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Abstract

In this work, we propose a method for tracking individ-
uals in crowds. Our method is based on a trajectory-based
clustering approach that groups trajectories of image fea-
tures that belong to the same person. The key novelty of our
method is to make use of a person’s individuality, that is,
the gait features and the temporal consistency of local ap-
pearance to track each individual in a crowd. Gait features
in the frequency domain have been shown to be an effective
biometric cue in discriminating between individuals, and
our method uses such features for tracking people in crowds
for the first time. Unlike existing trajectory-based tracking
methods, our method evaluates the dissimilarity of trajecto-
ries with respect to a group of three adjacent trajectories. In
this way, we incorporate the temporal consistency of local
patch appearance to differentiate trajectories of multiple
people moving in close proximity. Our experiments show
that the use of gait features and the temporal consistency
of local appearance contributes to significant performance
improvement in tracking people in crowded scenes.

1. Introduction
Tracking individuals in a crowded scene (Figure 1)

presents new challenges that must be addressed to achieve

robust and accurate tracking. In particular, it is difficult to

track people who are moving in similar directions, with sim-

ilar speed and frequent partial occlusions.

Due to partial occlusion (example in Figure 1), it is very

unlikely that the entire body is observed over an entire

video sequence. This makes it difficult to acquire mean-

ingful boundaries of foreground objects due to the pres-

Figure 1. An example of a crowded scene.

ence of many overlapping people. Therefore, standard

appearance-based techniques and model-based techniques,

such as background subtraction-based blob detection and

time series filtering, that use whole appearance are an inad-

equate means of tracking people in crowds.

Recently, in contrast to standard appearance-based and

model-based techniques, approaches that make use of the

motion of local feature points have been proposed [2, 10,

13]. These approaches assume that feature points that be-

long to the same person are likely to have similar motion.

As such, tracking people is achieved by clustering local fea-

ture trajectories based on the similarity of motion between

trajectories and the spatial proximity of local feature trajec-

tories. In general, using local feature trajectories makes a

system more robust to partial occlusion, as long as some

portion of the person is observed.

In crowds, however, the motion trajectories of neighbor-

ing individuals tend to be very similar because they are con-

strained by the motion of the crowd. Consequently, tracking

methods based on motion similarity and spatial proximity
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have difficulty in discriminating between individuals walk-

ing in close proximity.

To overcome this problem, we present a novel approach

to tracking that characterizes the individuality (i.e., unique

spatio-temporal traits) of a person by using: (1) gait fea-

tures in the frequency domain and (2) the temporal vari-

ation of local appearance patches. By utilizing a trajec-

tory clustering-based tracking framework, we leverage a

person’s individuality to efficiently track individuals in a

crowd.

The use of temporal gait characteristics in the frequency

domain is more discriminative than using the distance be-

tween motion trajectories, because two people walking to-

gether in the same direction can be differentiated by simply

observing the frequency of an individual’s stride. In fact, the

discriminative power of gait frequency features has made

it a standard measure for identifying people in biometrics

[11].

We also measure the change (or consistency) of local ap-

pearance over time to differentiate between neighboring in-

dividuals even when their gait frequencies are very similar.

We extract a sequence of local triangular patches (encom-

passed by three feature trajectories) and measure the vari-

ation in appearance of the local patch over time. The as-

sumption is that the appearance of a small patch on a single

person is expected to be consistent over time, while patches

that straddle two people will vary heavily over time.

Herein lies the two-fold contribution of this work. (1)

We use the gait features in the frequency domain to help

identify individuals in a crowd. To our best knowledge, this

work is the first to use gait features in the context of tracking

people in a crowd. (2) We use the temporal consistency

of local appearance patches to discover regions that belong

to the same individual. In contrast to previous trajectory-

based methods [2, 10, 13], our method utilizes mid-level

visual features constructed from a group of local features

(i.e., a sequence of image patches created by three adjacent

trajectories) instead of individual low-level features.

2. Related works
A majority of previous work uses models of body parts

to enable the tracking algorithm to deal with frequent partial

occlusions. Zhao [19] addressed minor partial occlusions

by fitting a part-based model of the human body against

partial observations to track the movement of a human

body. Several learning schemes have also been proposed

that use part-based detectors to track partially occluded peo-

ple [9, 14, 18]. These approaches were shown to be effective

in detecting pedestrians in cluttered outdoor scenes. How-

ever, these methods also require that models be learned in

advance.

