
Combinatorial optimization for fitting
digital line and plane

Rita Zrour∗, Yukiko Kenmochi∗, Hugues Talbot∗

Ikuko Shimizu†

Akihiro Sugimoto‡
∗ Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, ESIEE Paris - CNRS, France

†Tokyo University of Agriculture and Technology, Japan
‡National Institute of Informatics, Japan

Abstract—We present a method for fitting a digital line/plane
from a given set of 2D/3D grid points. In the framework of discrete
geometry, a digital line or plane is defined as a set of grid points
located between two parallel lines or planes separated by a small
distance. Our purpose is to identify such a pair of Euclidean
lines/planes that represents a given set of points. This problem is
formulated as a mixed integer/linear programming problem, with
the objective to maximize the number of points between the two
lines/planes.

I. INTRODUCTION

In the computer vision literature, recognition of straight lines
and planes has been studied for decades. Since digital images
always contain outliers, most robust recognition algorithms
are based on statistical methods and solved by optimization
methods using, for example, regression tools such as least
squares, least absolute deviation, and least median of squares
linear regression [9]. Most of these algorithms work in a
continuous space. However since the data are digital, it seems
logical to work with a digital model rather than a continuous
one. Recently, purely discrete formulation of many classical
and novel image processing problems has been proposed under
the heading of ”discrete geometry” [1]. In this domain, work is
accomplished on discrete data within a discrete space. In other
words, we don’t have any digitization error since we treat only
grid points whose coordinates are represented as integers.

In a discrete space, a digital line/plane is defined as a
set of grid points located between two parallel lines/planes
separated by a small distance [1], [7]. In discrete geometry,
several algorithms were proposed for recognizing a digital
line or plane for a given grid point cloud [3], [8]. They are,
for example, based on linear programming or computational
geometry using convex hulls or other geometrical properties.
Those algorithms determine if a point cloud fits to a digital
line or plane. Therefore, they are very sensitive to outliers;
if a digital image contains outliers, they simply return the
negative answer. Recently, new methods for blurred data were
introduced in the framework of discrete geometry [4], [5],
[6], [10]; for example [5] consists of minimizing the distance
between two parallel lines/planes containing all points of a
given point cloud. Therefore, outliers are not separated from a
fitted digital line/plane. In other words, there is only notion of
inliers so we cannot process outliers with these methods.

Our purpose in this paper is to fit a digital line or plane to a
given set of 2D or 3D grid points. This fitting is accomplished

by defining inliers and outliers. The work is accomplished
in a discrete space so that discretisation errors are processed
naturally. The fitting is accomplished by maximizing the inliers
and rejecting the outliers. Figure 1 shows an example of fitting
a digital line to a given set of points by rejecting the points that
are considered as outliers. In order to maximize the inliers we
use the L0-norm, unlike statistical methods that use L1-norm
or L2-norm. L0-norm considers only the binary distances 0 or
1; inliers are thus at distance of 0 while outliers are at distance
of 1. Remark that such simple distances can be used because
our model is digital. We formulate the problem into a mixed
integer linear programming that aims to find the parameters of
the digital line or plane by minimizing the number of outliers.
This formulation allows us to find an optimal solution; this
constitutes an advantage over statistical methods that work
on a continuous non integer space and sometimes yields only
approximate solutions.

This paper is organized as follows. Section II presents
discrete geometrical definitions of digital lines and planes.
Section III proposes the formulation for fitting a set of points to
a digital line or plane using the discrete geometrical definitions;
we show that our problem is written as mixed integer linear
programming problems. Section IV presents some experiments
by testing the method. Section V discusses the computational
issue. Section VI presents an improvement to consume less
computation time. Finally, Section VII states some conclusions
and perspectives.

Fig. 1. Fitting a digital line to a given set of points rejecting some points
considered as outliers

II. DISCRETE GEOMETRICAL DEFINITIONS OF DIGITAL
LINES AND PLANES

Unlike in the continous domain, in the framework of discrete
geometry, we take into account digitization errors when we

International Workshop on Computer Vision and Its Application to Image Media Processing, Tokyo, Jan., 2009 WS2-3

35

represent straight lines and planes in a digital image. In this
section we give the definitions of digital lines and planes found
in [1].

