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Abstract

We propose a robust registration method for range im-
ages under a rough estimate of illumination. Because re-
flectance properties are invariant to changes in illumina-
tion, they are promising to range image registration of
objects lacking in discriminative geometric features un-
der variable illumination. In our method, we use adap-
tive regions to model the local distribution of reflectance,
which enables us to stably extract reliable attributes of
each point against illumination estimation. We use a level
set method to grow robust and adaptive regions to define
these attributes. A similarity metric between two attributes
is defined using the principal component analysis to find
matches. Moreover, remaining mismatches are efficiently
removed using the rigidity constraint of surfaces. Our ex-
periments using synthetic and real data demonstrate the ro-
bustness and effectiveness of our proposed method.

1. Introduction

The 3D modeling process of real objects has attracted
growing interest during the past decade for applications in
augmented reality, cinema, computer games or medicine.
Because creating the detailed 3D model of a real object us-
ing some modeling software is labour intensive, automating
the whole modeling process has attracted substantial inter-
est in recent years. This process can be divided in five steps:
(1) data acquisition, (2) reconstruction of 3D images, (3) 3D
registration, (4) merging and (5) inverse rendering.

Recent acquisition devices, like a modern laser range
scanner, can retrieve both the 3D shape and a color image
of an object from a fixed viewpoint, the acquired 3D im-
age in this case is called a range image. Therefore, for the
case of range images, the second step of the 3D modeling
process can be omitted. However, as from a fixed view-
point some parts of the object are occluded, multiple view-
points are thus required to obtain the full 3D shape of the
object. Therefore, partially overlapping parts of the object,
acquired from different viewpoints have to be aligned. This

process is called 3D registration. Two categories exist for
3D registration. The first one, called coarse registration, is
to find a rough alignment between two 3D images, starting
from sufficiently different poses. The second one, called
fine registration, is to find accurate alignment between two
3D images, starting from a rough alignment. When using
range images, we refer as range image registration.

The most famous approach to fine registration is ICP (It-
erative Closest Point) [2]. This method iterates two steps:
matching of each point of the first image with its closest
point on the other image; estimation of the transformation
between the two images using the matched point correspon-
dences. ICP converges with a local estimate and therefore
requires a rough alignment for initialization. To achieve ro-
bust and accurate alignment, many discriminative geometric
features have been proposed ([11], [7], [1], [8]).

To overcome the problem of objects devoid of salient ge-
ometric features, many approaches using photometric fea-
tures have been also discussed. Godin et al. [5] proposed
to use dense attributes of range image elements as a match-
ing constraint. Weik [14] proposed to use texture intensity
gradient and intensity difference. Johnson and Kang [9]
proposed to deal with textured 3D shapes by using color.
Okatani et al. [12] proposed to use chromaticity for regis-
tration. Brusco et al. [3] proposed to incorporate texture
information in the concept of spin-images. Pulli et al. [13]
proposed a new mismatch error to improve registration us-
ing both color and geometric information.

One difficulty in directly using color or chromaticity
for registration is its dependence on the measuring condi-
tions such as distance, orientation or illumination condi-
tions. Most of the time the color consistency assumption is
not verified. Recently, Cerman et al. [4] proposed a method,
which we call ICPA (ICP using Albedo), using reflectance
properties (which is the albedo for the case of Lambertian
objects) of the object surface into the ICP process.

Reflectance properties are promising because of their in-
dependence to the object pose relative to the sensor. Re-
trieving these properties has provided a major research area
in physics-based vision called reflectance from brightness
(with a known shape and illumination). In order to re-
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trieve accurate reflectance of the surface of an object from
its shape and brightness, the illumination conditions have
to be precisely known a priori. As a consequence, a direct
use of albedo values as a matching constraint, as proposed
in ICPA, requires a precise estimate of global illumination
which is practically difficult to obtain in the case of real il-
lumination conditions.

