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Abstract. In this paper, we focus on 3D rotations on grid points com-
puted by using only integers. For that purpose, we study the intersection
between the 3D half-grid and the rotation plane. From this intersection,
we define 3D hinge angles which determine a transit of a grid point from
a voxel to its adjacent voxel during the rotation. Then, we give a method
to sort all 3D hinge angles with integer computations. The study of 3D
hinge angles allows us to design a 3D discrete rotation.
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1 Introduction

Rotations in the 3D space are required in many applications for computer im-
agery, such as image processing [13], computer vision [7,10] and computer graph-
ics [6]. A rotation in the 3D Euclidean space can be in general represented in two
different typical ways. One is to represent a rotation as a combination of three
particular rotations around the three axes of the coordinate system in concern
[14]. The other is to represent a rotation by a rotation axis together with an
angle around the axis [7,10]. Even if the representations of a rotation are differ-
ent, computed rotation results are the same as far as the space is continuous.
However, this is not the case for the discrete space. Namely, depending on the
rotation representation, the computed rotation result can change in the discrete
space [2]. As is the case of 2D rotations, computing a 3D rotation once in the
discrete space brings displacement from that in the continuous space; computing
3D rotations many times causes difficulty in analyzing inherited displacements
during the computation. Accordingly, representing a 3D rotation by a rotation
axis together with an angle around the axis is more preferable in the 3D discrete
space. Besides, it is known that such axis-angle representation is useful for 3D
rotation estimation from given image sets, which is one of important problems
in computer vision [7,10].

In [8], the author proved that a 2D discrete image have a finite number of
different rotation. This number is directly related to the number of hinge angles.
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The extension of hinge angles for the 3D space allows to obtain the same result.
This result can be useful for some problems such as the pose problem. In order to
obtain the optimal solution, the pose problem need to try all different rotation,
which is impossible in continuous space since there exists an infinity of rotation
[7]. Using hinge angles for this problem can help to reach the optimal solution.

This paper presents a study of the rotation in the 3D discrete space. Since we
admit only integer computations, we assume that our rotation center is a grid
point such as the origin, and that a rotation axis has integer coordinates. In the
2D case, hinge angles are known to correspond to the discontinuity caused by
discretisation of the rotation in the continuous plane [1,8,12]. Intuitively, hinge
angles determine a transit of a grid point from a pixel to its adjacent pixel
during the rotation. In other words, two rotations with nearby angles transform
the same grid point to two adjacent pixels because discrete rotations around a
given center are locally continuous with regard to the angle. Hinge angles are
their discontinuity angles. Computing hinge angles using integers alone allows
us to compute 2D discrete rotations without any approximation errors, which
designs the 2D discrete rotation. Extending these to the 3D case, we design a 3D
discrete rotation. In the 3D case, however, depending on the rotational axis, we
have a variety of transitions of a grid point across voxels. How to capture these
transitions systematically is a big issue.

We define hinge angles for 3D rotations so that they determine a transit of
a grid point from a voxel to its adjacent voxel. To compute the hinge angles
using integers alone, we pay our attentions to the intersection of voxels and a
given rotation plane to define convexels. The variety of transitions of a grid
point across voxels in 3D results in the variation of convexels in 2D. We then
compute the hinge angles by using the intersection between the convexel and a
locus of the rotation in the rotation plane. Finally, we give a method to sort all
the possible hinge angles in concern to design a 3D discrete rotation. Differently
from 2D discrete rotations [2,8,3], few attempts on 3D discrete rotations have
been reported [13,6]. In particular, to our best knowledge, this is the first work
on 3D discrete rotation using integer computation without digitization errors.

2 Hinge Angles

Hinge angles for 2D rotations are defined to represent the discontinuities of
rotations in the discrete plane [8]. Hinge angles determine a transit of a grid
point from a pixel to its adjacent pixel during the rotation. To characterize
those hinge angles, the 2D half-grid plays an important role.