In Dong et al.’s work [5], multiple pedestrian detection

was achieved by estimating the number and positions of

people from a large foreground blob by using a shape model

of the human body. Khan et al. [7] proposed a homography-

based method using multiple cameras to fit a predefined hu-

man body model to the foreground blob. However, when

dealing with crowded situations it may be difficult to ac-

quire meaningful foreground blobs.

To deal with the uncertainty involved with detecting peo-

ple, a number of particle filtering algorithms [6, 8, 12] have

also been proposed. However, the performance of these sys-

tems is degraded when a significant portion of the target is

not visible due to heavy occlusion. Work using optical flow

[3, 15] has also been proposed to compute the motion of

local features to make the system more robust to partial oc-

clusions. However, like other methods they do not take into

account the rich information encoded in feature trajectories

taken over a longer duration of time.

Ali et al. tracked individuals by using transition proba-

bilities based on floor fields which describe the macroscopic

movement of people in a crowded scene [1]. Methods us-

ing floor fields usually target extremely dense crowds (e.g.,

100’s - 1000s of people running a marathon) where the indi-

viduals are very small and motion is restricted by dominant

motion flow. In contrast, we target crowds under 50 people,

like crowds observed at a busy intersection or a crowded

subway platform.

In other approaches, Brostow et al. tracked people in

crowds by clustering trajectories of local image feature

points under a Bayesian framework [2]. Specifically, the

spatial proximity between a pair of feature trajectories are

used to compute a prior probability, while the likelihood is

calculated using the motion coherency between feature tra-

jectories. Their experiments showed robust tracking of peo-

ple in a crowded subway station. Rabaud et al. [13] also

segmented people in crowds by using motion coherency

and identified individuals using the assumption that features

from a single person will have the same affine motion. Li et
al. implemented a similar framework as Brostow but also in-

corporated a mechanism to learn the likelihood function of

the motion coherency metric [10]. However, when we deal

with dense crowds of people, the use of motion coherency

(similarity between motion trajectories) is not sufficient be-

cause individuals are constrained to move together.

Therefore, in contrast to previous work we introduce two

new metrics, namely the gait frequency features and the

temporal consistency of local appearance patches, to enable

our system to deal with dense crowds where motion trajec-

tories of individuals are similar.

3. Clustering feature trajectories to track indi-
viduals

We track individuals in a crowd by clustering a graph

representing a set of feature trajectories extracted from each
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(a) (b) (c)
Figure 2. Graph clustering: (a) The initial graph is constructed by using the set of feature trajectories in the time window τ . (b) The final

result by pruning the edges with its edge weight, where the circles represents clusters (individuals). (c) An example of the initial connected

graph in a real sequence. Each red node represents a feature trajectory and the blue lines are the set of edges in the graph.

time window of a video sequence (Figure 2).

First, the KLT tracker is used to generate a set of tra-

jectories of feature points [16, 17] within a specified time

window of a video sequence. New feature points are also

generated for every frame within the time window to ensure

that a sufficient number of trajectories are extracted from

the sequence, as was done in [13]. The set of trajectories is

then reduced by eliminating trajectories that are relatively

static (background features), trajectories with unreasonably

high velocity and trajectories with short duration.

The initial graph is constructed from the resulting set of

trajectories. Each node of the graph corresponds to a sepa-

rate trajectory, and the edges connecting the nodes are ob-

tained via Delaunay triangulation [4]. An example of the

graph is shown in Figure 2-(c).

An edge connecting two nodes p and q is assigned a

weight representing the dissimilarity between the corre-

sponding trajectories based on the four metrics: (1) gait fea-

tures, (2) temporal consistency of local patch appearance,

(3) spatial proximity and (4) coherency of motion (similar

to [2]). Assuming that we are given these weights, the total

edge weight is computed as the product of each individual

weight.

ep,q = ep,q
freq · ep,q

app · ep,q
prox · ep,q

coh , (1)

where the right hand side of (1) denotes the weight based on

the gait feature ep,q
freq , the local appearance weight ep,q

app, the

the spatial proximity ep,q
prox and coherency of motion ep,q

coh,

respectively. The details of these metrics are given in sec-

tion 4. Note that, if one of the individual weights is zero,

the dissimilarity ep,q always becomes zero regardless of the

dissimilarities based on other metrics. To avoid this, each

individual weight is replaced with a predetermined value

emin if the weight is smaller than a certain value.