We introduce a region-based approach to using re-
flectance attributes for robust fine registration of Lamber-
tian objects under rough estimation of illumination. Be-
cause retrieving reflectance attributes on the surface of a
Lambertian object (which is the albedo in this case) is sen-
sitive to illumination estimation, direct use of albedo of a
point is not effective under rough illumination estimation.
We thus employ the local distribution of albedo for registra-
tion. Our proposed method uses adaptive regions to model
the local distribution of albedo on the object surface, which
leads to robust attribute extraction against illumination esti-
mations. These regions are grown using a level set method,
allowing us to exclude many outliers and then to define
more reliable attributes. We define a robust metric, using
the PCA (Principal Component Analysis) of each region
to find point correspondences. This is a stable and pow-
erful metric to maximize the number of correct matching,
even under rough illumination estimation. Moreover, en-
forcing the rigidity constraint on surfaces, we reject remain-
ing mismatching and then estimate the transformation using
the weighted least square method. Our method has the ad-
vantage under rough estimation of illumination and under a
large amount of noise. This advantage allows us to use sim-
ple illumination models for the registration of range images.
Our experiments using synthetic and real data demonstrate
the robustness of our method.

2. Proposed method
The registration process is carried out in an iterative

manner by successively estimating the rigid transformation,
until a convergence criterion is satisfied or a maximum of
iterations is achieved. Matches are obtained by evaluating
the similarities between reliable attributes of each points.
These attributes are defined by adaptive regions represent-
ing the local distribution of albedo on the object surfaces.
The transformation is then estimated by minimizing the dis-
tances between matched points.

2.1. Adaptive region generation
We define a region for each point of the range image to

obtain reliable attributes of each point for finding point cor-
respondences. The main idea here is to obtain a reliable
representation of the local distribution of albedo. There-
fore, these regions should be defined adaptively depending
on the local distribution of albedo around the point of in-
terest. Level set methods, which are widely used for seg-
mentation, appear to be efficient to model complex shapes

Figure 1: Concept of zero set in a level set.

in textured images and are robust to data noise. Therefore,
we adaptively grow regions using a level-set method.

2.1.1 Level set method

A region is defined by a contour. We define the contour
with a level-set method (the fast marching algorithm [6]).
A contour is defined as the zero level set of a higher dimen-
sional function called the level-set function, ψ(X, t) (see
Fig. 1). The level-set function is then evolved under the
control of a differential equation. At any time, the evolv-
ing contour can be obtained by extracting the zero level-set
Γ(t) = {X | ψ(X, t) = 0}.

We use a simple form of the level-set equation:

d

dt
ψ = −P (x)‖�ψ‖, (1)

where P is a propagation (expansion) term. This propaga-
tion term of the level-set function will be defined in terms
of a speed image.

The speed image. The speed image represents how fast
a contour can propagate for every point of the range im-
age. This speed should depends on the homogeneity of the
albedo of every point compared with their local neighbor-
hood. In the proposed method, the speed image is computed
as a function of the gradient magnitude image of albedo,
computed using the Gradient Magnitude filter. The map-
ping should be done in such a way that the propagation
speed of the front is very low with high albedo gradients
while it becomes rather fast in low gradient areas. This ar-
rangement makes the contour propagate until it reaches the
edges of albedo patterns and then slow down in front of
those edges.

We employ the Sigmoid function S to compute the speed
image since it offers a good deal of control parameters that
can be customized to shape a nice speed image. In fact, it
has a mechanism for focusing attention on a particular set
of values and progressively attenuating the values outside
that range.

S(I) =
1

1 + e−( I−β
α )

, (2)

where I is the gradient image of albedo, α defines the width
of the gradient intensity range, and β defines the gradient
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(a) α defines the width of the

window.

(b) β defines the center of the

window.