Definition 1. The half-grid in the plane is the set of lines, each of which is
represented by one of x = i+ 1

2 and y = i+ 1
2 where i ∈ �.

In other words, the 2D half-grid represents the border between two adjacent
pixels. From the definition of the 2D half-grid, we define the hinge angles in the
plane.
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Fig. 1. All hinge angles in the first quadrant for the grid point p = (2, 1)�, such that
α1 ≈ −13.68◦, α2 ≈ 15.59◦, α3 ≈ 21.31◦, α4 ≈ 50.52◦, α5 = π

2
− α1 ≈ 76.32◦

Definition 2. An angle α is called a hinge angle if at least one point in �2

exists such that its image by the Euclidean rotation with α around the origin is
on the 3D half-grid.

Figure 1 illustrates some examples of hinge angles for the grid point (2, 1)�. It
presents all the hinge angles in the first quadrant. Note that hinge angles in
other quadrants are obtained by symmetry with respect to the x-axis and/or
y-axis from those in Figure 1.

To extend the definition of hinge angles into the 3D case, we first define the
half-grid in the 3D space. Similarly to the 2D half-grid, the 3D half-grid defines
the limit between two adjacent voxels in the 3D discrete space.

Definition 3. The half-grid in the 3D space is the set of planes, each of which
is represented by one of x = i+ 1

2 , y = i+ 1
2 and z = i+ 1

2 where i ∈ �.

Introducing the definition of the half-grid in the 3D space allows us to define
hinge angles in 3D as a natural extension of hinge angles in 2D. As mentioned in
the introduction, we only consider here 3D rotations whose rotation axes have
integer coordinates and go through the origin. Hereafter, we call such an axis an
integer-axis.

Definition 4. An angle α is called a hinge angle if at least one point in �3 exists
such that its image by the Euclidean rotation with α around an integer-axis is
on the half-grid.

Similarly to the case of 2D, for a grid point p in 3D, an angle α is a hinge angle
if and only if the discretised point of the rotation result of p with angle α + ε
becomes different from that with angle α− ε for any ε > 0.

Differently from the case of 2D rotations, we need not only a rotation angle but
also a rotation axis in order to specify a 3D rotation. This requires investigation
of the intersection between voxels and a plane determined by a given rotation
axis because a variety of transitions of a grid point across voxels exist depending
on the plane. To capture this variety, we introduce the multi-grid in the next
section, which allows us to compute hinge angles in the 3D rotation plane.
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(a) (b)

Fig. 2. The 3D half-grid cut by a plane (a), and its multi-grid (b)

3 Hinge Angles in a Rotation Plane

A 3D rotation is represented by a rotation axis and a rotation angle. Accordingly,
the 3D rotation of a given grid point is considered as the 2D rotation of the point
in the rotation plane that is defined as the plane going through the grid point
and having the normal vector parallel with the rotation axis. In this section, we
capture hinge angles in a given rotation plane.

3.1 Multi-grid

When a rotation plane in 3D is given, we consider the intersection between the
plane and the half-grid in the 3D space as illustrated in Figure 2(a). As we see,
the intersection consists of three different sets of parallel lines as illustrated in
Figure 2(b), except for cases where the normal of the rotation plane is parallel to
one of the axes defining the coordinate system of the 3D space. As such excep-
tional cases provide only two different sets of parallel lines, which are identical
with those of the 2D half-grid, we here do not take into account those cases.
In other words, in such cases, 3D rotations become identical with 2D rotations.
We call the three different sets of parallel lines a multi-grid, which is used for
characterizing hinge angles for 3D rotations instead of the 2D half-grid for 2D
rotations.

In a multi-grid, the interval between parallel lines having the same directional
vector is regular. Normalizing the interval allows us to represent a set of parallel
lines having the same directional vector as

{(x, y)� ∈ �2|ax+ by + c+ k = 0, a2 + b2 �= 0, k ∈ �, a, b, c ∈ �}. (1)

The integer parameter k denotes the index number of each parallel line. Figure 3
gives a geometrical explanation of the parameters of a set of parallel lines. For
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Fig. 3. Parallel lines of a set MA,p
i and geometric interpretation of their parameters

example, if a point (x, y)� is on one of the parallel lines, (x − k
a , y)

� is on the
k-th next line, providing that a �= 0. Now we can give a formal definition of a
multi-grid.