A. Digital lines

Let R be the set of real numbers. A line L in the 2D
Euclidean space is defined by:

L = {(x, y) ∈ R2 : αx+ βy + δ = 0} (1)

where α, β, δ ∈ R.
Let Z be the set of integers. Z2 denotes the set of grid points

whose coordinates are all integers in the 2D Euclidean space
R2. We now consider a digitization of L, which is given as a
grid-point subset in Z2, called a digital line. There are various
digitization techniques for a given L [1]. In this paper we adopt
a grid-line digitization with respect to L. Such a digitization
of L is given by

D(L) = {(x, y) ∈ Z2 : 0 ≤ αx+ βy + δ < ω} (2)

where ω = max (|α|, |β|). D(L) is the set of all grid points
that are closest to the intersection points of L with the grid
lines of Z2 and that are in the upper/under side of L. From
the definition, it is obvious that we obtain a unique digital line
D(L) from a given L [1].

B. Digital planes

A plane P in the 3D Euclidean space is defined by:

P = {(x, y, z) ∈ R3 : αx+ βy + γz + δ = 0} (3)

where α, β, γ, δ ∈ R.
Z3 denotes the set of grid points whose coordinates are

all integers in the 3D Euclidean space R3. Concerning a
digitization of P, which is given as a grid-point subset in Z3,
called a digital plane, we adopt a grid-line digitization similarly
to digital lines. Such a digitization of P is then given by

D(P) = {(x, y, z) ∈ Z3 : 0 ≤ αx+ βy + γz + δ < ω} (4)

where ω = max (|α|, |β|, |γ|). As with discrete line, D(P) is
unique for every P [1].

III. DIGITAL LINE/PLANE FITTING

As stated in Section I, given a finite subset S of Zn where
n = 2, 3, our purpose is to fit a digital line (2D case) or plane
(3D case) to S and to estimate its parameters. In our case, we
would like to reject some points considered as outliers of S.

A. Formulation

If S contains no outlier, in 2D, we are simply interested
in finding the solution set (α, β, δ) such that all points in S
satisfying (2). Similarly in 3D, we are interested in finding the
solution set (α, β, γ, δ) such that all points in S satisfying (4).

If S contains outliers, however, we find no solution for
any above linear inequality set. For such infeasible cases,
we proposed to use integer linear programming to solve the
problem. Integer linear programming allows us to separate the
inliers from outliers.

The 2D formulation cas be described as follows: let N be the
number of elements of S and pi be a binary decision variable

for each point (xi, yi) ∈ S, where i = 1, 2, . . . , N , such that
pi = 0 if a point (xi, yi) satisfies the linear inequalities of a
digital line; otherwise, pi = 1. The integer linear programming
problem can be described by:

[LP 1-j]

minimize
∑

i=1,...,N

pi

subject to −Mpi ≤ αxi + βyi + δ < Mpi + ω

for all i = 1, . . . , N (5)
0 ≤ pi ≤ 1 and integer (6)

where M is a large number constant.
In order to simplify (5), it is possible to divide (5) by ω =

max (|α|, |β|); this leads us to the following inequalities:

−M
ω pi ≤ α

ωxi + β
ωyi + δ

ω < M
ω pi + 1 (7)

Looking into (7), we see that four cases can be distinguished:

1) ω = |α|, α ≥ 0
2) ω = |α|, α ≤ 0
3) ω = |β|, β ≥ 0
4) ω = |β|, β ≤ 0
These four cases can be reduced into the following two cases

and (7) or (5) is rewritten as follows:
[LP 1-1] If ω = |β| (j=1),

−M ′pi ≤ α1xi + yi + δ′ < M ′pi + 1 (8)

where M ′ = M
ω , α1 = ±αω , δ′ = δ

ω or − δω + 1. These
substitutions yield the following constraint:

−1 ≤ α1 ≤ 1.

