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Abstract

This paper presents a method for fitting a digital plane
to a given set of points in a 3D image in the presence of
outliers. We present a new method that uses a digital plane
model rather than the conventional continuous model. We
show that such a digital model allows us to efficiently ex-
amine all possible consensus sets and to guarantee the so-
lution optimality and exactness. Our algorithm has a time
complexity O(N3 log N) together with a space complexity
O(N) where N is the number of points.

1. Introduction
Plane fitting is one of essential tasks in the field of 3D

computer vision. For instance, this procedure is useful

in image segmentation [10, 7], multi-view image registra-

tion [15, 2], as well as parameter fitting [6].

Several significant, optimal methods have been proposed

in the literature, such as least-squares fitting, least-absolute-

values fitting and least median of squares (LMS) [1, 6, 12].

In these methods, we use a continuous plane model that is

defined by

P = {(x, y, z) ∈ R
2 : ax + by + c + z = 0}, (1)

where a, b, c ∈ R. The fitting is then carried out by opti-

mizing different cost functions. For instance, least-squares

minimizes the sum of geometric distances from all given

points to the model. The solution can be obtained analyt-

ically, however it is very sensitive to the presence of out-

liers. Least-absolute-values fitting uses the L1 norm, in-

stead of the geometric distance, for its minimization. Some

efficient iterative algorithms have been proposed for the fit-

ting. However, they are still sensitive to outliers. In contrast,

LMS minimizes the median of vertical/geometric distances

of all given points to the model. Thus, the fitting is robust

as long as the majority of given points are not outliers [14].

In this paper, we present a globally optimal method that,

for a given arbitrary cloud of points, locates the planes min-

imizing the number of outliers, or equivalently maximiz-

ing the number of inliers, also called the consensus set.

The idea of using such consensus sets were proposed in

the RANdom SAmple Consensus (RANSAC) method [4],

which is widely used in the field of computer vision. How-

ever RANSAC (and its variations) is inherently probabilis-

tic in its approach, and does not deterministically guarantee

the optimality of consensus sets. In contrast, our method is

both deterministic and optimal.

In order to guarantee the optimality of consensus sets,

we follow a digital geometry methodology [9] instead of

the continuous model of (1). This methodology is arguably

preferable if given all inputs are digital images. For in-

stance, a digital model allows us to distinguish digitization-

induced noise from actual noise produced by an image sen-

sor. Related work using digital plane models can be found

in [8, 13] for digital plane recognition, and shape poly-

hedrization [16] in both of the absence and presence of

noise. However, to the best of our knowledge, outliers,

namely points that do not fit the model, have never been

dealt with in the field of digital geometry.

This work is an extension of our previous work on digital

line fitting [17], but uses a significantly different method.

Here, we show that, even though our digital plane fitting

problem is 3D, we can treat it as a 2D problem by consid-

ering it in the dual space of the duality transform [3]. We

show that our algorithm for digital plane fitting has a time

complexity of O(N3 log N), instead of O(N2 log N) for

digital line fitting, where N is the number of points, while

the space complexity O(N) is not affected by the dimension

increase. We also point out that there are more degenerated

cases for 3D than those for 2D, if our input data are all inte-
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gers or rational numbers, which is often the case for digital

images. We thus present a way to handle such degenerated

cases with only simple modifications.

The rest of the paper is as follows: in section 2 we ex-

pose the framework of our digital model. In section 3 we

prove the optimality of our result. In section 4 we provide

an algorithm for the computation of the fit. Section 5 pro-

vides a method for extracting the parameters from the fit.

Section 6 is devoted to results and applications. Section 7

states some conclusions and perspectives.

2. The problem of digital plane fitting

In this paper, we use a digital model, instead of the con-

tinuous one, for planes in a discrete space Z
3 where Z is the

set of all integers. We consider that using a digital model is

natural when our input data is a digital image. In addition,

we guarantee the optimal solution for our problem, as we

mention in the next section.

A digital plane D(P) that is the digitization of P in (1) is

defined by the set of discrete points satisfying two inequal-

ities:

D(P) = {(x, y, z) ∈ Z
3 : 0 ≤ ax+by+z+c ≤ w} (2)

where w is a given constant value. Geometrically, D(P)
is a set of discrete points lying between two parallel planes

ax + by + z + c = 0 and ax + by + z + c = w, and

w specifies the vertical distance between them. From the

digital geometrical point of view [9], w should not be less

than 1 if we expect that D(P) is 18-connected. More pre-

cisely, in order to keep the connectivity with the minimum

distance, we need to consider the distance w not only in the

z-axis direction as shown in (2) but also in the x- and y-

axis directions. For digital planes D(P) with the distance

w in the other directions, we simply make the permutation

of x, y and z in (2), and put the constraints, −1 ≤ a ≤ 1,

−1 ≤ b ≤ 1. Hereafter, discussions will be made by using

(2), since they are also valid for the other models.