Figure 2: Effects of the various parameters in the Sigmoid

function.

intensity around which the range is centered (see Fig. 2).
As suggested in [6], α and β are found as follows. For the
gradient magnitude image, let us denote by K1 the mini-
mum value along the contour of the albedo patterns. We
denote by K2 the average value of the gradient magnitude
in the homogeneous regions of the albedo image. Then, β
is K1+K2

2 while α is K2−K1
6 .

2.1.2 Region generation

For each point p, we define a time image Tp. For each pixel
x of Tp, Tp(x) represents the time required for the level-set
function to propagate from p to x. Starting from a point
p, a region is grown by using the 4-neighbourhood and by
adding into the region, points such that Tp on these points is
less than a threshold (for example 0.2 seconds) (see Fig. 3).
A maximum size of the region is enforced, which will allow
us to discriminate points in too homogeneous areas.

This region grows in homogeneous areas and stops in
front of the contour of albedo patterns. Consequently, while
the size of the region increases, the homogeneity of the re-
gion is preserved. Moreover, the growth of the region is
adapted to the distribution of albedo and to data noise in
the neighborhood of each point. As a result, a reliable re-
gion is adaptively generated depending on each point. The
local distribution of albedo of 3D points inside this region
defines an attribute for each point. The attributes obtained
in this way enhance robustness in evaluating similarity to
find correspondences.

2.2. Restriction of the searching area
Under a rough estimate of illumination, the estimation

of albedo becomes poor. In particular, it will be far useless
around the border of the range image. Consequently, in or-
der to reduce the influence arising around the border, we do
not consider points near the borders of the range image. We
denote by C(P ) the restricted area of the range image P .

Moreover, we dynamically control for each point p ∈ P
a searching area (the area where a possible match of p is
searched) Ω(p) in the range image Q, whose center is the
projection of p on Q. Ω(p) is defined such that the closer
to convergence the registration becomes, the smaller Ω(p)

becomes. This control enhances stability and accuracy of
registration. Ω(p) is defined independently of C(Q).

Points in large homogeneous areas are not discrimina-
tive enough to be used in the registration. Such points are
detected using the size of their regions. Indeed, region sizes
of such points are close to the maximum size given before-
hand. Therefore we do not consider points whose region
size is greater than 95% of the maximum size of regions.

2.3. Similarity evaluation using albedo
Using the attribute of a point, we define a similarity met-

ric between two points to find correspondences across two
range images.

Letting p be a point in C(P ) and q be a point in Ω(p),
we define R(p) and R(q) as the regions corresponding to
p and q. We then apply PCA (Principal Component Anal-
ysis) to R(p) and R(q) to find the transformation T that
aligns the three principal axis of R(p) to those of R(q). For
each point m ∈ R(p), we define its corresponding point
n(m)q ∈ R(q) (Fig. 4). The corresponding point n(m)q is
defined by

arg min
x∈R(q)

(‖T (−→pm)−−→qx)‖2). (3)

For each pair (m,n(m)q) we define a weight ω(m,q) such
as

ω(m,q) = 0 if ‖T (−→pm)−−−−−−→qn(m)q))‖2 > thresh,

ω(m,q) = 1 if ‖T (−→pm)−−−−−−→qn(m)q))‖2 ≤ thresh,
(4)

where thresh is a distance threshold (for example 0.4mm).
In the similar way, we can define the corresponding point
and weight for each point in R(q).

The similarity function between two points p and q is
then defined as the weighted sum of the differences of
albedo of the corresponding pairs:

L(p, q) =
size(R(p)) + size(R(q))

(
∑

m∈R(p) ω(m,q) +
∑

m∈R(q) ω(m,p))2

×
{ ∑

m∈R(p)

ω(m,q)‖
−−−−→
alb(m)−−−−−−−−→alb(n(m)q)‖22

+
∑

m∈R(q)

ω(m,p)‖
−−−−→
alb(m)−−−−−−−−→alb(n(m)p)‖22

}
,

(5)

where size(R(·)) is the number of points in R(·) and−−−−→
alb(m) is the albedo vector of point m, computed using the
Lambertian model of reflectance for each color channel:

−−−−→
alb(m) =

−−→
c(m)

−−−→
n(m)�M

−−−→
n(m)

, (6)

where
−−−→
n(m) is the normal of the surface at point m, M is

the illumination matrix and
−−→
c(m) is the RGB vector of point

m.
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(a) Initial state. (b) First step. (c) Second step. (d) Third step.