[LP 1-2] Otherwise (j=2),

−M ′pi ≤ xi + α2yi + δ′ < M ′pi + 1 (9)

where M ′ = M
ω , α2 = ±βω , δ′ = δ

ω or − δω + 1. These
substitutions impose the following constraints:

−1 ≤ α2 ≤ 1.

Regarding the 3D case, its formulation is similar to the 2D
one. Three cases are distinguished depending on the cases
where ω = |α|, ω = |β| and ω = |γ|. The integer linear
programming is described for the case ω = |α| by:

[LP 2-1]

minimize
∑

i=1,...,N

pi

subject to −M ′pi ≤ xi + α2yi + α3zi + δ′ < M ′pi + 1
for all i = 1, . . . , N (10)

− 1 ≤ α2 ≤ 1, (11)
− 1 ≤ α3 ≤ 1, (12)
0 ≤ pi ≤ 1 and integer (13)

International Workshop on Computer Vision and Its Application to Image Media Processing, Tokyo, Jan., 2009

36

where M ′ is a large number constant. If we consider the case
where ω = |β|, then we replace (10) and (11) by the following
inequalities respectively:

[LP 2-2] −Mpi ≤ α1xi + yi + α3zi + δ′ < Mpi + 1 (14)
− 1 ≤ α1 ≤ 1. (15)

If we consider the case where ω = |γ|, then we replace (10)
and (12) by the following inequalities respectively:

[LP 2-3] −Mpi ≤ α1xi + α2yi + zi + δ′ < Mpi + 1 (16)
− 1 ≤ α1 ≤ 1. (17)

It is noticed that we have two formulations in 2D and
three formulations in 3D. We may generalize that we have
n formulations in nD.

B. Algorithm

We have to solve two linear programming problems [LP
1-1] and [LP 1-2] for the 2D case, and three problems [LP
2-1], [LP 2-1] and [LP 2-3] for the 3D case. Let Fj to be
the solution of the objective function of the j-th problem [LP
n-j] for j = 1, 2, . . . , n where n = 1, 2. Once all the Fjs
are computed, the minimum among them is chosen such that
F = min

j=1,2,...,n
(Fj). It allows us to detect an optimal solution

that yields fewer outliers and fits more points into a digital line
or plane.

Algorithm 1 describes the different steps of fitting a digital
line and plane to a given set of points for the 2D and 3D cases.

Algorithm 1: Fitting a digital line or plane to a given sets
of grid points
input : A given set S of N points in (n+ 1)D for n = 1

or 2
output: The parameters α1, . . . , αn, δ

′ of the nD
hyperplane and pi of every point in S

begin1

initialize F = N ;2

for j = 1, ..., n do3

solve [LP n-j] ;4

set Fj to be the optimal value of the objective5

function;
if Fj < F then6

F = Fj ;7

set α1, . . . , αn, δ′ and pi to be the optimal8

values;

return;9

end10

IV. EXPERIMENTS

A. 2D example

Our input data is a set of points (x, y) ∈ Z2 that satisfies
y = −6x and another set of points (x, y) ∈ Z2 that satisfies
y = −x + 5. We used the free linear programming solver,
lp_solve [11] to solve each [LP n-j] problem.

As mentioned in Section III-B, we compute two Fj , j = 1, 2
in 2D and then we choose the minimum between them. Figure 2

TABLE I
PARAMETER ESTIMATION RESULTS FOR 200 POINTS OSCILLATING

BETWEEN TWO DISCRETE LINES

Number of inliers Number of outliers α1 α2 δ′

192 8 1 1 -5
182 18 1 1 -5
170 30 1 1 -5
165 35 1 0.1667 1
175 25 1 0.1667 1

shows an example of fitting a digital line to a given set of
points; between the two solutions, one is optimal since it fits
more points into a digital line.

Table I provides an example of a fitting 200 points oscillating
between the two discrete lines 0 ≤ x+ y+ 5 < 1 and the line
0 ≤ x + 0.1667y + 1 < 1. When the points move from one
line to another, the numbers of inliers and outliers change and
the line detected is the one that contains most inliers.

