A\{p1}

HAtemps = Find hinge angle(p, θ);
if (HA < HAtemps) HA = HAtemps;

end for
Return (HA);

Fig. 3. Function for finding the lower bound hinge angle for a digital image

Function: Discrete rotation
Input (a digital image A, a hinge angle α)
Output (Rotated image A′)
var HA : hinge angle;
for each p ∈ A

HA = Find hinge angle(p, α);
move p to (K, �λ + 1

2
, �) or (�λ + 1

2
�, K),

depending on the sign of K and put it to A′ ;
end for
Return (A′);

Fig. 4. Discrete rotation algorithm by a hinge angle

and the input of the algorithm presented in Figure 2 is a Pythagorean angle. In
spite of this difference, we can apply the same algorithm thanks to Proposition
4. The algorithm is presented in Figure 4. It supposes that the center of rotation
is the origin. For each point, it calls the function of binary search (Figure 2)
to find the corresponding hinge angle, which designates its new position. If we
consider n as the biggest coordinate of all points in A, we can assume that there
are less than 4n2 points in A. Thus we can conclude that the complexity of our
algorithm is O(n2 log(n)). The first advantage of our method is that it does not
require any float number calculation. The second advantage is that the exact
rotation of the digital image is obtained with only an integer triplet. We need
neither matrices nor angles for realizing the rotation.

5 Obtaining Admissible Rotation Angles from Two
Digital Images

Let us assume that a set of grid points in the first image and its corresponding
set in the second image are given: A = {p1, p2, ..., pl} and B = {q1, q2, ..., ql} are
given where pi corresponds to qi. Given A and B, we obtain a hinge angle pair
α1, α2, such that α1 ≤ γ < α2 where γ is an admissible rotation angle consistent



Computing Admissible Rotation Angles from Rotated Digital Images 107

with the point correspondences between A and B. Hereafter, we assume that A
is the original point set and B is the rotated point set by angle γ. In this section,
we show how to obtain the ARA from these two digital images.

To simplify the notation, we denote by ARA(pi, qi) = (αi1, αi2) the pair
of angles, which gives the lower and the upper bounds of possible angles of
the rotation for the pair of points (pi, qi). Note that the angles αi1, αi2 are
hinge angles. ARA(An+1, Bn+1) denotes the two most restrictive angles for
all point i such as i ≤ n + 1. We formally define it by ARA(An+1, Bn+1) =
ARA(An, Bn)

⋂
ARA(pn+1, qn+1).

5.1 Setting Rotation Centers

For any rotation, we need to set a rotation center. In this paper, we choose one
of the grid points in a digital image for the rotation center. Assuming centers
are p1 and q1 for A and B respectively, we define two functions TA and TB such
that

TA(pi) = pi − p1,

TB(qi) = qi − q1,

for all pi ∈ A, qi ∈ B, so that we can consider the rotation centers to be the
origin after the translations. Hereafter, we will use new sets of points A′ =
{TA(p1), TA(p2), ..., TA(pl)} and B′ = {TB(q1), TB(q2), ..., TB(ql)} instead of
A and B. However, for simplicity, we will denote them by A = {p1, p2, ..., pl}
and B = {q1, q2, ..., ql}.

5.2 Computing Hinge Angles from Two Corresponding Point Pairs

In this subsection, we consider the case with A = {p1, p2} and B = {q1, q2}
where pi = (Pi, Qi) and qi = (Ri, Si). Let us first define a circle C (p2) with
center p1 that goes through p2. Thus the radius of C (p2) is r = d(p1, p2) where
d(p1, p2) is the Euclidean distance between p1 and p2. Let us consider the half
grid around q2 such that

H (q2) = {(x, y) ∈ H : S2 − 1
2
≤ y ≤ S2 +

1
2

when x = R2 + 1
2 ,

R2 − 1
2
≤ x ≤ R2 +

1
2

when y = S2 + 1
2}.

Setting p1 and q1 to be the rotation centers, for finding a hinge angle pair,
we need to detect intersections between C (p2) and H (q2). In other words, we
study corners of H (q2) in the interior of C (p2). Setting four corners of H (q2)
such that C1(q2) = (R2 − 1

2 , S2 − 1
2 ), C2(q2) = (R2 − 1

2 , S2 + 1
2 ), C3(q2) =

(R2 + 1
2 , S2 + 1

2 ), C4(q2) = (R2 + 1
2 , S2 − 1

2 ) as shown in Figure 5, we define a
binary function F such as

F (Ci(q2)) =

{
0 if Ci(q2) is outside of C (p2),
1 otherwise.
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Fig. 5. The half grid H (q), namely a pixel around q and its four corners

In order to obtain F (Ci(q2)) with integer calculation, we compare each of
4((R2 ± 1

2 )2 + (S2 ± 1
2 )2) with 4r2. Note that we may assume that the inter-

section between C (p2) and H (q2) is not null. If no intersection between C (p2)
and H (q2) exists, then p2 and q2 are not corresponding.

Proposition 5. If two points p2 and q2 are corresponding, a circle C (p2) and
a pixel boundary H (q2) always have two distinct intersections.

The mathematically rigorous proof is omitted in this paper because of the page
limitation. The proof is accomplished by distinguishing the following two cases;
in the other cases, we have always two intersections.