Definition 5. Let Mi = {(x, y)� ∈ �2|aix+ biy + ci + k = 0, a2
i + b2i �= 0, k ∈

�, ai, bi, ci ∈ �} for i = 1, 2, 3 be each set of parallel lines induced from a given
rotation plane and the 3D half-grid. Then the multi-grid M is the union of Mi:
M = ∪iMi.

The multi-grid in the rotation plane forms various convex polygons surrounded
by lines, which we call convexels. Depending on the rotation plane, we have a
variety of shapes of convexels. The shapes of convexels are investigated in [4]
under the context of the intersection of a voxel and a plane, and the number of
vertices of a convexel can be 3, 4, 5 or 6 as illustrated in Figure 4. The convexel
is the counterpart of the squared pixel defined in the 2D plane. We remark that
when the normal of the rotation plane is parallel with one of the axes defining
the coordinate system of the 3D space, the notion of convexels coincides with
the notion of pixels.

The following proposition allows us to characterize hinge angles in the frame-
work of multi-grids, instead of the half-grid.

Proposition 1. Let p be a grid point and p′ be the result of the rotation of p
by an angle α around an integer-axis. If α is a hinge angle, then p′ is on the
multi-grid.

Fig. 4. The five different shapes of convexels, which are constructed as the intersections
between a rotation plane and voxels [4]
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3.2 Hinge Angles and Multi-grids

In 2D, there exists a property on hinge angles ensuring that the locus of rotation
of a grid point cannot contain the intersection of two lines belonging to the half-
grid [8]. In this section, we show that the same property for the hinge angles in
the rotation plane holds. Namely, we show that, for a given multi-grid, the locus
of the rotation of a grid point does not go through any vertex of convexels in
the multi-grid.

Hereafter, we denote by MA,p the multi-grid defined by a rotation plane with
a normal vector A = (ax, ay, az)� going through point p = (px, py, pz)� and by
A the axis of rotation of directional vector A going through the origin.

Proposition 2. Let MA,p be a multi-grid where A ∈ �3 and p ∈ �3. Then,
the locus of the rotation of p around A does not go through any vertex of the
convexels on MA,p.

Proof. The equation of the rotation plane P of MA,p is axx+ayy+azz−A.p =
0. Let p′ = (p′x, p

′
y, p

′
z)

� be a point which belongs to the locus of the rotation of
p in P around A. Let us assume that p′ is also a vertex of a convexel of MA,p,
so that it belongs to two planes of the 3D half-grid. Thus we can set, without
loss of generality, that p′x = kx + 1

2 and p′y = ky + 1
2 where kx, ky ∈ �, and then

p′ = (kx + 1
2 , ky + 1

2 , p
′
z)

�.
The locus of the rotation of p is the intersection between P and the sphere S:

x2 + y2 + z2 − (p2
x + p2

y + p2
z) = 0. Thus, by the assumption that p′ belongs to P

and S, we have

ax
(
kx +

1
2
)

+ ay
(
ky +

1
2
)

+ azp
′
z −A.p = 0, (2)

(
kx +

1
2
)2 +

(
ky +

1
2
)2 + p′2z − (p2

x + p2
y + p2

z) = 0. (3)

From (2) we see that p′z must be a rational number, so that there exists a pair
of integers λ1, λ2 such that p′z = λ1

λ2
and gcd(λ1, λ2) = 1. From (3) we see that

p′2z + 1
2 must be an integer. Thus we have

p′2z =
λ2

1

λ2
2

= k +
1
2
, (4)

where k, λ1, λ2 ∈ �. Since gcd(λ1, λ2) = 1 and 2λ2
1 = (2k + 1)λ2

2, λ2 must
be even. Setting λ2 = 2λ′2 where λ′2 ∈ �, we then obtain 2λ2

1 = 4(2k + 1)λ′22
and deduce that λ1 must be also even, which contradicts the assumption that
gcd(λ1, λ2) = 1.