Figure 3: Adaptively defined region using a 4-neighbourhood.

Figure 4: Searching for the corresponding point of m.

If p and q are matches and two regions R(p) and R(q)
represent the same part of the object viewed from different
viewpoints, then m ∈ R(p) and n(m)q ∈ R(q) will repre-
sent the same point viewed from different viewpoints. Thus,
their albedo will be similar. Therefore, the function L be-
comes small for points p and q. To the contrary, L becomes
large for points having different regions. As we see, sup-
ports by the corresponding points inside the region define
the similarity between two points of interest. This leads to
robust and stable evaluation of similarity.

We note that if
∑

m∈R(p) ω(m,q) or
∑

m∈R(q) ω(m,p) is

less than 0.6 × size(R(p)), resp. 0.6 × size(R(q)), then
the pair (p, q) is not considered as a possible match. This is
because if (p, q) is a correct match, we can expect that a suf-
ficient number of matches exists between R(p) and R(q).

At the end of this step, we have a reliable list of matches
that does not contain any isolated points. Indeed, the region
grown from an isolated point is empty and thus, this point
will not be a candidate for any match.

2.4. Incorrect matches elimination

The obtained list of matches cannot be always directly
used as an input of the transformation estimation step. This
is because a large amount of noise or repetitive patterns in
albedo distribution may cause incorrect matches. We here
remove such incorrect matches in order to enhance the ro-
bustness of the transformation estimation further. To evalu-
ate the correctness of matches, we use the rigidity constraint
of surfaces. This is because the rigidity constraint does not
depend on intensity or normals and thus it is robust against
data noise.

For two corresponding pairs (p, q), (p′, q′) in the range
images P and Q, we consider point pairs (p, p′) and (q, q′)
which represent the same points viewed from different
viewpoints. Assuming that surfaces are rigid, we see that

the distances ‖−→pp′‖2 and ‖−→qq′‖2 should not be too differ-
ent from each other. Namely, we define d representing the

difference between ‖−→pp′‖2 and ‖−→qq′‖2:

d = |‖−→pp′‖2 − ‖
−→
qq′‖2|. (7)

If (p, q) and (p′, q′) are correct matches, then d should be
smaller than a threshold Tdist (1.0mm for a resolution of
0.55mm for example). This gives us the rigidity constraint
(see Fig. 5).

Each pair in the list of matches is evaluated with all the
other pairs in the list. If the number of pairs that violates the
rigidity constraint exceeds a certain percentage Perc (50%
for example) of the pairs, then the current pair is considered
as an incorrect match and removed from the list.

Assuming that the majority of the obtained pairs are
correct matches, this method efficiently removes incorrect
matches from the list of pairs obtain in Section 2.3. In or-
der to handle the case where the majority of matches are
incorrect, we dynamically update the parameters Tdist and
Perc in such a way that the elimination step is tolerant to
mismatches at the beginning of the registration, and strict
to mismatches at the end of the registration. This is be-
cause, in the beginning of the registration we may have a
large amount of mismatches and only a rough estimate of
the transformation is sufficient. In contrast, as the registra-
tion becomes accurate, there are less mismatches and we
aim at eliminating as many mismatches as possible to refine
the estimation of the transformation.

Our outlier elimination approach is simpler than the
RANSAC method while its computational complexity
(O(n2)) remains low where n is the number of matches in
the list.