The first case is that C (p2) goes through one of the four corners of H (q2).
Because any angle between p2 and Ci(q2) at the origin is a Pythagorean angle
it cannot be a hinge angle from Proposition 2. Thus, this case never happens.

The second case is that C (p2) and H (q2) have the unique intersection on
one of edges of H (q2). This case may happen only when one coordinate of q2

is zero. A circle centered at the origin can cross twice a half grid parallel to one
of the axes if and only if the circle arc between those intersections cuts another
axis. Therefore, if the intersection is single, it should be on an axis, so that λ
should be null. However, it is impossible by the definition of hinge angles.

From Proposition 5, we always have two intersections between C (p2) and
H (q2), and see that there are four cases corresponding to different possibilities
to have 0,1,2 or 3 corners in the interior of C (p2), as illustrated in Figure 6.

– Case A: C (p2) includes no corner. Thus we have F (Ci(q2)) = 0 for all
i = 1, 2, 3, 4, similarly to the above second impossible case. This case can
only happen when R2 = 0 or S2 = 0. Supposing that R2 and S2 are not null,
we assume that they are positive. In the first quadrant, the y-coordinate
(respectively x-coordinate) of points in C (p2) is strictly decreasing with
respect to x (respectively y). Thus it cannot intersect twice a line parallel
to the x-axis (respectively y-axis). Therefore, if S2 = 0, ARA(p2, q2) =
(α21(P2, Q2, R2 − 1), α22(P2, Q2, R2 − 1)). In this case the two hinge angles
are symmetrical with respect to the y-axis.

– Case B: C (p2) includes only one corner. For example, if C1(q2) is in the
circle, we obtain ARA(p2, q2) = (α21(P2, Q2, R2 − 1), α22(P2, Q2,−S2 + 1)).

– Case C: C (p2) includes two corners that should have one common coor-
dinate. For example, if C1(q2) and C2(q2) are in the circle, we obtain
ARA(p2, q2) = (α21(P2, Q2,−S2 + 1), α22(P2, Q2,−S2)).
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Fig. 6. Illustration of cases A,B,C and D

– Case D: C (p2) includes three corners. For example, if C1(q2), C2(q2) and
C4(q2) are in C (q2), then we obtain ARA(p2, q2) = (α21(P2, Q2, R2), α22

(P2, Q2,−S2)).

The main function of our algorithm for finding the two hinge angles consist
of three steps. The first step sets the rotation center at p1 and q1, as described
in the previous subsection. The second step computes which corners are in the
interior of C (q2) and then stocks the result as an index. The index is calculated
by index =

∑
i 2i × F (Ci(q2)). Therefore we can easily identify which corners

are in the interior of C (p2) from the index. The third step calls a function that
returns hinge angles corresponding to the index. There exist fourteen possible
values for the index. Note that geometrically the index can be neither 5 nor
10. The index value 15 implies an error such that all corners are in the interior
of C (q2). Since the index value 0 corresponds to the case A, we should verify
whether H (q2) really intersects with C (q2). Note that for all other index values,
we can make a pair (d, e) such that d + e = 15. The two indices of such a pair
design the same pair of hinge angles. Each step of this algorithm has the constant
time complexity. Thus the global complexity of this algorithm is also O(1).

5.3 Incremental Hinge Angle Computing

In general, the corresponding point sets contain more than two points. Therefore,
in this section, we extend our algorithm in the previous section to two sets of
corresponding point pairs, A and B, each of which has l points where l > 2.
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Fig. 7. Running of the incremental algorithm

A new algorithm handles all points incrementally. This algorithm is divided
into two parts. The first part is to initialize the algorithm by computing ARA
(p2, q2). Note that ARA(p1, q1) cannot be computed because p1 and q1 are
the centers of the rotation. The second part computes ARA(Ai+1, Bi+1) for
i = 2, . . . , n−1. The time complexity of this algorithm is O(l). As explained in the
previous subsection, the function is realized in a constant time O(1). Moreover,
as explained in Section 3, we can compare two hinge angles in a constant time
O(1). Therefore, the full computation of this algorithm for l points takes the
time complexity of l × (O(1) + O(1)) = O(l).

5.4 Example of the Running of the Algorithm

Figure 7 gives an example of the incremental algorithm for two sets of three
points. Given input data of the algorithm as shown in Figure 7 (A), we first
obtain the result of the translation described in subsection 5.1 as illustrated in
(B). We then compare, for each pair of points (pi, qi) with i ≥ 2, the distance
of pi from the origin with the distance of each corner from H (qi) to deduce the
corresponding hinge angle as explained in subsection 5.2. Finally, we obtain (D)
which shows the intersection of all ARA(pi, qi) obtained in (C).



Computing Admissible Rotation Angles from Rotated Digital Images 111

6 Conclusion

In this paper, we have shown how to obtain a hinge angle which is the lower
bound approximation to a given Euclidean angle. We have also shown that we
can efficiently obtain a rotated digital image from the integer triplet identically to
that from the Pythagorean angle. We then have presented a method for obtaining
the upper and lower bounds of the ARA from a pair of digital images.

The future work will extend our proposed method into two directions. The
first direction is to extend this algorithm to the 3D case. The second direction
is to create a 2D matching algorithm based on hinge angles. Current methods
for matching can be improved by restricting the searching area. The admissible
rotation angles obtained by our method will be useful for the restriction of the
searching area.
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