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Abstract

We propose a method for enhancing the stability of track-
ing people by incorporating long-term observations of hu-
man actions in a scene. Basic human actions, such as walk-
ing or standing still, are frequently observed at particular
locations in an observation scene. By observing human ac-
tions for a long period of time, we can identify regions that
are more likely to be occupied by a person. These regions
have a high probability of a person existing compared with
others. The key idea of our approach is to incorporate this
probability as a bias in generating samples under the frame-
work of a particle filter for tracking people. We call this bias
the environmental existence map (EEM). The EEM is itera-
tively updated at every frame by using the tracking results
from our tracker, which leads to more stable tracking of peo-
ple. Our experimental results demonstrate the effectiveness
of our method.

1. Introduction

The rapid increase of computing power and the reduc-
tion in cost of producing digital cameras have increased
the number of potential applications of computer vision. In
particular, vision-based tracking has become a key element
for automated visual surveillance. However, real-life appli-
cation, such as video surveillance, also require very accu-
rate and stable tracking algorithms. In order to establish a
more accurate and stable tracking algorithm, we must ad-
dress several challenging issues such as: low image qual-
ity, changes in the appearance of targets, changes in image-
intensity under varying illumination conditions, cluttered
backgrounds and occlusion.

In recent years, a particle filter [3] has become a standard
algorithm for vision-based tracking. A particle filter is a
Bayesian sequential importance sampling technique, which
recursively approximates the posterior probability distribu-
tion using a finite set of weighted samples. Recently, a num-

ber of methods to improve the robustness of a particle filter
have been reported. Most of approaches attempt to prevent
tracking failures by using various image features obtained
from the observed images [5, 6, 9, 12].

However, in a real world situation it is inevitable that the
tracking will fail. For example, when a person being track-
ing is completely occluded and then reappears in a different
location, the tracker will usually lose the target and will not
be able to restart tracking quickly. Thus we observe that it is
important to devise a method for immediately re-initializing
the tracker when targets are lost.

In order to address the issue of lost targets, other
approaches that combine a particle filter with a re-
initialization scheme have also been proposed [1, 4, 7, 11].
These methods use other image cues, different from those
used in generating samples for tracking, to adjust or re-
initialize tracking. In the case of 3D tracking, however, ac-
curately reconstructing 3D position of the target is difficult
because the image cues are not always properly obtained
from all the images for various reasons such as occlusions.
Therefore, it is necessary to introduce other types of infor-
mation besides those based on observed images.

A method using non-image-based cues was proposed
by [9] that incorporates the environmental restrictions of
the observation space into the framework of a particle filter.
The environmental restrictions are manually defined as the
probability of a person existing in a region derived from the
physical constraints of the observation space. This method
generates new samples in regions that are not rejected by the
environmental restrictions. However, this method cannot be
used when physical constraints of the observation space are
not known in advance. Furthermore, the probability of a
person existing at a particular location cannot be fully rep-
resented from physical constraints alone. Even though the
3D characteristics of a certain location may allow for a hu-
man to occupy that space, it does not always indicate that
a person will be found there with a high probability. For
example, when two walkways exist in a room, it is possible
that one walkway is used more frequently.



We reason that using the history of human movement
through a scene is a better indicator of the probability of a
person existing in certain locations, in comparison to using
only 3D shape cues of an observation space. By using the
history of human movement in a scene, we can acquire a
more realistic probability map of a person existing at a cer-
tain location, which can also be used as a powerful cue to
address the problem of re-initialization in 3D tracking.

In our work, we incorporate this probability map as the
importance function into our particle filter-based 3D track-
ing. We call the probability of a person existing at different
locations in the observation space as the environmental ex-
istence map (EEM). Our system simultaneously tracks peo-
ple while dynamically updating the EEM via the online EM
algorithm [8] using the online results of the tracker. In ad-
dition, we introduce a human action state transition model
for adaptively controlling the updating of the EEM. Our
proposed method is able to adapt to any environment and
quickly re-initalize tracking when a target is lost.

2. Tracking people with the EEM
The system configuration is shown in Figure 2.1. The

system consists of two interacting units: (i) a 3D tracker
using the framework of a particle filter and (ii) a dynamic
EEM updater which uses the history of basic human actions.
In this section, we describe our tracking framework.