The graph is then clustered into connected sub-graphs,

each of which corresponds to each individual moving in the

scene. This is done by simply pruning a set of edges that

have high edge weights, i.e., high dissimilarity scores, by

using a threshold thp. Figure 2 (a) and (b) show an ex-

ample of a graph before and after pruning. Currently our

method processes a set of feature trajectories bounded by

a finite time window τ , which spans equally forwards and

backwards in time with respect to the current frame. The

time window is shifted by τ/4 to process a video sequence,

which means that the clustering is performed every τ/4
frames.

4. Discovering individuality via edge weights

The edge weight between two trajectories (nodes) are

computed based on gait features, local appearance, spatial

proximity and motion coherency, to determine whether they

belong to the same person or not. We explain these mea-

sures in this section and show how these measurements can

characterize the unique traits of individuals being tracked.

4.1. Gait features in the frequency domain

Gait features in the frequency domain are highly discrim-

inative and can be effective in characterizing the individu-

ality of a person in a crowd. In our method, we use the

term “gait” in a broad sense to refer to the general manner

in which a person walks. In particular, we utilize that peri-

odic motion of an individual along with the vertical axis as

the gait feature.

To determine the gait feature for a given trajectory, we

first fit a line to the trajectory via linear regression (depicted

in Figure 3) and then extract the periodic component yp(t)
of the trajectory. We then apply the Fast Fourier Transform

(FFT) to the residual periodic signal yp(t) to find the ampli-

tude spectra and phase of the trajectory.

The dissimilarity of a pair of trajectories is evaluated us-

ing both the dissimilarity between the amplitude spectra and

the dissimilarity between the peaks for each frequency’s

phase. The Euclidean distance, which is commonly used

in biometrics for identification of people (e.g. [11]), is used

to measure the dissimilarity of the amplitude spectra. The
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Figure 3. Pre-processing for measuring the gait features in fre-

quency domain. Line fitting for removing linear motion compo-

nent of feature trajectory (left image). Extracted periodic motion

yp(t) (right image).

final dissimilarity metric of a pair of trajectories for the gait

features ep,q
freq is given as

ep,q
freq =

√√√√τ/2∑
k=0

[ap
k − aq

k]2 · (|φp − φq |) , (2)

where ap
k and φp denote the k-th component of the ampli-

tude spectrum and the phase of the peak frequency with the

largest amplitude of the p-th feature trajectory, respectively.

Note that we only need to consider a single side of the fre-

quency band for a real signal.

4.2. Temporal variation of local appearance

While gait features are highly effective for characterizing

pedestrians in a crowd, gait features for neighboring pedes-

trians can still become similar when the crowd is dense.

Therefore, we introduce another metric based on the tem-

poral variation of local appearance to deal with such cases.

In our method, the temporal variation of local appear-

ance is measured to quantify the change in appearance of a

sequence of small triangular patches bounded by three ad-

jacent trajectories. A visualization of a sequence of trian-

gular patches is given in Figure 4. A sequence of patches

corresponding to a region straddling two people is expected

to have higher variation when compared to a sequence of

patches that are extracted from one individual. Here we use

the temporal variation of a hue-saturation color histogram

across the sequence of patches. To be specific, the RMS

of the Bhattacharyya distance between the color histogram

h(t) and the average color histogram h̄ of the patch within

the time window, is used to define the dissimilarity ep,q
app for

a sequence of patches as

ep,q
app =

√√√√1
τ

ts+τ−1∑
t=ts

d2
hist(h(t), h̄) , (3)

where ts is the index of the first frame within the time win-

dow, and dhist(·, ·) is the Bhattacharyya distance between

two histograms. Since each edge (the weight between two

Figure 4. A sequence of triangular patches used to measure the

variation of appearance over time. Each vertex of a triangular

patch is created by the trajectory of three adjacent features.

trajectories) can potentially be shared by up to two adja-

cent patches, the largest dissimilarity score among those

two patches is used as the dissimilarity score ep,q
app for that

edge.

4.3. Spatial proximity and motion coherency

We also make use of spatial proximity and coherent mo-

tion, borrowing from previous work with crowds [2], to

evaluate the dissimilarity between pedestrian trajectories.