Using the above digital plane model, our fitting problem

is then described as follows: given a finite set of discrete

points,

S = {xi ∈ Z
3 : i = 1, 2, . . . , N},

we would like to find a digital plane D(P) such that D(P)
contains the maximum number of points in S. Points x ∈ S
are called inliers if x ∈ S∩D(P); otherwise, they are called

outliers.

3. Digital planes and their consensus sets

In this section, we show an important property of inlier

sets, also called consensus sets, of digital planes. Our algo-

rithm presented in the next section is based on this property.

Since the size of S is finite and each element x ∈ S has fi-

nite coordinates, we notice that the number of different con-

sensus sets for a digital plane fitting of S is finite as well.

Thus, if we can find all different consensus sets C from a

given S, we just verify the size of each C to find the maxi-

mum one (ones if there are several) as the optimal solution.

In the following, we will show that it is possible.

Before presenting the main proposition, we give some

notions related to digital planes. The two parallel planes

that are given by the equations (2) are called the support

planes of a digital plane. Discrete points that are on support

planes are called critical points of a digital plane.

Proposition 1. Let C be a consensus set of S for a digital
plane. It is possible to find a new digital plane whose con-
sensus set is the same as C such that it has at least three
critical points.

Proof. Let D be an initial digital plane that contains all

points in C as its inliers. Then, the following four cases

can be considered when observing the critical points of D.

(1) Suppose that D has more than two critical points, then

the proposition is correct in this case.

(2) Suppose that D has two critical points p1 and p2. p1

and p2 may be located on one side or either side of the two

parallel support planes of D as illustrated in Figures 1 (a) or

2 (a), respectively. First, we take the projections p′
1 (resp.

p′
2) of p1 (resp. p2) on the other support plane where p1

(resp. p2) does not exist in the z-axis direction. We then ap-

ply a rotation to D in such a way as to maintain the distance

w between the support planes until finding another point p3

in C so that p3 becomes a critical point. To achieve this,

in the illustrative case of Figure 1 (a), to the support plane

where p1 and p2 exist, we apply a rotation around the line

going through p1 and p2, as illustrated in Figures 1 (b). To

the other support plane, we apply a rotation around the line

going through p′
1 and p′

2, as illustrated in Figures 1 (b). In

the case of Figure 2 (a), similarly, to the support plane where

p1 (resp. p2) exists, we apply a rotation around the line go-

ing through p1 and p′
2 (resp. p′

1 and p2), as illustrated in

Figures 2 (b). Note that we can rotate D either clockwise or

counterclockwise.

(3) Suppose that D has one critical point p1 as illustrated

in Figure 3 (a). In this case, we also consider the projection

of p1, p′
1. We then apply a rotation to each support plane

until finding another point p2 in C so that p2 becomes a

critical point, as illustrated in Figure 3 (b). The support

plane where p1 (resp. p′
1) exists is rotated around any line

going through p1 (resp. p′
1) on the support plane. If just one

point p2 is found as a second critical point after the rotation,

then another rotation is made, as mentioned in the previous

case, in order to obtain a third critical point p3.

(4) Suppose that D has no critical point as illustrated in Fig-

ure 4 (a). In this case, we first apply a translation to D in
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order to find a first critical point p1. Note that a translation

can be made in any direction while the two support planes

maintain a constant distance w between them. During such

a translation, if more than two points are found as critical

points, then the proof is complete. If just one point p1 is

found, as illustrated in Figure 4 (b), then a rotation is made

as mentioned in the previous case, in order to obtain a sec-

ond critical point p2. If during this rotation just one point

p2 is detected, then another rotation is accomplished in or-

der to detect a third critical point p3 as described in the first

case.

(a) (b)
Figure 1. A digital plane that has two critical points p1 and p2 on

one of its support planes (a), and its rotated digital plane that also

has a third critical point p3 (b).

(a) (b)
Figure 2. A digital plane that has two critical points p1 and p2 on

distinct support planes (a), and its rotated digital plane that also a

the third critical point p3 (b).