2.1. Tracking using a particle filter

Here we briefly review the basics of particle filter-based
tracking. Suppose that a state of a target at time t is denoted
by the vector Xt, and the observation sequence up to time t
is Zt = {z1, ..., zt}. A particle filter is a time-series filter
for tracking the target by recursively estimating the proba-
bility distribution p(Xt|Zt) of the target. It approximates
p(Xt|Zt) using a set of samples {s(1)

t , ..., s(N)
t }. Each

sample s(n)
t represents a hypothesis of the target and has a

weight π
(n)
t representing the value of p(Xt|Zt) at s(n)

t . A
particle filter iterate the following steps:
(i) Sampling: Select samples {s′(1)t−1, ..., s

′(N)
t−1} in propor-

tion to weights {π(1)
t−1, ..., π

(N)
t−1} corresponding to samples

{s(1)
t−1, ..., s

(N)
t−1}.

(ii) Propagation: Propagate {s′(1)t−1, ..., s
′(N)
t−1} according

to the state transition probability p(Xt|Xt−1) and con-
struct a prior p(Xt|Zt−1). Then, generate new samples
{s(1)

t , ..., s(N)
t } from p(Xt|Zt−1).

(iii) Weight Evaluation: Calculate the weights
{π(1)

t , ..., π
(N)
t } corresponding to {s(1)

t , ..., s(N)
t } us-

ing the observation model p(Zt|Xt) obtained from the
observed images.

Our tracker tracks multiple human heads using multiple
cameras in the world coordinate system O−XY Z in which
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Figure 2.1: System configuration

the XY plane is assigned to the floor surface and the Z axis
to the height. The human head is modeled by an ellipsoid
whose center position is (x, y, z). The n-th hypothesis s(n)

t

at time t in the particle filter is represented by 3-D vector
state, s(n)

t = [x(n)
t , y

(n)
t , z

(n)
t ]T .

2.2. Incorporating the EEM as the importance func-
tion

The EEM is incorporated as the importance function into
the framework of a particle filter. When sampling hypothe-
ses, the prior p(Xt| Zt−1) and the EEM gt(Xt) are used
as sampling sources at the time t. Under the framework
of the ICONDENSATION [4], we consider the following
three sampling methods. These sampling methods are cho-
sen with a fixed ratio.
(a) Standard Tracking: standard sampling used in a parti-
cle filter. Hypotheses are sampled from the prior.
(b) Tracking Initialization: importance sampling for ini-
tializing tracking. Hypotheses are sampled from the EEM.
(c) Tracking Adjustment: importance sampling for adjust-
ing tracking. Hypotheses are sampled from the EEM. In the
weight evaluation step, the weight will be defined by using
the EEM.

2.3. Evaluation of hypothesis

Each hypothesis is evaluated using a combination of
multiple cues that come from foreground images and edge
images. For hypothesis s(n)

t , we compute π
(n)
i,t using the ob-

served image acquired by the i-th camera and then take the
product of weights π

(n)
i,t to obtain the weight π

(n)
t for s(n)

t .

For the hypothesis s(n)
t sampled from the EEM gt(Xt) for

the tracking adjustment (case (c)), the weight π(n)
t is defined



by

π
(n)
t =

p(Xt = s(n)
t |Zt−1)

gt(st)

∏

i

π
(n)
i,t . (2.1)

The 3D human head position shead
t is then estimated as the

expectation of the posterior p(Xt|Zt).

3. Updating the EEM
The EEM is modeled as the mixture of Gaussians,

gt(Xt) =
K∑

i=1

ωi,tN (Xt|µi,t, Σi,t) , (3.1)

where N (·) denotes the normal distribution, K denotes the
number of Gaussians and ωi,t, µi,t, Σi,t denotes the weight,
mean and variance of the i-th normal distribution at time t,
respectively. The mixture of Gaussians can represent a com-
plex distribution and can easily generate random samples.

3.1. Dynamically updating the EEM

The EEM is iteratively updated at every frame by using
human head position shead

t estimated by our tracker using
the online EM algorithm [8].

The EM algorithm is used to find the maximum likeli-
hood estimates of the parameters of a probabilistic model,
defined by a set of unobserved variables [2]. The EM algo-
rithm iterates the expectation (E) step and the maximization
(M) step. The former step computes the expectation of the
likelihood (including the latent variables) and the latter step
maximizes the expectation of the likelihood calculated in
the former step to find the maximum likelihood estimates
of the parameters. However, enormous computation is re-
quired as the number of observed data increases. The online
EM algorithm has been proposed to overcome the computa-
tional requirements of batch processing, by computing the
parameters of the model online [8]. The method uses the
currently observed data x(t) and the estimated parameter
θ(t−1) for fast parameter estimation.