2.5. Transformation estimation
In order to estimate the transformation as accurately

as possible, we use the WLS method [10]. This method
weights each pair with the Euclidean distance between the
two corresponding points during the least square minimiza-
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Figure 5: Principle of the rigidity constraint.

tion. These weights represent the feasibility of the corre-
spondence of paired points. The minimization is iteratively
performed with updating the weight of each pair. The re-
sulting transformation obtained with this method is more
accurate than that with the standard least squared method.

3. Experiments
We evaluated our method using synthetic and real data

and compared with ICPA and ICP using both chromaticity
and geometric features (which we call ICP-CG). We note
that the restriction of the searching area in Section 2.2 was
applied to the three methods equivalently.

3.1. Definition of parameters
The three methods have several parameters to be fixed.

ICPA and ICP-CG require three parameters: max it, the
maximum of iterations for the registration; conv thresh,
the threshold for convergence and percentage, the percent-
age of matches to be eliminated.

Our proposed method requires four parameters:max it;
conv thresh; thresh, the threshold to grow the regions
and max size, the maximum size of a region. For the
elimination step, the two thresholds Tdist and Perc are
dynamically defined depending on the current state of the
registration. At the beginning of the registration, Tdist =
8×”resolution of the image” and Perc = 70%; at the end
of the registration, Tdist = 2×”resolution of the image”
and Perc = 30%.

3.2. Evaluation with synthetic data
We conducted experiments with synthetic data to test the

robustness of the proposed method against changes in il-
lumination. The synthetic data were obtained with a 3D
modeler software (3D Studio Max) (see Table 1). The exact
albedo image and the exact illumination, which correspond
to a spot light, are known. Assuming the object to be Lam-
bertian, we simulated color with an estimation of the exact
illumination to test the robustness of our proposed method
(see Fig. 6).

In order to see the effects against estimated illumination,
we transformed the exact illumination matrix by a rotation

R(θ). R(θ) is the composition of three particular rotations
around the three axes x, y, z. The three rotation angles for
the rotation around each axis were independently sampled
from the uniform distribution of [−θ, θ]

Before applying our method, we manually established
a rough pre-alignment of the two range images. This
alignment allowed us to simulate the case where the in-
put data were captured from two viewpoints rotation-
ally differentiated by 17.93 degrees around the axis
(0.0076,−0.9995, 0.0319) . We used the same sets of
parameters for all synthetic experiments: max it = 10;
conv thresh = 0.02radian; for ICPA, percentage =
30%; for the proposed method, thresh = 0.05sec,
max size = 0.1mm.

We evaluated our method with different values of θ, and
thus different estimations of the illumination. The value θ
was changed from 0 to 54 degrees by 2.86 degrees (54 de-
grees correspond approximately to 0.95 radian and 2.86 de-
grees correspond approximately to 0.05 radian). For each
values of θ, we applied our method 50 times under the same
initial conditions.

Fig. 7 shows quantitative evaluation of registration re-
sults in terms of averages and variances of the angle error
and axis error of the obtained results under various different
estimations of illumination. As a comparison, the results
obtained by ICPA are also shown. Since ICP-CG failed in
the registration because of geometrical symmetries of the
shape of the object, we did not perform comparative ex-
periments with ICP-CG. As expected, we observe that our
method is in average more accurate than ICPA and more
stable for the estimation of the rotation angle and rotation
axis. Results obtained with ICPA become inaccurate and
unstable as soon as the estimated illumination slightly dif-
fers from the exact one (for θ greater than 6 degrees). With
ICPA, the results are largely unsatisfactory when the illu-
mination estimation is not close to the exact one. On the
contrary, our proposed method obtained satisfactory results
for θ up to 45 degrees. Therefore, we can conclude that
our method is more robust to changes in illumination than
ICPA. Moreover, for exact illumination estimation, our pro-
posed method achieved registration as accurate as ICPA.