(a) (b)
Figure 3. A digital plane that has one critical point p1 (a), and its

rotated digital plane that also has a second critical point p2 (b).

(a) (b)
Figure 4. A digital plane that has no critical point (a), and its trans-

lated digital plane that has one critical point p1 (b).

From this proposition, we see that we can find a digital

plane D(P) for any consensus set C of S such that it has at

least three critical points. This is intuitively understandable,

because when we move a digital plane D(P) in the space,

its consensus set C will be changed the moment that a criti-

cal point goes out from D(P), namely, becomes an outlier,

due to the motion. Indeed, such a digital plane D(P) can

be constructed from a triplet of points chosen from S such

that they become critical points of D(P). Consequently, we

can find all C from those D(P) constructed from all possi-

ble triplets of points in S. Note that there are at most eight

different D(P) constructed from each triplet of points in S.

4. Digital plane fitting algorithm
A naive algorithm for 3D digital plane fitting derived

from Proposition 1 is to make the consensus set C for each

triplet of points in S and to verify the size of C for ob-

taining the maximum one among all triplets. Thus, such an

algorithm has a O(N4) time complexity. In this section, we

will present a new algorithm that has a less complexity.

Our algorithm is based on a similar idea to the one for

2D digital line fitting, presented in [17]. The key idea for

the extension to 3D digital plane fitting is treating the 3D

problem as a 2D problem. We first show how to reduce the

dimension from three to two, and then obtain an algorithm

providing a O(N3 log N) time and O(N) space complexity.

We first describe the digital plane fitting problem in the

dual space of the duality transform, because our algorithm

works in the dual space of the duality transform [3], simi-

larly to the 2D digital line fitting. We then present an algo-

rithm to exhibit the optimal consensus set (sets if there are

several) that maximizes the number of inliers of a fitted dig-

ital plane from a given set S of discrete points in 3D, step

by step. We also describe special treatments for degenerated

cases; it should be noted that digital images likely present

many degenerated cases that must be processed separately.

4.1. Digital plane fitting in the dual space

A point p = (x, y, z) in the primal space associates to a

non-vertical plane

Pp = {(a, b, c) : xa + yb + c + z = 0} (3)

in the dual space. Conversely, a non-vertical plane in the

primal space associates to a point in the dual space. Because

a digital plane defined by (2) is regarded as a set of non-

vertical parallel planes whose normal vectors are (a, b, 1)
and whose z-intercepts are between −c and w − c, it forms

a vertical line segment of length w in the dual space as il-

lustrated in Figure 5. Since all points of S in the primal

space are represented by planes in the dual space, our prob-

lem of finding the optimal consensus set for digital plane

fitting in the primal space is equivalent to searching the best

position of the vertical line segment of length w such that it

intersects with the maximum number of planes in the dual

space.

We now need a search procedure for an optimal segment.

Thanks to Proposition 1, we know that, for any consensus

set, there exists a digital plane featuring at least three critical

points, among which at least two are on one of the support

planes. Thus, taking two different points p, q from S in

the primal space, we first consider all the digital planes on
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Figure 5. A digital plane in the primal space (left) corresponds to

a vertical line segment of length w in the dual space (right).

which both p and q are critical points on the same support

plane. In the dual space, digital planes having two critical

points p, q forms two strips, which will be described in

Section 4.2. In Section 4.3, we explain how digital planes

with two critical points p, q appear in the strips when they

have a third critical point r. In Section 4.4, we then show

how to obtain the maximum number of inliers and its digital

plane parameters in the strips.

4.2. Strips made from a critical point pair

Let p = (xp, yp, zp) and q = (xq , yq , zq). In the

dual space, they represent two planes Pp and Pq , defined

by (3). They intersect in a line L0
pq if p and q are chosen

such that (xp − xq)2 + (yp − yq)2 �= 0; otherwise, Pp
and Pq are parallel, and no intersection line can be found.

The intersection line L0
pq is represented by the following

equation:

L0
pq = {v = (a, b, c) : v = u + td, t ∈ R}

where

d = (xp, yp, 1) ∧ (xq , yq , 1)
= (yp − yq , xq − xp, xpyq − xqyp),

and u = (ua, ub, uc); u is a chosen point on L0
pq . For

example, if xpyq �= xqyp, by fixing uc = 0, ua and ub are

automatically found since u is on both Pp and Pq .