By using the online EM algorithm, the parameters of
the mixture of Gaussians representing the EEM are updated
with

ωi,t = 〈〈1〉〉i(t) , µi,t =
〈〈shead

t 〉〉i(t)
〈〈1〉〉i(t) ,

Σi,t =
〈〈shead

t

(
shead
t

)T 〉〉i(t)
〈〈1〉〉i(t) − µi,t

(
µi,t

)T
. (3.2)

We note that 〈〈 · 〉〉 is defined as

〈〈 f(x) 〉〉i(t) = (1 − α)〈〈 f(x) 〉〉i(t − 1)
+ αf(x)p(i | x(t), θ(t−1)) , (3.3)

where α denotes a learning weight and p(i | x(t), θ(t−1))
denotes a posterior that the i-th normal distribution is se-
lected. The online EM algorithm dynamically changes the
contribution of the current observation by a weight α. This
allows us to adaptively update the EEM based on the current
state of the target.

3.2. Learning the EEM using the human action state
transition model

To learn an EEM that is representative of all the different
actions that occur in a scene, we have to consider both the
temporal duration of an action as well as the importance of
that action. For example, the action of a person entering a
room is short in duration but a very important action when
calculating the probability of a person existing in the ob-
servation space. Therefore, we have to devise a scheme to
adaptively adjust the weight α according to the importance
of the action that is currently taking place. We introduce a
human action state transition model as shown Figure 3.1 to
control α to ensure that we learn a representative EEM.

We describe details of the human action states and con-
ditions on their transitions. The states of human actions that
we consider in this paper are, Out-of-View, Appear, Active
and Standing-Still. We assume that a person is always in
one of these states and that the action state changes during
tracking.

Out-of-View
Out-of-View is the state in which a person is not observed
by the camera(s). Thus the learning weight in this state is set
zero. In order to distinguish Out-of-View state from other
states (determine whether people are in the field of view
or not), we use the magnitude of the changes of likelihood
in a particle filter as follows. If

∑N
i=1 π

(i)
t < Texist, we

consider that a person is not in the view (c.1), whereas if∑N
i=1 π

(i)
t ≥ Texist, a person is considered to be present

(c.2) (where N denotes the number of the hypotheses, π(n)
t

represents the weight of n-th hypothesis in a particle filter
and Texist is the threshold). By using these conditions, the
transition conditions are as follows. If the condition ”c.1” is
satisfied, remain in the Out-of-View state. If the condition
”c.2” is satisfied, transit to the Appear state.

Appear
Appear is the state in which a person enters into the field of
view of the camera(s). The learning weight in this state is
set to α = kαact, where k > 1 is an arbitrary constant and
αact is the learning weight in the Active state. The learning
weight is set to a relatively high value because the regions
where entering is observed are important for tracking ini-
tialization. The transition conditions are as follows. If the
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Figure 3.1: Human action state transition model: The state
transition occurs when these conditions are satisfied.

condition ”c.1” is satisfied, transit to the Out-of-View state.
If the condition ”c.2” is satisfied, transit to the Active state.

Active
Active is the state in which a person is moving within the
field of view of the camera(s). We set the learning weight in
this state as α = αact, which represents a baseline weight
for updating. In order to distinguish the Active state from
the Standing-Still state, we introduce the following two
conditions: (1) The human traveling speed vt is less than
Tvel [cm/frame] (c.3) and (2) condition ”c.3” has been sat-
isfied for more than Ttime [frame] (c.4). By using these
conditions, the transition conditions are as follows. If the
condition ”c.1” is satisfied, transit to the Out-of-View state.
If the condition ”c.2” is satisfied, remain in the Active state.
If the both conditions ”c.2” and ”c.4” are satisfied, transit
to the Standing-Still state.

Standing-Still
Standing-Still is the state in which a person is standing
still at a certain location. The learning weight is set to re-
duce the value in proportion to the staying time tstay , i.e.,
α = αact/tstay . This weight is set to prevent the probabil-
ity of the EEM from concentrating in a particular location,
thus making the initialization unit ineffective. The transi-
tion conditions are as follows. If only the condition ”c.2”
is satisfied, transit to the Active state. If the both conditions
”c.2” and ”c.3” are satisfied, remain in the Standing-Still
state.

