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Rotations in the discrete plane are important for many applications such as image matching or construc-
tion of mosaic images. We suppose that a digital image A is transformed to another digital image B by
a rotation. In the discrete plane, there are many angles giving the rotation from A to B, which we call
admissible rotation angles from A to B. For such a set of admissible rotation angles, there exist two angles
that achieve the lower and the upper bounds. To find those lower and upper bounds, we use hinge angles
as used in Nouvel and Rémila [Incremental and transitive discrete rotations, in: R. Reulke, U. Eckardt,
B. Flash, U. Knauer, K. Polthier (Eds.), Combinatorial Image Analysis, Lecture Notes in Computer Science,
vol. 4040, Springer, Berlin, 2006, pp. 199–213]. A sequence of hinge angles is a set of particular angles
determined by a digital image in the sense that any angle between two consecutive hinge angles gives
the identical rotation of the digital image. We propose a method for obtaining the lower and the upper
bounds of admissible rotation angles using hinge angles from a given Euclidean angle or from a pair of
corresponding digital images.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Rotations in the discrete plane are required in many applications
for image computation such as image matching, construction of mo-
saic images [2]. For the moment, the most popular method to es-
timate the rotation angle is to approximate the rotation matrix by
minimizing errors [2].

In the continuous plane, the Euclidean rotation is well defined
and possesses the property of bijectivity. This implies that for two
angles �1, �2 and a set of points A, if the Euclidean rotation with angle
�1 applied to A gives the same result as the Euclidean rotation with
angle �2 applied to A, then we have �1 = �2.

In the discrete plane, however, two different points can arrive
at the same grid point after a discretization of the Euclidean rota-
tion (DER). Because of this reason, two different angles can give the
same rotation result for a set A of grid points.1 In other words, we
can define a set of admissible rotation angles (ARA) S such that any
angle in S gives the same rotation result for A. Note that S depends
on A. The two most interesting angles in S are the lower and the

∗ Corresponding author at: Université Paris-Est, Laboratoire d'Informatique de
l'Institut Gapard-Monge, UMR CNRS 8049, ESIEE Paris, France.

E-mail addresses: thibauly@esiee.fr (Y. Thibault), y.kenmochi@esiee.fr
(Y. Kenmochi), sugimoto@nii.ac.jp (A. Sugimoto).
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upper bounds because with only these two angles we can deduce
the other angles in S. This paper aims to find these two angles from
a given rotation angle or from two given corresponding sets of grid
points. In order to identify the exact bounds, we should not involve
any computation error. Thus, we work with discrete geometry tools
which guarantee to avoid computation with real numbers. More-
over, because we assume that our data are discretized from contin-
uous images of an object, we enforce the property that the discrete
rotation2 between two different sets of grid points gives the same
result as DER.

Some work on discrete rotations already exists. The most widely
used discrete rotation in the beginning is the CORDIC algorithm [3].
The CORDIC algorithm uses a sequence of fractions for an approxi-
mation of �. It multiplies/adds fractions in this sequence to approx-
imate values of sine and cosine. Thus multiple approximations lead
to little differences between results of DER and those of CORDIC.
Andres [4,5] described some discrete rotations such as the rotation
by discrete circles, the rotation by Pythagorean lines or the quasi-
shear rotation. Computation executed during these rotations are ex-
act. However, because they preserves the bijectivity, they cannot
give the same results as DER.

On the other hand, Nouvel and Rémila [1] proposed another dis-
crete rotation based on hinge angles, which gives the same results as

2 A discrete rotation is a rotation designed for the discrete space. It transforms
a set of grid points into another set of grid points.
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DER. It is known that a sequence of hinge angles is a set of particu-
lar angles determined by a digital image in the sense that any angle
between two consecutive hinge angles gives the identical rotated
digital image. This means that hinge angles correspond to the dis-
continuity of DER. Nouvel and Rémila showed that each hinge angle
is represented by an integer triplet, so that any discrete rotation of a
digital image is realized only with integer calculation. Because their
algorithm gives the same rotation results as DER, we see that hinge
angles represented by integer triplets give sufficient information for
executing any digital image rotation.

In this paper, we propose a discrete method for finding the lower
and the upper bounds of ARA. Our method uses hinge angles be-
cause we can obtain the same result as DER and because they allow
exact computations. The input data of our method is two sets of grid
points where point correspondences across the two sets are known.
The output is two hinge angles that give the lower and the upper
bounds of the ARA for the two sets. Note that a part of this work
was presented in [6].