Once L0
pq is found, then, all the digital planes on which

both p and q are critical points on the same support plane

in the primal space correspond to the set of all the vertical

line segments of length w having one of its endpoints on

L0
pq in the dual space, as shown in Figure 6. We see in the

figure that the set of such digital planes, therefore, forms

two strips in the plane Qpq that contains L0
pq and the di-

rection parallel to the c-axis. Taking the d-axis in Qpq as

the orthogonal one to the c-axis, such Qpq is illustrated in

Figures 6 and 7. Each strip on Qpq illustrated in Figure 7

is bounded by two parallel lines, L0
pq and Li

pq for i = 1, 2,

which are represented by:

L1
pq = {v = (a, b, c) : v = u + e + td, t ∈ R},

L2
pq = {v = (a, b, c) : v = u− e + td, t ∈ R},

where e = (0, 0, 1).

4.3. Digital planes with a critical point triplet

Hereafter, we focus on one of the strips in Qpq , because

the following discussion is valid for both strips. Let us con-

sider the strip bounded by L0
pq and L1

pq , as illustrated in

Figure 7. According to Proposition 1, we choose a point

r ∈ S \ {p, q} to be the third critical point of a fitted digital

plane such that r is not colinear with p and q; the colin-

ear case will be handled separately as a degenerated case in

Section 4.6. Any point r in the primal space is represented

by the line Lr in Qpq in the dual space, which is the in-

tersection between Pr and Qpq , as shown in Figure 7. We

see in this figure that Lr intersects each of the strip bound-

aries, L0
pq and L1

pq , if it is not parallel to L0
pq ; the par-

allel case will be also dealt with separately as a degener-

ated case in Section 4.6. The intersections between Lr and

Li
pq , σi

r = (ai
r, bi

r, ci
r), for i = 0, 1, are calculated from

Li
pq and Pr . Geometrically, the vertical line segment in the

strip, one of whose endpoints is one of the intersections σi
r ,

in the dual space corresponds to a digital plane with three
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��
�
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Figure 6. All the digital planes with two critical points p and q in

the primal space (left) correspond to a set of vertical line segments

of length w having one of its endpoints on the intersection line of

the two planes Pp and Pq (right).
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Figure 7. Four points p, q, r and s in the primal space (left), and

their interpretations in the cross-section Qpq of the dual space

(right). Qpq is made as the plane that contains the intersection

line L0
pq of Pp and Pq and the parallel direction to the c-axis,

as illustrated in Figure 6. In Qpq , all the digital planes having p
and q as critical points are represented by the strips each of which

is bounded by L0
pq and either of its parallel lines L1

pq and L2
pq .

The other points r and s in the primal space are represented by the

two lines Lr and Ls in Qpq .
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critical points p, q and r in the primal space. This indicates

that the digital planes corresponding to the vertical line seg-

ments between the two intersections σ0
r and σ1

r in the strip

always contain r as an inlier.

4.4. Finding the largest consensus set in a strip

In order to know the number of inliers within the digital

planes with two critical points p and q, we check the inter-

sections σ0
r and σ1

r of Lr for all r ∈ S\{p, q} with the

strip boundaries, L0
pq and L1

pq . We use a function f i
r , for

i = 0, 1, which is set to be 1 if Lr enters the strip from

Li
pq , and −1 if Lr leaves the strip from Li

pq .

Once the intersections σi
r = (ai

r, bi
r, ci

r), and the as-

sociated function f i
r for i = 0, 1 are calculated for all

r ∈ S \ {p, q}, we sort all the quadruples (ai
r, bi

r, ci
r, f i

r)
in increasing order by using either ai

r or bi
r as keys; if Qpq

is not perpendicular to the a-axis, we use ai
r; otherwise,

we use bi
r . As for determining the location of the maxi-

mum number of inliers, another function F (a) (resp. F (b),
depending on the key selection) is used; after initially set-

ting F (a) = 2 for every a, since we already know that p
and q are inliers, then the value f i

r is added to F (a) in the

above sorted order. By looking for the maximum value of

the function F (a), we obtain the parameter set (a, b, c) cor-

responding to the maximum optimal consensus set for a pair

of critical points p and q. In this section, we consider that

all Lr enter or leave a strip at different moments. The de-

generated cases such that many lines Lr enter or leave a

strip at the same moment will be described in Section 4.6.

4.5. Algorithm

We now present Algorithm 1. Input is a set S of discrete

points and a distance value w of our digital plane model.