Therefore we can conclude that there is not such a point p′. ��
This proposition shows that two adjacent convexels, where the transition of p
during its rotation is done between them, always share a convexel edge. In other
words, the circle of p around A passes through a sequence of voxels such that
any successive voxels are connected by their common face.
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4 Integer Representation of Hinge Angles

The goal of this section is to show how to obtain the unique representation of
an integer quintuplet for a 3D hinge angle, namely an injective map from hinge
angles to quintuplets. We first explain how to obtain the equations representing
lines in a multi-grid provided that the rotation plane is given. Then, we represent
3D hinge angles using five integers and then explain how to decode them to
obtain the hinge angle. Note that the rotation plane is defined by a normal
vector A and a point p on the plane, and we assume in the following that A and
p are given. Thus a multi-grid is denoted by MA,p = ∪i=1,2,3MA,p

i .

4.1 Multi-grid Line Equations

In Section 3, we explained that we do not consider the cases where the vector
A is collinear with an axis defining the coordinate system in concern, so that
lines in MA,p

i are not orthogonal to those in MA,p
j where i �= j. To simplify the

derivation of line equations in MA,p
1 , we introduce a base where lines in MA,p

1

are parallel with the y-axis. Note that the same discussion can be applied to
MA,p

2 and MA,p
3 .

Let A = (ax, ay, az)� and p = (px, py, pz)� in the standard orthonormal base
B and the plane P with normal vector A that going through p. Assuming lines
in MA,p

1 come from the intersection between P and the planes of the 3D half-
grid that are parallel to yz-plane, we obtain the directional vector v1 of lines in
MA,p

1 as v1 = A∧e1 where e1 = (1, 0, 0)�. We set v2 = v1∧A
‖A‖ , which is linearly

independent of v1. Note that each of v1 and v2 is orthogonal with A.
We introduce a new base B1 in such a way that v1 and v2 respectively become

u1 = (1, 0)� and u2 = (0, 1)� in P . The transformation from B to B1 is realized
by

MBB1 =

(
0 az

a2
y+a2

z

−ay

a2
y+a2

z

−ψ ψaxay

a2
y+a2

z

ψaxaz

a2
y+a2

z

)

, (5)

where ψ = 1√
a2

x+a2
y+a2

z

. We remark that A is transformed to (0, 0)� by MBB1 ;

the rotation center in P thus becomes the origin of B1.
Applying MBB1 to the plane x = k(k ∈ �) induces a line in MA,p

1 whose
equation is

ψ(a2
y + a2

z)y + k −A.pψ2ax = 0, (6)

where k ∈ �.
Changing the roles between MA,p

1 and MA,p
2 (MA,p

3 , resp.) and between e1

and e2 = (0, 1, 0)� (e3 = (0, 0, 1)� resp.), we obtain the line equations for MA,p
2

and MA,p
3 with the bases Bi and the transformation matrices MBBi for i = 2, 3:

ψ(a2
x + a2

z)y + k −A.pψ2ay = 0, (7)
ψ(a2

x + a2
y)y + k −A.pψ2az = 0, (8)

where k ∈ �.
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We remark that if A is collinear with one of the axes defining the coordinate
system of the 3D space, MBBi degenerates: the rank of MBBi becomes 1. In
such cases, 3D rotations become identical with 2D rotations, which are not our
concern here.