2. Discrete rotation

It can appear strange that the Euclidean rotation used for the
common task in geometric computation is problematic for many ap-
plications. Data are usually represented in the computer by integers
or rational numbers. But the Euclidean rotation which requires sine
and cosine functions is designed for real numbers. Therefore, the
computation results given by a Euclidean rotation are, in most cases,
represented by floating numbers which are approximations of real
numbers. When an algorithm uses the Euclidean rotation for integer
or rational data and then converts the floating values obtained by
the algorithm into integer or rational numbers, precisions of these
results may decrease. Another problem also arises for rotations in
discrete space. It is well known that the Euclidean rotation is bijec-
tive and transitive. But when we convert the result obtained by the
Euclidean rotation into a discrete space, it is easy to see that these
two properties are lost [7,8]. The loss of these two properties leads
to research on the discrete rotation.

There are two ways to compute a discrete rotation: using floating
numbers and using only integers. The first way, in most cases, is
easiest and allows us to use floating computation followed by the
rounding function to obtain the set of grid points as the output. The
main problem with the rounding function is the approximation due
to the loss of the value after the decimal point. This approximation
leads to lack of precision during computation. The second way does
not have this problem, but avoiding floating numbers implies that
sine and cosine functions should not be used. Computing rotations
without trigonometrical functions requires development of a new
method, which is a tough problem.

3. Hinge angles

We consider grid points in Z2 as the centers of pixels and ro-
tate them in such a way that the rotation center has integer coordi-
nates. Hinge angles are particular angles that make some points in
Z2 rotated to points on the frontier between adjacent pixels. In this
section, we give the definition of hinge angles and their properties
related to Pythagorean angles.

3.1. Definition of hinge angles

Let x = (x, y) be a point in R2. We say that x has a semi-integer
coordinate if x+ 1

2 ∈ Z or y+ 1
2 ∈ Z. The set of points each of which

has a semi-integer coordinate is called the half-grid and is denoted

by H. Thus, H represents the set of points on the frontiers of all
pixels whose centroids are points in Z2.

Definition 1. An angle � is called a hinge angle if at least one point
in Z2 exists such that its image by the Euclidean rotation with �
belongs to H.

BecauseH can be seen as the discontinuity of the rounding func-
tion, hinge angles can be regarded as the discontinuity of the DER.
More simply, hinge angles determine a transit of a grid point from
a pixel to its adjacent pixel during the rotation.

The following theorem is important because it shows that we can
represent every hinge angle with three integers.

Theorem 2 (Nouvel and Rémila [1]). An angle � is a hinge angle for a
grid point (P,Q) ∈ Z2 if and only if there exists K ∈ Z such that

2Q cos�+ 2P sin�= 2K + 1. (1)

Geometrically, a hinge angle � is formed by two rays going
through (P,Q) and a half-grid point (K + 1

2 ,�) where the two rays
share the origin as their endpoints as shown in Fig. 1 (left). This
theorem indicates that all calculations related to hinge angles can
be done only with integers. Hereafter, � indicates a hinge angle.

We denote by �(P,Q ,K) the hinge angle generated by an integer

triplet (P,Q ,K). Setting �=
√
P2 + Q2 − (K + 1

2 )
2, we easily derive the

following equations from (1) and Fig. 1 (left),

cos�= P�+ Q(K + 1
2 )

P2 + Q2 , sin�= P(K + 1
2 )− Q�

P2 + Q2 . (2)

Note that we have a case where a half-grid point is (�,K + 1
2 )

instead of (K + 1
2 ,�). In such a case, the above equations become

cos�= Q�+ P(K + 1
2 )

P2 + Q2 , sin�= P�− Q(K + 1
2 )

P2 + Q2 . (3)

The symmetries on hinge angles are important because it allows
us to restrict rotations in the first quadrant of the circle such that
� ∈ [0,�/2].

Corollary 3. Each triplet (P,Q ,K) corresponds to four symmetrical
hinge angles �+ �k/2 where k= 0, 1, 2, 3.

Fig. 1 (right) gives an example of Corollary 3. In order to distin-
guish the case of (K+ 1

2 ,�) from that of (�,K+ 1
2 ), we change the sign

of K; we use �(P,Q ,K) for the case of (K + 1
2 ,�), and �(P,Q ,−K) for

the case of (�,K + 1
2 ). Because the symmetries allow us to restrict �

to the range [0,�/2], as mentioned above, we may assume that K is
positive.

3.2. Properties related to Pythagorean angle

Because hinge angles are strongly related to Pythagorean an-
gles, certain properties of Pythagorean angles are required to prove
some properties of hinge angles. Thus, we first give the definition of
Pythagorean angles and their properties.

Definition 4. An angle � is called Pythagorean if and only if both its
cosine and sine belong to the set of rational numbers Q.

We can deduce from Definition 4 that a Pythagorean angle � is
represented by an integer triplet (a, b, c) such that

cos�= a
c
, sin�= b

c
. (4)
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Fig. 1. A hinge angle �(P,Q ,K) (left) and four symmetrical hinge angles (right).

In the following, � indicates a Pythagorean angle. The lemma
below for Pythagorean angles is well known.