Since, a pair of feature trajectories are likely to remain in

close proximity if they belong to the same person, we use

the maximum displacement between a pair of feature tra-

jectories within a time window as the dissimilarity measure

ep,q
prox. We also use the standard deviation of the distance

between two trajectories over the time window, to measure

the dissimilarity with respect to motion coherency ep,q
coh.

5. Experimental results
In order to demonstrate both the effectiveness and ro-

bustness of our method, we tested our approach using both

synthetic and real video sequences of crowds. To show the

improvements made by our proposed system, we make a

comparison with a baseline system that uses a similar setup

as [2] (i.e., motion coherency and spatial proximity). Our

experiments were run on a Windows PC with an Intel Core

2 Quad 2.66GHz CPU and 3 GB of RAM.

5.1. Baseline comparison

5.1.1 Effect of using gait features

To examine the effectiveness of the gait features, we tested

our tracking algorithm on a scene in which two synthetic

targets move in close proximity in the same direction. Each

target is made to bob up and down at different frequencies.

Since we are analyzing the advantage of using the gait fea-

tures, we do not use the temporal variance of local appear-

ance for these experiments.

Figure 5 shows the improvement in tracking caused by

the use of the gait features. In Figure 5-(a) we can see that
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(a) (b)
Figure 5. Effect of using gait features. (a) Two targets are prop-

erly tracked by using the gait features. (b) Neighboring targets are

mistakenly tracked as one target without the use of gait features.
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Figure 6. Histogram distance of two local patches over time. The

red crosses represent a patch located on one target in contrast to

the green x’s which represent a patch which straddles two targets.

There is more variation in appearance when the patch straddles

two targets.

the use of the gait features allows our method to success-

fully track the two targets. In contrast, it can be observed in

Figure 5-(b) that without the use of gait features, the base-

line algorithm tracks the two targets as one large moving

target.

5.1.2 Effect of using temporal consistency of local
patches

Next we simulate the extreme case where two targets move

in the same direction with exactly the same gait frequency

to show the effectiveness of using the temporal consistency

of local appearance patches. In this experiment, the base-

line system used gait features in addition with motion co-

herence and spatial proximity to observe the contribution of

using temporal consistency of local appearance patches to

the tracking performance.

Figure 6 shows the histogram distances for two patches,

where one patch lies on a single target (series of red crosses)

and the other patch straddles the two targets (series of green

x’s). We observe from the results that the temporal consis-

tency of appearance is a highly discriminative indicator of

whether or not the patch (and therefore the features) lie on

the same target.

5.2. Real crowd sequences

Now we test the performance of our method using 4 dif-

ferent video sequences of real crowds of people. 3 of the

sequences we tested, which we call sequence (A), (B) and

(C), are taken at different locations and the difficulty of the

tracking task increases from sequence (A) to (C). Sequence

(A) is a relatively sparse crowd with about 14 pedestrians.

Sequence (B) contains a denser crowd of about 22 people

and includes significant partial occlusion. The most chal-

lenging sequence (C) contains about 30 people crossing an

intersection from different directions with heavy occlusion.

In addition to the 3 sequences, we also ran tests using the

UCSD dataset [13]. The specifications of each video se-

quence and the parameters used for each experiment are

given in Table 1 and Table 2, respectively. We set the thresh-

olds for pruning edges thp as half of the median value com-

puted from the set of the edge weights ep,q. We ensure that

a typical gait cycle (about 1 sec.) is contained in the time

window (τ ) by setting the time widow to cover at least one

second, as in [11].

We evaluated the tracking results using the recall and

precision rates, which are given in Table 3 and in Figure 7.

The number of true positives is the number of people who

are correctly detected (one cluster detected for one person).

When a person is not detected (no clusters detected on a

person) this is counted as a false negative. We defined two

kinds of false positives (failure modes) as: (I) multiple clus-

ters are detected on a single person and (II) multiple people

are clustered as one person. Once an individual has been

observed for at least τ frames, we begin calculating the re-

call and precision rates. This is because our tracker requires

several frames to initialize tracking.

Our use of appearance consistency and gait features al-

lows our method to attain an average recall rate of 56 %.

In contrast, the recall rate of the baseline system is about

33%. We reason that the baseline tracker using only motion

coherency and spatial proximity could not handle these se-

quences because the individuals are very close to each other

and move in the same direction. Figures 8, 9, 10 and 11

compare several key frames from our approach against the

baseline system. It is observed that our system is able to

track more individuals with added stability over time.