4.2 Quintuplet Integer Representation of Hinge Angles

A hinge angle in a given rotation plane is represented by a quintuplet of integers
(px, py, pz, i, k) given by α(px, py, pz, i, k). Namely, we keep the coordinates of p
and the information required for obtaining the coordinates of the arriving point
i after the rotation of p by α. The first three integers px, py, pz represent, in
the old basis B, the coordinates of p. The fourth integer i indicates the index
number for the set MA,p

i , i = 1, 2, 3, where the hinge angle α is defined. The last
integer k represents the index number of the line in MA,p

i .
From these five integers, we can obtain, in the basis Bi, the coordinates

(Px, Py)� and (Ix, Iy)� of points p and i which define α as represented in
Figure 5. The coordinates of p in Bi are obtained by applying MBBi to the
coordinates of p in B. The coordinate Iy is obtained from one of (6), (7) or
(8) depending on i. Since i belongs to the locus of the rotation of p, we have
I2
x + I2

y = P 2
x + P 2

y and deduce the value of Ix.
In general, Ix can take two values which define two points. To discriminate

two different hinge angles corresponding to these two points by their integer
quintuplets, we add the positive sign to the fourth integer for the greater Ix and
the negative sign for another value of Ix. If Ix = 0, then the two points merge
into one. This particular case where the locus of the rotation of p is tangent with
the k-th line of MA,p

i does not define a hinge angle since there is no transition
of convexel. Hereafter, the representation of hinge angles by integer quintuplets
will be denoted by α(px, py, pz,±i, k).

Note that according to Proposition 2 we know that any hinge angle cannot ro-
tate a grid point to the intersection between two lines of a multi-grid. Therefore,
two different integer quintuplets cannot represent the same hinge angle.

4.3 Rational Multi-grids

In Section 4.1, we obtained (6)-(8) for the lines in the multi-grid MA,p. In
general, parameters of these equations belong to �. However in order to use
only integers during computation, we need these parameters to belong to �.

If all elements of MBBi belong to�, then all the parameters of (6)-(8) become
rational, so that Px, Py, Iy ∈ �. Even if Ix /∈ �, I2

x ∈ � because I2
x = P 2

x +P 2
y −

I2
y . Accordingly, computation can be realized as far as we use I2

x. In order to
obtain rational parameters in MBBi we set A to be a prime Pythagorean vector;
a vector v = (i1, i2 . . . , in)�, i1, i2, . . . , in ∈ �, is a Pythagorean vector if ‖v‖ = λ
where λ ∈ �, and a Pythagorean vector v is prime if gcd(i1, i2, . . . , in, λ) = 1.
Note that a rotation axis whose directional vector is such a prime Pythagorean
vector is called a Pythagorean axis. This assumption ensures that A.p becomes
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Fig. 5. A hinge angle α for a point p in a rational multi-grid

a rational value. We call a multi-grid defined from a Pythagorean axis a rational
multi-grid.

In the following, we assume that all hinge angles are obtained in a rational
multi-grid. In the next section we explain how rational multi-grids allow us
to compare a pair of hinge angles using only integer computations in order to
present a 3D discrete rotation algorithm.

5 3D Discrete Rotations around a Pythagorean Axis

In this section, we develop a 3D discrete rotation. This rotation is the extension
to the 3D space of the 2D discrete rotation given in [12]. In order to estimate the
complexity of the algorithm described in this section, we need to estimate the
number of hinge angles existing for the image to rotate. In the case of 2D hinge
angles, the upper bound of the number of different hinge angles for an image is
given in [1,8]; we will use a similar method. Our algorithm, to be efficient, needs
to compare a pair of hinge angles in constant time. Besides, in order to keep
integer computation, we need that the comparison is done using only integers.
Note that the hinge angle comparison in constant time is not indeed trivial due to
our integer computation constraint. After giving the upper bound of the number
of hinge angles for an image, we will show how to compare a pair of hinge angles
in constant time and with integer computation, and then present a 3D discrete
rotation algorithm for a given image.

In Section 5 we assume that A is given to be a prime Pythagorean vector.

5.1 Comparing Hinge Angles with Integer Computations

From the integer representation of hinge angles we can obtain the sine and
cosine of a hinge angle α(px, py, pz,±i, k). The following equations are derived
from Figure 5:

cosα =
PxIx + PyIy
P 2
x + P 2

y

, (9)
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sinα =
PxIy − PyIx
P 2
x + P 2

y

, (10)

where Px, Py, Ix, Iy are values obtained as described in Section 4.2.