4. Experimental results
In order to test the effectiveness of the EEM for initial-

ization, we performed one preliminary experiment to ver-
ify the construction of a reliable EEM and a second exper-
iment to measure the improvement in inialization speed us-
ing the EEM. In both experiements we used two overhead

cameras with overlapping fields of view. Image sequences
were captured in VGA at 30 frames per second. Our sys-
tem was composed of one server PC (Pentium4 3.2GHz,
RAM 1GByte) for unified data processing and two client
PCs (Pentium4 2.8GHz, RAM 2GByte) for each camera.
These PCs were connected via Gigabit Ethernet at 1Gbps.
We used the framework of a mixture particle filter [10] for
tracking multiple human heads and the number of samples
was 150 for each head. We empirically set the number of
Gaussians of the EEM to K = 7 and the parameters of the
human action state transition to αact = 0.0005, k = 2,
Texist = 2.5, Tvel = 0.1[cm/frame] and Ttime = 200
[frame], respectively.

Figure 4.1: Layout of the observation space: Each pair of
the numbers (x, y) in this figure means the coordinate value
on the each point.

4.1. Constructing the EEM

We performed an experiment to construct the EEM by
observing human actions within the scene (illustrated in
Figure 4.1) for about 30 minutes. In this experiment, the
two actions, walking through a particular walkway (Figure
4.2-(a)) and standing still while chatting around the table
(Figure 4.2-(b)) were frequenty observed.

The result of the constructed EEM is shown in Figure
4.3. In Figure 4.3, we can see a peak over the region (650 <
X < 750, 0 < Y < 100). The peak was caused by two
people chatting around the table in the back of the room
for a couple of minutes in the observed image sequence.
We can also see another smooth peak along the walkway
(650 < X < 750, 0 < Y < 450) in the same figure. This
region corresponds to the walkway where people frequently
walked. In contrast, the value of the EEM is almost 0 in the
region (500 < X < 650, 50 < Y < 400). From the
layout of the observation space (Figure 4.1), we can easily
see that this is due to the desk located in that region. This
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Figure 4.2: Frequently observed actions: (a) shows that
people frequently walked through the particular walkway
and (b) shows that two people were chatting around the ta-
ble
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b
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Figure 4.3: Result of the constructed EEM

represents the environmental restrictions in the observation
space. From the characteristics of this experiment, we can
observe that the constructed EEM properly represents the
probability of a person existing in the scene.

4.2. Effectiveness of the EEM for initialization

4.2.1 Performance of initialization speed

We verified the performance of the initialization speed of
our tracker with the EEM. More specifically, we calcu-
lated the difference between the frame when a person (re-
)appears, fgt, and the frame when our tracker (re-)starts
tracking the person, finit, in various cases (e.g. a person
enters into the field of view, a person reappears from be-
hind the board, etc.). The tracking (re-)initialization rapidly
works when the difference, fdiff ≡ |fgt − finit|, becomes
close to 0. An example of this experiment is shown in Fig-
ure 4.4. In order to observe the initialization speed improve-
ments of our method using the learned EEM, we compared

frame 1038 frame 1054

Figure 4.4: Example of the verification experiment of the
performance of initialization speed: In the frame 1038 (left
image), a new person appears but isn’t tracked yet. In
the frame 1054 (right image), tracking initialization is per-
formed and tracking starts. We set the frame 1038 fgt, and
the frame 1058 finit, then calculate fdiff = |fgt − ftrack|.

Table 4.1: Comparison results of the speed of initialization:
The mean and the standard deviation are of fdiff .

Mean [frame] SD [frame]
Learned EEM 30.50 39.10

Uniformly dist. EEM 87.90 72.70

our method with the same tracker using an uniformly dis-
tributed EEM.

Table 4.1 shows the comparison results of the speed of
the initialization. The mean indicates the average of time
required for the (re-)initialization and the SD (standard de-
viation) indicates the range of the required time. Comparing
the mean of the learned EEM to the uniformly distributed
EEM, we can see that the learned EEM allows the tracker
to (re-)initialize tracking in one third of the time required for
the uniformly distributed EEM. The comparison results of
the standard deviation shows that the range of the required
time for (re-)initialization using the learned EEM is about
half of using the uniformly distributed EEM. The improve-
ment in the standard devation using the learned EEM is
slightly smaller compared to the improvement in the mean.
This is due to the difference of the (re-)initialization speed
in each region. In fact, in the regions where the proba-
bility of a person existing has a high value (650 < X <
750, 0 < Y < 450), the (re-)initialization rapidly performs.
In contrast, in the other regions where the probability has a
much lower value (400 < X < 500, 50 < Y < 400),
the (re-)initialization requires a longer time. These results
show that the learned EEM can more stably and rapidly (re-
)initialize tracking compared to the uniformly distributed
EEM.