We also tested our method with respect to a real image
as shown in Figure 3. The image dimensions are 520 × 693.
Before applying our method, edge detection and mathematical
morphological filtering are done for this image; the number of
points in the image after this pre-processing is 1572 points. As
shown in Figure 4, our method is then applied in order to fit a
digital line to the set of points; Figure 5 shows the digital line
detected (colored red).

We compared our method with the Hough transform [12]
that is one of well-known efficient procedures for detecting
lines in images. It consists of transforming each image point
(x, y) into a curved line in the parameter space (θ, ρ) specified
by:

ρ = x cos θ + y sin θ

It has been noticed through experiments that with the Hough
transform, line detection usually requires interactive parameter
adjusting. The parameters adjustement is done by changing
the sampling intervals ∆ρ, ∆θ and the voting threshold t.
Many lines can be detected if desired. Figures 6, 7, 8 show
the Hough transformation applied to Figure 4 with different
parameter values. Depending on the parameter setting, we see
in the figures that the results are changed. If the threshold
is too high, no line is detected. In contrast with the Hough
transform, our method computes exact optimal solution without
any parameter adjustement. It is noted that with our method,
an iterative procedure can be applied in order to detect many
lines in the image. This iterative procedure is accomplished by
repeating the procedure for an optimal solution after taking off
the points corresponding to the previous optimal line.

B. 3D example

Our method is also easily adapted to the 3D case in contrast
to the Hough transform that does not scale well to 3D. The
Hough transform requires memory consumption in 3D. For the
experiments in 3D, we applied our method to a part of the same
data used in [2]. Figure 9 shows a planar surface segmentation
from a range image of blocks; the image size is 160 × 120.
We have thirteen sets of segmented points in different colors
except for those colored in light green that are detected as edge
points. Among these thirteen sets, we tried to fit a digital plane

International Workshop on Computer Vision and Its Application to Image Media Processing, Tokyo, Jan., 2009

37

Fig. 2. Two solutions are obtained by solving [LP 1-1] and [LP 1-2] when fitting a digital line to the given set of points. The first one rejects 14 outliers
while the second one rejects 6 outliers. It is thus clear that the second one gives the optimal result since it rejects less points.

Fig. 3. An original image
Fig. 4. A binary image after edge
detection and filtering done for the
image in Figure 3

Fig. 5. Digital line fitting (red line)
Fig. 6. Line fitting (colored red)
using the Hough transform with
∆θ = 3 and t=400

to seven sets colored in green, brown, turquoise and violet.
Table II shows the plane parameters for every set of points.
The ”Number of outliers” in Table II indicates the number of
points that do not fit in the plane and N indicates the total
number of points, whether they fit or not. Figures 10, 11, 12
and 13 show the digital planes obtained after the fitting for the

Fig. 7. Line fitting (colored red)
using the Hough transform with
∆θ = 1 and t=100

Fig. 8. Line fitting (colored red)
using the Hough transform with
∆θ = 1 and t=400

original set of points of Figure 9 colored green, brown, turqoise
and violet respectively. Outliers are also shown in these images;
they are colored in pink.

V. COMPUTATION TIME ANALYSIS

The formulation by a mixed integer linear programming
proves the efficiency of separating outliers from inliers while
minimizing the number of outliers. However this formulation
suffers from an important computation time when the number
of points increases. In order to fit a digital line or plane to a
given set S of N points, we need to solve all the n linear
integer programming problems that consist of minimizing∑

i=1,...,N pi. In terms of the number of variables, each of the
[LP n − j] problems has N variables (pi for i = 1, 2, . . . N)
and n + 1 variables (α1, α2, . . . , αn, δ

′). This increases the
computation time.

In section IV, for the experiments, we used a set of points
(x, y) ∈ Z2 that satisfy y = −6x and another set of points
(x, y) ∈ Z2 that satisfies y = −x + 5. It was noticed that
when the number of points N increases, the time complexity
increases. Figure 14 shows the time variation when changing
the number of points and fixing the number of outliers to 10.

International Workshop on Computer Vision and Its Application to Image Media Processing, Tokyo, Jan., 2009

38

Fig. 9. Planar surface segmentation from a range image of blocks

Fig. 10. A fitted digital plane for green points in Figure 9 Fig. 11. A fitted digital plane for brown points in Figure 9

Fig. 12. A fitted digital plane for turquoise points in Figure 9 Fig. 13. A fitted digital plane for Violet points in Figure 9

It is possible to see that the computation time increases as the
number of points increases.