Proposition 3. Let α1 and α2 be two hinge angles defined for A. Then it is
possible to decide if α1 > α2 using only integer computations.

Proof. Let α1 = α(p1x, p1y, p1z,±i1, k1) and α2 = α(p2x, p2y, p2z,±i2, k2).
Comparing α1 and α2 is equivalent to comparing their sines and cosines which
are given in (9) and (10). First we compare the signs of both sine and cosine
between α1 and α2. If the sines and cosines of both angles have different signs,
then we can conclude whether α1 > α2 without other computation. Otherwise,
without loss of generality, we can assume that both α1 and α2 belong to [0, π2 ],
so that cosαi ≥ 0 and sinαi ≥ 0 for both i = 1, 2. As the method for comparing
two sines is similar to the one for comparing two cosines, we will only show the
later one.

If α1 is greater than α2, cosα2 − cosα1 > 0. Thus we have, from (9),

(P 2
1x + P 2

1y)(P2xI2x + P2yI2y) > (P 2
2x + P 2

2y)(P1xI1x + P1yI1y). (11)

For simplicity, let A1 = (P 2
1x + P 2

1y)P2xI2x, B1 = (P 2
1x + P 2

1y)P2yI2y, A2 =
(P 2

2x + P 2
2y)P1xI1x and B2 = (P 2

2x + P 2
2y)P1yI1y. Note that A2

1, B1, A
2
2, B2 ∈ �.

Now (11) is rewritten as
A1 +B1 > A2 +B2. (12)

Squaring both sides of (12) since they are not negative, and moving rational
values to the left-hand side and irrational values to the right-hand side, we obtain

A2
1 +B2

1 −A2
2 −B2

2 > 2A2B2 − 2A1B1. (13)

If the left-hand side and the right-hand side of (13) do not have the same sign,
then we can conclude whether α1 > α2 or α2 > α1. We can check the sign of
both sides of (13) with integer computations since the left-hand side contains
only rational numbers and the sign of the right side is the same as A2

2B
2
2 −A2

1B
2
1

which also contains only rational numbers. If signs of both sides are the same,
assuming that they are positives, we square both sides of (13) to obtain

(A2
1 +B2

1 −A2
2 −B2

2)2 − 4A2
1B

2
1 − 4A2

2B
2
2 > −8A1B1A2B2. (14)

If the sign of the left-hand side of (14) is positive, we can deduce that α2 > α1.
Otherwise, taking the square of each side gives us

[
(A2

1 +B2
1 −A2

2 −B2
2)2 − 4A2

1B
2
1 − 4A2

2B
2
2

]2
< 64A2

1B
2
1A

2
2B

2
2 . (15)

We note that we can easily verify whether (15) is satisfied with integer compu-
tation alone. If (15) is true, α1 < α2; otherwise α2 < α1. The same logic can
be applied to the case where the signs of the both sides of (13) are negative. ��
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Thanks to Proposition 2, a hinge angle cannot have two quintuplet integer rep-
resentations. Thus we can conclude that the comparison of a pair of hinge angles
α1, α2 is always possible with integer computation if they have different quintu-
plets.

Note that the comparison of a pair of hinge angles is done in constant time
because in the worst case, we only have to check (13),(14) and (15). It seems
obvious that the comparison is done in constant time. However, keeping integer
computation may increase the number of necessary comparisons. From Proposi-
tion 3, we now have a guarantee of a constant number for each comparison.

In the 2D case, is it known that the comparison between a hinge angle and a
Pythagorean angle can be also done using only integers during its computation
and in constant time. An angle is a Pythagorean angle if its sine and cosine belong
to � [8]. In the 3D case, the similar proposition is still valid. This proposition
is required for our algorithm of 3D discrete rotation.

Proposition 4. Let α be a hinge angle and θ be a Pythagorean angle defined
for A. Then it is possible to decide if α > θ in constant time with integer com-
putations.