Table 4 shows the false alarm rate for each sequence. We

can see that false negative rates are higher than false positive

rates in these examples. This is primarily due to the fact that

the non-textured clothing does not generate reliable features

enough for tracking and also makes it difficult to compute

reliable optical flow (Figure 12-(a)). As a result, the system

is prevented from tracking such individuals. We would like

to suggest that the use of color-based local feature detectors

can increase the number of reliable features generated for

tracking.

We can also observe that the type (I) false positive ac-
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Figure 7. Tracking performance via recall and precision rate: the left bar graph shows the average of recall rate for each sequence, and the

right bar graph shows the average of precision rate for each sequence. It can be observed that tracking performance is improved on each

sequence.

Table 3. Tracking results: N denotes the average of the number of people in the FOV. μ and σ represents the mean and the standard

deviation, respectively. tc denotes the average of computation time for clustering processing.

Our system Baseline

N Recall rate Precision rate Recall rate Precision rate

μ σ μ σ tc [sec] μ σ μ σ tc [sec]

Seq. (A) 14.0 0.581 0.133 0.953 0.069 30.45 0.269 0.162 0.898 0.149 4.16

Seq. (B) 22.0 0.562 0.089 0.984 0.031 28.75 0.435 0.139 0.960 0.071 4.33

Seq. (C) 29.4 0.505 0.133 0.911 0.090 10.09 0.286 0.135 0.880 0.100 2.23

UCSD 21.3 0.591 0.114 0.883 0.064 6.75 0.353 0.140 0.864 0.101 3.33

Table 1. Characteristics of the videos used in the experiments.

resolution frame rate frames

Seq. (A) 1280x720 60 700

Seq. (B) 1280x720 60 700

Seq. (C) 800x600 30 520

UCSD 720x480 30 1540

Table 2. Parameters used for our experiments with real video.

Our system Baseline

τ emin thp emin thp

Seq. (A) 64 0.1 0.27 0.1 64.8

Seq. (B) 64 0.1 1.38 0.1 560.0

Seq. (C) 40 0.1 0.68 0.1 66.6

UCSD 40 0.1 1.11 0.1 207.7

counts for the largest portion of the false positive counts. It

arises from the fact that the motion coherency of the trajec-

tories that belong to the same person may represent differ-

ent properties. In fact, there are several motions generated

by only one individual, such as swinging hands, turning of

the head and etc. This intra-person variation of the motion

coherency makes it difficult to track a single person as one

(rigid) object.

In addition, we observe that one cluster appears on the

individual’s bag and another cluster appears on the body

(Figure 12-(b)). Since the frequency characteristics are dif-

Table 4. False alarm rate. FN shows the mean of the number of

false negatives and FP shows the mean of the number of false pos-

itives ((I): multiple clusters are detected on a single person and

(II): multiple people are clustered as one person).

Our system Baseline

FN FP FN FP

(I) (II) (I) (II)

Seq. (A) 5.70 0.32 0.09 9.80 0.50 0.05

Seq. (B) 9.50 0.22 0.00 12.95 0.10 0.30

Seq. (C) 12.90 1.05 0.22 19.25 1.03 0.08

UCSD 7.33 1.35 0.33 12.94 1.04 0.19

ferent between the trajectories of the body and those of the

bag, this individual is recognized by the system as two dif-

ferent individuals.

We would like to address the issues of intra-pedestrian

variation and carried objects in our future work.

6. Conclusions

We have proposed a method for tracking individuals in

crowds by extracting a person’s unique spatio-temporal fea-

tures. In particular, a person’s individuality was represented

using a person’s gait features and the temporal consistency

of local patch appearance. Through our experiments, it was

shown that the use of the gait features was effective in dis-
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Figure 8. Tracking results on sequence (A) (left: our system, right: baseline).

Figure 9. Tracking results on sequence (B) (left: our system, right: baseline).

(a) (b)
Figure 12. Examples of failure cases. (a) Tracking fails due to the

lack of reliable feature trajectories around non-textured regions.

(b) Multiple clusters appear on one person caused by the difference

of frequency characteristics between the individual’s bag (or hand)

and the body.

criminating between individuals in a crowd. Also by mon-

itoring the visual variance of local patches over time, our

system was able to accurately track individuals in crowds

despite their similarity of motion and partial occlusion. Our

experiments with both synthesis data and real video se-

quences of crowded scenes showed that our approach is

both effective and robust for tracking individuals in crowds.
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