The computation time also depends on the number of out-
liers. Figure 15 shows the computation time variation of [LP
1-1] and [LP 1-2] when changing the number of outliers while
fixing the number of points to 200. It should be noted that
the computation time depends on the percentage of outliers
with respect to the number of points; when the number of
outliers is around 50 percent of the intial number of points,
the computation time increases sharply. Figure 15 shows the
time when the number of outliers is less than 25 percent
or more than 75 percent of the number of points; when it
is between these two numbers, the time increases rapidly to
several hours (time not shown in the diagram since it exceeds

the y-axis range). Moreover, it should be noted that when we
increase the dimension from two to three, the time complexity
also increases, since the number of formulated [LP] problems
increases and the number of variables increases. Sometimes
many hours are needed to solve a [LP] problem which makes
Algorithm 1 impractical.

VI. IMPROVEMENT BY ADDING A CONSTRAINT

A. Problem

In most cases, each of the [LP] problems may give different
solutions and one of the solutions is optimal since it gives the
minimum

∑
i=1,...,N

pi. In other cases, more than one system may

International Workshop on Computer Vision and Its Application to Image Media Processing, Tokyo, Jan., 2009

39

TABLE II
PARAMETER ESTIMATION RESULTS FOR THE GIVEN SETS OF POINTS

Plane colors Number of points N Number of outliers α1 α2 α3 δ′

Orange 699 6 0.015573 1 -0.568409 -330.105673
Green 573 0 -0.008850 1 -0.575221 -334.061947
Brown 545 0 0.038462 1 -0.392308 -157.484615

Turquoise 536 7 -1 0.5 1 517.5
Purple 248 0 1 -0.089888 0.235955 99.202247
V iolet 232 16 0.062500 1 -0.562500 -260.312500

Mossgreen 223 0 1 -0.084856 -0.195822 -125.229765

Fig. 14. Time variation as the number of points in the point cloud
increases. Fig. 15. Time variation as the number of outliers increases.

give a similar solution which gives a minimal
∑

i=1,...,N

pi.

We cannot know in advance which system is most suitable
to the set S of points. This fact forces us to solve two [LP]
systems in 2D and three in 3D and then to find among them the
one that gives the minimum

∑
i=1,...,N

pi. The computation time

is a factor that depends not only on the number of points, but
it also depends on the percentage of outliers with respect to the
number of points (Section V). This increases the computation
time when solving the [LP] problem that does not give the
optimal fitting solution. Thus, it is likely that the method can
be improved if we can find the right [LP] problem among the
2 (2D) or 3 (3D) [LP] problems.

B. Adding a constraint

We present a solution that decreases the computation time
since it permits to detect rapidly the right equation that
minimizes the objective function

∑
pi. It consists of adding

the following constraint to each [LP] problem proposed in
Section III-A: ∑

i=1,...,N

pi = K (18)

where K is a constant that starts from 0, meaning no outliers,
and then increases until a solution is found. When a solution is
found there is no need to continue such an increment since we
are sure that the solution is optimal. This solution gives us the
faster computation time since each time the number of outliers
is fixed, by fixing the range of searching solutions for each of
the n [LP] problems (nD case). This is a good approach when
there is a limited number of outliers, which implies that at least
one of the [LP] problems has a limited number of outliers.

In such case even if the rest of the [LP] problems features
a large number of outliers, they will have no solution with
the constraint added. However when the number of outliers
is relatively large, the computation time may increase and
this approach is inefficient. Another approach is thus needed
to solve the mixed integer programming problem. Figure 16
shows the variation of time as the constant K increases while
fixing the number of points. It is possible to see that when K
increases, the computation time also increases.