The proof of Proposition 4 is similar to the proof on comparison for a hinge
angle and a Pythagorean angle in the plane [12]. Due to the page limitation, we
skip the proof.

5.2 Upper Bound of the Number of 3D Hinge Angles

In the 2D case, the upper bound of the number of hinge angles for a given image
of size m × m is known to be O(m3) [8]. This is obtained by computing the
bound for the furthest point from the origin in the image and multiplying this
bound by the number of points in the image. To compute the number of hinge
angles in the 3D case, we will use a similar method.

In the 3D case, we assume that an image of size m × m × m is given. The
number of hinge angles for a given point p depends on the distance between p
and the axis of rotation A. Therefore, we define the distance function d(p) that
is the Euclidean distance between A and p. Then, the rotation of p around A
intersects at most 3�d(p)� planes of the half-grid and defines at most 6�d(p)�
different hinge angles. Because d(p) ≤ √

3m, the upper bound of the number of
hinge angles for any point in the image is 6

√
3m. Accordingly, we can conclude

that the upper bound of the number of hinge angles for a given image of size
m×m×m is 6

√
3m4; thus O(m4).

5.3 3D Discrete Rotations Induced by Hinge Angles

In this section, we explain how to design a discrete rotation of a 3D digital image
using hinge angles for a given Pythagorean axis of rotation. This method is the 3D
extension of the 2D discrete rotation described in [12]. As input of such discrete
rotation, we have a digital image I of size m ×m ×m, a vector A, supposed to
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Algorithm 1. Rotation of a 3D image around an integer-axis whose direction
is A by a Pythagorean angle θ
Input: An image I, a vector A, a Pythagorean angle θ
Output: A rotated image I ′

1: L<- An empty list;
2: for all Points p in I do
3: Compute the three generic equations (6)-(8) of MA,p

1 ,MA,p
2 ,MA,p

3 ;
4: for all k-th lines in MA,p

i , i = 1, 2, 3 do
5: Compute all hinge angles corresponding to p and the k-th line
6: of MA,p

i and add α(px, py, pz,±i, k) to the list L;
7: end for
8: Sort hinge angles corresponding to p;
9: Search in L the greatest hinge angle α which is smaller than θ;

10: Copy the image value from p to the rotated point with α in I ′

11: end for
12: return I ′;

be a prime Pythagorean vector, and an angle θ supposed to be Pythagorean [8].
The assumption that the rotation axis is a Pythagorean axis and the angle is a
Pythagorean angle does not restrict the field of possible rotations because in [11]
it is proved that the Pythagorean vectors are dense in the 3D space and in [5] it
is proved that any angle can be approximated with a small difference ε > 0 by a
Pythagorean angle. The output is a rotated digital image I′.

The rotation algorithm is described in Algorithm 1. For each point p =
(px, py, pz)� in the image, the algorithm computes the corresponding multi-grid
MA,p and search for each line k-th in MA,p

i , i = 1, 2, 3, a pair of hinge an-
gles α(px, py, pz,±i, k). Then we stock and sort all hinge angles corresponding
to p using Proposition 3. The algorithm searches in the sorted list the great-
est hinge angle α which is smaller than θ using Proposition 4. This operation
can be done using only integer computations thanks to our assumption that θ
is a Pythagorean angle. Finally the new point after the rotation of p by α is
generated in I ′.

The time complexity of this algorithm is O(m4 logm). The computation and
the sorting of all hinge angles for each point is done in O(m logm) operations
because the comparison between two hinge angles is done in constant time ac-
cording to Proposition 3. Searching the largest hinge angle α smaller than θ is
done in O(m) operations because the comparison between a hinge angle and
a Pythagorean angle can be performed in constant time according to Proposi-
tion 4. Therefore, the time complexity of this algorithm is O(m4 logm) because
we repeat m3 times the previous operations.