Output is a set V of parameter values (ac, bc, cc) corre-

sponding to the fitted digital planes of that give the optimal

consensus sets. In the algorithm, we consider another strip

bounded by L0
pq and L2

pq in Steps 5, 11 and 25.

We remark that, because ci
r is not used for the sorting

step and can be calculated from ai
r and bi

r , we do not have

to store it for each intersection. Simply for a candidate of

the optimal consensus set, we calculate it as shown in Steps

26 and 28. Note that, depending on the strip, we calculate

different cc because of the translation difference w between

the two strips.

In Steps 13 and 19, we only show the case where ak is

used as keys for sorting. However, if Qpq is perpendicular

to the a-axis, all ak has the same value. In such a case, as

mentioned above, we use bk as keys, instead of ak.

The time complexity of the algorithm is O(N3 log N),
because we have N points in S and each pair of p and q
in S needs the complexity O(N log N) for sorting at most

2N − 4 different values ai
r for r ∈ S \ {p, q} and i = 0, 1.

The space complexity is O(N) because for each sorting we

have at most 2N − 4 different triplets (ak, bk, fk).
Because all inputs can be given as integers or rational

numbers, all computations in Algorithm 1 can be performed

using only rational numbers. This ensures that all results

obtained by Algorithm 1 contain no calculation error. How-

ever, degenerated cases may occur, which will be discussed

Algorithm 1: Digital plane fitting

input : A set S of N discrete points, a distance w
output: A set V of parameter value triplets

(ac, bc, cc) of the best fitted digital planes

begin1

initialize Max = 0;2

foreach {p, q} ∈ S do3

calculate L0
pq ;4

for l = 1, 2 do5

initialize F = 2;6

initialize the array T [k] for7

k = 1, . . . , 2N − 4;

set j = 0;8

foreach r ∈ S \ {p, q} do9

calculate ai
r and bi

r for i = 0, 1;10

if l = 2 then11

calculate a2
r and b2

r and reset12

a1
r = a2

r and b1
r = b2

r;

if a0
r < a1

r then13

set f0
r = 1, f1

r = −1;14

else15

set f0
r = −1, f1

r = 1;16

set the tuple, (ai
r, bi

r, f i
r), for i = 0, 1,17

in T [2j + i];
j = j + 1;18

sort all the tuple elements (ak, bk, fk) for19

k = 1, . . . , 2j in T with ak as keys;

for k = 1, . . . , 2j do20

F = F + fk;21

if F > Max then set Max = F ,22

V = ∅;
if F = Max then23

set ac = ak, bc = bk;24

if l = 1 then25

cc = −akxp − bkyp − zp;26

else27

cc = −akxp−bkyp−zp+w;28

put (ac, bc, cc) in V;29

return V;30

end31
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in the followings.

4.6. Degenerated cases

In this section, we explain how we can deal with degen-

erated cases, which are not considered in Algorithm 1. The

following three cases are summarized.

First, if three points p, q and r are colinear in the primal

space, their associated planes Pp, Pq and Pr have a line in-

tersection in the dual space. Therefore, for any digital plane

having p and q as its critical points also has r as its another

critical point. Thus, the function F (a) initially set to 2 for

the inclusion of p and q as inliers will be automatically in-

creased by 1 because of the inclusion of r.

Secondly, suppose that p, q and r are not colinear, but

there is no intersection between L0
pq and Lr in Qpq ; Lr

is parallel to L0
pq . If Lr is between L0

pq and L1
pq (resp.

L2
pq), then we set the initial value of the function F (a) to

3 when l = 1 (resp. l = 2) because r is an inlier for any

a. Otherwise, we set it to 2, as described in Algorithm 1,

because r is an outlier for any a.

Lastly, when many lines Lr enter or leave a strip at the

same moment a, all the positive valued f i
r of that moment

must be added to the function F (a) at once (Step 21 in Al-

gorithm 1), and the value F (a) is compared with the current

maximum value Max (Step 22 in Algorithm 1). Note that

all the negative valued f i
r of the same moment a must be

added after the comparison to the value F (a). Indeed such

a point r must be considered as an inlier until that moment.

5. Feasible digital plane parameters
Once an optimal consensus set C for digital plane fitting

to a given point set S is found, we need the corresponding

digital plane parameters in most applications. A continu-

ous plane model such as (1) can be used to estimate them,

for example, by applying the least squared method [6] to

C. However, one must be careful because this may modify

the inlier set. In such a case, a new C must be recalculated

from a new estimated plane, leading to an inefficient itera-

tive procedure.