Fig. 8 shows an example of quantitative results of reg-
istration obtained with our proposed method under various
noise levels of intensities where the estimated illumination
corresponds to θ = 8.6 degrees. We applied a Gaussian
noise with variance of several percentages of the average of
the image intensities. For each different level of noise we
applied our method 50 times under the same initial condi-
tions. We observe that even with a noise of variance 16%,
the largest errors are under 0.2 degree for the angle accuracy
and under 3 degrees for the axis accuracy.

We also performed intensive experiments under noise
added to normals and we obtained similar behavior of er-
rors. From these results, we observe that our method is sta-
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Table 1: Description of the synthetic data.

Nb Points Resolution Expected rot (angle; axis)

30650 0.01mm (17.93; 0.0076,−0.9995, 0.0319)

(a) First image. (b) Second image. (c) Albedo image.

Figure 6: The input synthetic data.

(a) Angle error. (b) Axis error.

Figure 7: Results under various different illuminations.

(a) Angle error. (b) Axis error.

Figure 8: Results under noise in intensities with our

method.

ble against geometric and photometric noise.

3.3. Evaluation with real data

We conducted experiments using real objects to test the
effectiveness of the proposed method. We employed a Kon-
ica Minolta Vivid 910 range scanner, which captures the 3D
shape and the texture of an object. A mechanic system was
used to rotate the object and acquire ground truth of rota-
tion.

The proposed method starts with an estimate of the ge-

(a) First image. (b) Second image. (c) Superimposed.

Figure 9: Range images captured from different viewpoints.

(a) Albedo image. (b) Gradient map. (c) Speed map.

Figure 10: Illumination conditions and region generation.

ometric transformation and with a rough estimate of global
illumination conditions to estimate albedo. The initial esti-
mation of registration is obtained by just superimposing the
two captured range images. The global illumination is man-
ually estimated in a rough manner by rotating and scaling an
illumination matrix, which corresponds to a spot light. This
explains the greenish aspect observed in the albedo images
in Fig.10(a) and Fig.14. We used the same sets of param-
eters for all experiments: max it = 15; conv thresh =
0.002radian; for ICP-CG and ICPA, percentage = 30%;
for the proposed method, thresh = 0.2sec, max size =
5.5mm. This means that we need not extra tuning of the
parameters depending on objects.

We obtained two range images of a can that has a height
of about 10cm and a diameter of about 5cm and was ro-
tationally symmetric (Fig.9). Fig. 10 shows the gradient
image and the speed image computed from the albedo es-
timation. In order to demonstrate the effectiveness of our
method, we compared the results obtained by ICPA and
ICP-CG (Figs. 11 and 12). We note that the same initial
estimation was used for the three methods. Details on data
are shown in Table 2 and quantitative results are shown in
Table 3. In these tables, Nb Points is the number of points
in the range image; Res is the resolution of the range im-
age; NbIt represents the number of iterations required to
achieve convergence; NbMPts represents the number of
matched points at the end of the registration; Final rot is
the estimated rotation after registration; Angle Error rep-
resents the difference between the expected rotation angle
and the obtained one and Axis Error represents the angle
between the expected rotation axis and the obtained one.

Because of the lack of geometric features, ICP-CG failed
in registering the two range images. The registration result
obtained with ICPA, although it is more accurate than ICP-
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Table 3: Quantitative evaluation of the registration, using data can.

NbIt NbMPts Final rot (angle; axis) Angle Error Axis Error

Proposed Method 14 3400 (19.780; -0.009, -0.949, -0.316) 0.22deg 1.87deg
ICPA 15 11700 (12.580; 0.030, -0.998, 0.057) 7.42deg 23.70deg

ICP-CG 10 11800 (3.740; -0.010, -0.996, -0.086) 16.26deg 15.31deg

Figure 11: From left to right, results obtained with our

method, ICPA and ICP-CG.

Figure 12: From left to right, zoom on the above square part

of the results obtained with our method, ICPA and ICP-CG.