Note that Algorithm 1 describes a classic rotation. In [8], the author describes
a 2D incremental rotation that allows obtaining all possible configurations of 2D
discrete rotations for a given image. Hinge angles on rotation planes also allow
us to design a 3D incremental discrete rotation.
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6 Conclusion

In this paper, we extended the notion of hinge angles, introduced for 2D discrete
rotation in [8,12] to the 3D. Extension of hinge angles from the 2D to 3D space
involves many problems because most of properties of 2D hinge angles are not
valid for 3D hinge angles. In order to regard hinge angles in the 3D space similarly
to the 2D ones, we introduced the notion of a multi-grid that is the intersection
of the 3D half-grid and a rotation plane. By redefining the hinge angles on the
rotation plane, which are the extension of hinge angles for the rotation in 2D, we
showed a subgroup of the multi-grids where all parameters are rational, called
rational multi-grids. This subgroup allows us to compare two hinge angles on
rotation planes in constant time by using integer computations. It also allows us
to design a 3D discrete rotation.

In [9], the authors studied particular configurations induced by 2D discrete
rotations, which provided their periodicity and neighborhood properties. Our
future work will be, by using multi-grids and 3D hinge angles, to extend their
work to 3D discrete rotations.

References

1. Amir, A., Butman, A., Crochemore, M., Landau, G.M., Schaps, M.: Two-
dimensional pattern matching with rotations. Theor. Comput. Sci. 314(1-2), 173–
187 (2004)

2. Andres, E.: Cercles discrets et rotations discrètes. PhD thesis, Université Louis
Pasteur, Strasbourg, France (1992)

3. Andres, E.: The quasi-shear rotation. In: Miguet, S., Ubéda, S., Montanvert, A.
(eds.) DGCI 1996. LNCS, vol. 1176, pp. 307–314. Springer, Heidelberg (1996)

4. Andres, E., Sibata, C., Acharya, R., Shin, K.: New methods in oblique slice gener-
ation. In: SPIE Medical Imaging 1996. SPIE, vol. 2707, pp. 580–589 (1996)

5. Anglin, W.S.: Using pythagorean triangles to approximate angles. American Math-
ematical Monthly 95(6), 540–541 (1988)

6. Chen, B., Kaufman, A.: 3d volume rotation using shear transformations. Graphical
Models 62, 308–322 (2000)

7. Hartley, R., Kahl, F.: Global optimization through rotation space search. Interna-
tional Journal of Computer Vision 82(1), 64–79 (2009)

8. Nouvel, B.: Rotations discrètes et automates cellulaires. PhD thesis, Ecole Normale
Supèrieure de Lyon, France (2006)

9. Nouvel, B., Rémila, E.: Configurations induced by discrete rotations: periodicity
and quasi-periodicity properties. Discrete Applied Mathematics 147(2-3), 325–343
(2005)

10. Schmidt, J., Niemann, H.: Using quaternions for parametrizing 3-d rotations in
unconstrained nonlinear optimization. In: VMV 2001: Proceedings of the Vision
Modeling and Visualization Conference, Aka GmbH, pp. 399–406 (2001)

11. Thibault, Y., et al.: Density of pythagorean n-tuples (in preparation)
12. Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing upper and lower bounds of

rotation angles from digital images. Pattern Recognition 42(8), 1708–1717 (2009)
13. Toffoli, T., Quick, J.: Three-dimensional rotations by three shears. CVGIP: Graph-

ical Model and Image Processing 59(2), 89–95 (1997)
14. Voss, K.: Discrete Images, Objects and Functions in Zn. Springer, Heidelberg (1993)


	Hinge Angles for 3D Discrete Rotations
	Introduction
	Hinge Angles
	Hinge Angles in a Rotation Plane
	Multi-grid
	Hinge Angles and Multi-grids

	Integer Representation of Hinge Angles
	Multi-grid Line Equations
	Quintuplet Integer Representation of Hinge Angles
	Rational Multi-grids

	3D Discrete Rotations around a Pythagorean Axis
	Comparing Hinge Angles with Integer Computations
	Upper Bound of the Number of 3D Hinge Angles
	3D Discrete Rotations Induced by Hinge Angles

	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