In our case, however, since we use the digital plane

model of (2) instead of (1), we do not need such an estima-

tion method, and there is no danger or changing the inlier

set. We can obtain all feasible solutions for the parameters

of digital planes fitted to an obtained optimal C by simply

looking for all feasible solutions (a, b, c) that satisfy the in-

equalities of (2) for all (x, y, z) ∈ C.

Such feasible solutions of digital planes are called preim-

ages [5]. In contrast to the preimages of digital lines in 2D,

the structure of the preimages of digital planes is not simple;

we even do not know the maximum number of vertices or

facets of a convex polyhedron, that constitutes a preimage

of a digital plane. Further study is necessary.

6. Experiments

For our experiments, we applied our proposed method to

two example data, such as a 3D discrete point cloud and a

Figure 8. Planar surface segmentation of a 3D discrete point cloud:

the number of points is 12859, and they are segmented into thir-

teen planar surfaces whose points are in different colors, except

for those colored in light green that are detected as edge points.

Figure 9. Fitted planes of segmented planar surface in Figure 8.

Figure 10. The fitted plane with its optimal consensus set for the

blue segmented surface points in Figure 8: inliers are colored blue

while outliers are colored pink.
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Table 1. The number of points for each segmented surface in Fig-

ure 8 and the size of its optimal consensus set.

Number of points Opt. consensus set size

Blue 1770 1401

Yellow 1578 1195

Pink 1523 935

Pale Blue 1191 922

Orange 699 693

Green 573 573

Brown 545 544

Turquoise 536 512

Olive 440 405

Purple 248 245

Violet 232 206

Moss green 223 223

Cream 101 97

3D binary digital image. The first example is a 3D discrete

point cloud in Figure 8, which is obtained after a planar

surface segmentation of a range image of blocks [7]. The

number of points in the cloud is 12859, and they are seg-

mented into thirteen planar surfaces, which are illustrated

in Figure 8 with points in different colors, except for those

colored in light green that are detected as edge points. For

each of these thirteen sets, we fitted a digital plane. We

see the corresponding planes in Figure 9, and the number

of points for each segmented surface and the size of its op-

timal consensus set in Table 1. In Figure 10, we also see

that the fitted plane for the blue segmented surface points in

Figure 8: inliers are colored blue while outliers are in pink.

We also applied our method to a 3D image extracted

from a polymer foam observed in X-ray micro-tomography,

on which homotopic thinning and surface decomposition

were applied [11]. Figure 11 shows a cross section of the

original image and Figure 12 shows a 3D binary image ob-

tained after homotopic thinning and surface decomposition;

the image is cut into two parts for visualization. Among

around 400 sets of points forming surfaces in the entire im-

age, we choose a part, as illustrated in Figure 13, including

17 decomposed surfaces for digital plane fitting. We show

the fitted planes in Figure 14, and the number of points and

the optimal consensus set size for each segmented surface

in Table 2. For both the examples, we set w = 1.

7. Conclusions
In this paper we have exposed a new method for plane

fitting on discrete data such as bitmap images and volumes,

using a digital geometry (DG) approach. The DG approach

allows practitioners to separate effects due to digitization on

the one hand and noise on the other. Using our approach,

we have proposed an optimal fitting method from the point

of view of the maximal consensus set: we are guaranteed to

Figure 11. A cross section of a 3D image extracted from a polymer

foam observed in X-ray micro-tomography.

Figure 12. The 3D binary image obtained after homotopic thinning

and surface decomposition applied on the image in Figure 11: the

image is cut into two parts for visualization.

Figure 13. Selected decomposed surfaces, which is a part of the

3D binary image in Figure 12, for digital plane fitting.

fit discrete planes with the least amount of outliers.

Our algorithm has a complexity that are identical to

parameter-less traditional plane-fitting algorithms such as

least median of squares regression [14], but improves the

detection of digital planes, in the presence of outliers. Fu-

ture work will include improving algorithmic complexi-

ties and more complete applications such as optimal poly-

hedrization, image registration considering all feasible dig-

ital plane parameters.

1823



Figure 14. Fitted digital planes for decomposed surfaces shown in

Figure 13.

Table 2. The number of points and the optimal consensus set size

for each decomposed surface in Figure 14.

Number of points Opt. consensus set size

541 269

512 233

439 208

427 196

427 200

405 208

377 159

335 206

333 169

309 141

308 168

258 76

220 104

200 90

198 61

163 98

104 71
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