Table 2: Description of data can used for the experiment.

Nb Points Res Expected rot (angle; axis)

25000 0.55mm (20.00;−0.010,−0.930,−0.340)

CG, is not satisfactory. In contrast, we can see significant
improvements in the registration obtained with the proposed
method. We remark that 15% of matched pairs were elimi-
nated as incorrect matches in our method. When the search-
ing area (see Section 2.2) was not dynamically restricted by
Ω(·), the results obtained with the three methods were less
accurate. Indeed, in this case, the angle errors were 4.00,
12.58 and 16.40 degrees while the axis errors were 1.60,
19.00 and 12.00 degrees with our proposed method, ICPA
and ICP-CG respectively.

Fig. 15 shows results obtain with different objects called
hand and box. Table 4 shows a description of each data be-
fore registration. We note that the hand (resp. the box) has
a height of about 20cm (resp. 10cm) and a width of about
10cm (resp. 20cm). Figs. 13 and 14 show initial estima-
tion of registration and global illumination. Fig. 15 shows
comparison of the results by our method, ICPA and ICP-
CG. Quantitative results of these experiments are shown in
Table 5. Identified incorrect matches were 35% for hand
data and 7% for box data. The average of computational

Table 4: Description of data hand and box.

Nb Points Res Expected rot (angle; axis)

hand 50000 0.55mm (20.020; 0.040,−0.940,−0.320)

box 90000 0.55mm (20.000; 0.000,−0.940,−0.320)

(a) First image. (b) Second image. (c) Superimposed.

(d) First image. (e) Second image. (f) Superimposed.

Figure 13: Initial state for data hand (top) and box (bottom).

time required for the registration of these images was about
10minutes with an Intel Core 2 Duo CPU 3GHz.

Because of the lack of discriminative geometric features,
methods using only geometric features are not sufficient.
Moreover, because of changes in color due to illumination,
color information like chromaticity can not be used directly.
In fact, both ICPA and ICP-CG did not have satisfactory
results due to data noise and inaccurate estimation of illu-
mination. Our method succeeded in registration of range
images with an accuracy around the resolution of the range
sensor for all data.

4. Conclusion
We introduced a region-based range image registration

using reflectance attributes under rough illumination con-
dition estimations. Our method stably extracts reliable at-
tributes that capture local albedo distribution on the object
surface. These attributes are defined by adaptively grow-
ing regions generated using a level set method. Such at-
tributes are used to evaluate the similarity of points to ob-

1660



Table 5: Quantitative evaluation of registrations, using data hand and box.

NbIt NbMPts Final rot (angle; axis) Angle Error Axis Error

hand Proposed Method 15 7200 (20.070; -0.014, -0.946, -0.320) 0.05deg 3.63deg
hand ICPA 15 25000 (19.420; -0.015, -0.919, -0.394) 0.60deg 5.80deg
hand ICP-CG 15 25600 (19.190; -0.003, -0.945, -0.326) 0.83deg 4.58deg
box Proposed Method 12 8500 (20.010;−0.021,−0.945,−0.326) 0.01deg 1.23deg
box ICPA 15 38000 (19.970;−0.030,−0.902,−0.387) 0.03deg 4.40deg
box ICP-CG 15 39120 (19.94;−0.037,−0.880,−0.456) 0.06deg 8.59deg

(a) Albedo image. (b) Albedo image.

Figure 14: Initial illumination state for data hand (left) and

box (right).

Figure 15: From top to bottom, results obtained with the

data hand and box. From left to right, results obtained with

our method, ICPA and ICP-CG.

tain point correspondences robustly even under rough es-
timation of illumination conditions. Our method also effi-
ciently removes mismatches by using the rigidity constraint
of surfaces, which enhances the robustness of the registra-
tion process. Our experiments using synthetic and real data
showed the improvements in robustness and accuracy of the
registration results under rough estimation of illumination.
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