Fig. 16. Time variation with respect to the constant K

VII. CONCLUSION AND PERSPECTIVES

In this paper, we present a fitting method of a given set of
grid points to a digital line or plane by formulating the problem
into a mixed integer programming. The solution satisfies all
points except for some outliers. The experimental results show
that our method is useful for the estimation of the digital
line and plane from a point cloud by determining the inliers
and rejecting the outliers. It should be noted that there is
no digitization error in the framework of discrete geometry

International Workshop on Computer Vision and Its Application to Image Media Processing, Tokyo, Jan., 2009

40

so that outliers detected are not considered to be digitization
errors. However, the algorithm proposed to solve the problem is
time consuming when the numbers of points increased. Several
solutions are expected to decrease the computation time. These
solutions should be studied and tested to see their influences on
the computation time as well as on the precision of the fitting;
they can be divided into three directions:
• Reducing the number of points or outliers: reducing the

number of points in the point cloud can be done by
applying a multi-scale approach that increases the size of
image pixel or volume and reduces the number of points;
this decreases the number of points and may allow us to
treat outliers more quickly.

• Finding some outliers in a pre-processing step: finding
outliers in a pre-processing step may reduce the com-
putation time since it decreases the parameters space.
It is accomplished by using, for example, the Hough
transform. The Hough transform will enable us to reject
outliers before applying our method formulated into a
mixed integer programming.

• Proposing a new formulation: there already exist several
well-known algorithms for fitting such as least median
of squares linear regression [9]. However, the task of
formulating the problem of finding digital lines or planes
using these methods remains to be done. This formulation
is currently under study trying to find a better and less time
consuming algorithm.

ACKNOWLEDGMENT

This work was supported in part by ANR grant SURF 05-
BLAN-0071.

REFERENCES

[1] R. Klette, A. Rosenfeld, “Digital Geometry: Geometric methods for
digital pictures analysis”, Morgan Kauffmann, San Francisco, 2004.

[2] Y. Kenmochi, L. Buzer, A. Sugimoto, I. Shimizu, “Discrete plane
segmentation and estimation from a point cloud using local geometric
patterns”, International Journal of Autumation and Computing, 5 (3),
pp.246–256, 2008.

[3] I. Debled-Rennesson, “Etude et reconnaissance des droites et plans
discrets”, Ph.D. thesis, Université Louis Pasteur, Strasbourg, France,
1995.

[4] I. Debled-Rennesson, J.L. Rémy, J. Rouyer-Degli, “Linear segmentation
of discrete curves into fuzzy segments”, Discrete Applied Mathematics,
151, pp.122–137, 2005.

[5] L. Provot, L. Buzer, I. Debled-Rennesson, “Recognition of blurred pieces
of discrete plane”, Proceedings of Discrete Geometry for Computer
Imagery, Springer-Verlag, LNCS 4245, pp.65–76, Szeged, Hungary,
2006.

[6] I. Debled-Rennesson, F. Feschet, J. Rouyer-Degli, “Optimal blurred
segments decomposition of noisy shapes in linear time”, Computer and
graphics, 30 (1), 2006.

[7] J.P. Reveillès, “Géométrie discrète, calcul en nombres entiers et algo-
rithmique”, Thèse d’Etat, Université Louis Pasteur, Strasbourg, France,
1991.

[8] L. Buzer. “An elementary algorithm for digital line recognition in the
general case”, proceedings of the 12th International Conference on
Discrete Geometry for Computer Imagery, DGCI-2005, LNCS, Springer-
Verlag, 3429, pp.299–310, 2005.

[9] W. Press, S. Teukolsky, W. Vetterling, B. Flannery, “Numerical recipes
(Third Edition)”, Cambridge University Press,

[10] A. Faure, F. Feschet, “Tangential cover for thick digital curves”, pro-
ceedings of the 14th International Conference on Discrete Geometry for
Computer Imagery, DGCI-2008, LNCS, Springer-Verlag, 4992, pp.358–
369, 2008.

[11] lp_solve. http://lpsolve.sourceforge.net/5.5/

[12] R.O. Duda, P.E. Hart, “Use of the Hough transformation to detect lines
and curves in pictures”, Communications of the ACM, 15 (1), pp.11–15,
1972.

International Workshop on Computer Vision and Its Application to Image Media Processing, Tokyo, Jan., 2009

41