Table 4.2: Comparison results of tracking errors

Average error [cm] Standard deviation [cm]
Learned EEM Uniformly dist. EEM Learned EEM Uniformly dist. EEM

Person A XY plane 9.5617 - 4.9673 -
Z axis 3.6692 - 2.7517 -

Person B XY plane 6.2543 6.3623 3.4518 4.1039
Z axis 3.9966 4.4390 2.5914 2.1907

4.2.2 Tracking results

Figure 4.5 shows the results of tracking two human heads
using the learned EEM and uniformly distributed EEM with
the groud truth. The ground truth was obtained by triangu-
lation with target positions manually marked in the input
images. Each tracked person moved as follows. Person
A enters from entrance A near the printer and then walks
through the walkway towards other entrance B. At the same
time, Person B enters from entrance B and walks through
the same walkway towards the back of the room. The track-
ing results of each person corresponds to “tracking result
A” and “tracking result B”, respectively. The error measure-
ments shown in Table 4.2 are the average Euclidean distance
between the estimated position and the ground truth both
on XY plane and Z axis. The standard deviations are also
shown in Table 4.2. Compared to the tracking result B using
the learned EEM (shown as “tracking result B with EEM”
in Figure 4.5) and the tracking result B using the uniformly
distributed EEM (shown as “tracking result B with Uni-
form Dist” in Figure 4.5), both of the results show that once
the tracking initialization works successfully, tracking per-
forms properly. For the speed of the tracking initialization,
the tracker using the learned EEM started to track in frame
816, while using the uniformly distributed EEM started in
frame 858. Compared with the frame in which Person B
appeared (frame 810), the tracking initialization using the
learned EEM worked faster than using the uniformly dis-
tributed EEM. From tracking result A, we can observe that
tracking using the learned EEM (shown as “tracking result
A with EEM” in Figure 4.5) performs properly. On the other
hand, in the case of using the uniformly distributed EEM
(shown as “tracking result A with Uniform Dist” in Figure
4.5), tracking completely fails because the tracking initial-
ization does not work. From the results, we can see that
the use of the learned EEM effectively works to reduce the
required time for the tracking initialization and to achieve
stable 3D tracking.

Figure 4.6 shows the tracking results in the case where
a person is occluded by a board. The person being tracked
walks through the walkway toward the board (frame 345)
and then becomes occluded by the board (frame 360). The
tracker has lost the target due to complete occlusion (from

frame 360 to frame 719). When the person reappears (frame
720), however, the tracker immediately restarts tracking
(frame 723).

 

Figure 4.5: Tracking results of two human heads: The cir-
cle marked on the edge of each trajectory denotes the point
which tracking started and the cross marked on the other
edge of each trajectory denotes the point which tracking
ended. Note that the legend “tracking result A with Uni-
form Dist” does not have a corresponding result. Because
the tracking initialization did not work.



frame 345 frame 360 frame 720 frame 723

Figure 4.6: Tracking result: Rapidly recovering tracking from static occlusion

5. Conclusions
Certain human actions, such as walking or standing still

are frequently observed at specific locations in an indoor
environment. This implies that locations, where specific
human actions are frequently observed, have a high prob-
ability of a person existing compared to other locations.
We called this probability the environmental existence map
(EEM). The EEM was iteratively updated at every frame by
using the tracking results from our tracker and was adap-
tively incorporated into the learning scheme using a human
action state transition model. These contributions indicate
that our system automatically address changes of the EEM
in time (morning, noon, evening and night) and in a layout
in the scene. Through the verification experiments, we have
shown that the flexible and immediate 3D tracking initial-
ization can be performed by using the EEM.

In this paper we used a mixture of Gaussians and em-
pirically set the number of Gaussians to model the EEM.
The parameter setting of a mixture of Gaussians is data de-
pendent and the EEM will not perform successfully for a
different scene. In the future work, we will consider a non-
parametric probability density representation, such as the
parzen window or the nearest neighbor estimation, for the
EEM.
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