Lemma 5. Let (a, b, c) be an integer triplet generating a Pythagorean
angle where |c| =max{|a|, |b|, |c|}. If gcd(a, b, c)= 1, then c is odd.

If gcd(a, b, c)= i, then gcd(a/i, b/i, c/i)=1 and the triplet of integers
(a/i, b/i, c/i) generates the same Pythagorean angle as (a, b, c).

Theorem 6. Let Eh be the set of hinge angles and Ep be the set of
Pythagorean angles. Then we have Eh

⋂
Ep = ∅.

Proof. Assume that there exists an angle � such that � ∈ Eh and
� ∈ Ep. Since � ∈ Ep, we can find an integer triplet (a, b, c) generating
� where gcd(a, b, c)= 1. By substitution of (4) in (1), we obtain

2
Qa+ Pb

c
= 2K + 1, (5)

from which we derive 2(Qa + Pb)/c ∈ Z. Because we know that c is
odd according to Lemma 5, we obtain (Qa + Pb)/c ∈ Z. This means
that 2(Qa+ Pb)/c is even, while 2K + 1 is always odd, which leads to
a contradiction. �

This theorem shows that it is not possible to rotate a point (i, j) ∈
Z2 to a point (x, y) such as x = i + 1

2 , y = j + 1
2 , if the angle of the

rotation is a hinge angle.
The next theorem shows an interesting relation between hinge

angles and Pythagorean angles.

Theorem 7 (Nouvel [9]). Let � be a Pythagorean angle and � be a hinge
angle. The angle �′ = �+ � is a hinge angle.

4. Computing the lower bound rotation angle from a
Pythagorean angle

Because we work here in the discrete space, the rotation of a grid
point by two different angles can give the same result. Namely, two
different angles give the same result after the rotation of a grid point
followed by discretization. Generally there exists a range of angles
in which the same result is obtained. We thus define ARA, that is the
abbreviation for admissible rotation angles, to represent this range
of angles.

In this section, we propose a method for computing the lower
bound �inf of ARA for a given digital image from a given angle. Note
that with minor modifications, this method can also find the upper
bound �sup of ARA. Thus applying any rotation to the given digital

image with an angle between �inf and �sup gives the same result.
We note that both �inf and �sup are hinge angles.

Our input is a Euclidean angle. However, we can replace it by a
Pythagorean angle because there exists a method with linear time
complexity O(m) to approximate a given Euclidean angle with a
Pythagorean angle with a precision of 1/10m [10], where m is a fixed
integer that represents the quality of approximation. Below, we as-
sume that a Pythagorean angle is given as in [1].

Nouvel and Rémila presented amethod for computing all possible
hinge angles for a grid point or a pixel in a digital image [1]. Their
method can be used for finding the hinge angle that is the lower
bound of the ARA. Its time complexity is O(n log(n)) where n is the
number of all hinge angles for a given grid point. Note that n depends
on the coordinates of the grid point.

4.1. Computing the lower bound rotation angle for a grid point

For each grid point p = (P,Q) ∈ Z2, there are less than
n= �

√
P2 + Q2 + 1

2 � different hinge angles in each quadrant [1]. We
can compare in magnitude any pair of hinge angles. This means that
we have a totally ordered set {�(P,Q ,K1),�(P,Q ,K2), . . . ,�(P,Q ,Kn)}
of hinge angles in the ascending order where Ki ∈ Z. Given a
Pythagorean angle �, in order to find the lower bound rotation an-
gle �(P,Q ,Ki) such that �(P,Q ,Ki)<�<�(P,Q ,Ki+1), we use a binary
search. The binary search allows us to find �(P,Q ,Ki) in O(log(n)),
providing that we can compare a hinge angle with a Pythagorean
angle in a constant time. The algorithm is described in Function 1.
Note that, thanks to Theorem 9, a Pythagorean angle for the input
can be replaced by a hinge angle.

Function 1. Function for the lower bound rotation angle for a point.

INPUT: A point p(P,Q), a Pythagorean angle �
OUTPUT: A hinge angle �(P,Q ,K)

Kmax ← �
√
P2 + Q2 − 1�;

Kmin ← 0;
K ← � Kmax+Kmin

2 �;
While Kmax − Kmin �1 do

if �(P,Q ,K)>� then
Kmax = K;

else
Kmin = K;

end if
K = � Kmax+Kmin

2 �;
end while
return �(P,Q ,K);
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The following theorem shows that the comparison between a
hinge angle and a Pythagorean angle is executed in a constant time.

Theorem 8. Let � be a hinge angle and � be a Pythagorean angle. We
can check whether �>� in a constant time with integer calculation.

Proof. Let �(P,Q ,K) be a hinge angle in [0,�/2] and �(a, b, c) be a
Pythagorean angle in [0,�/2]. From Eqs. (2) and (4), we obtain

cos�− cos�= Q(K + 1
2 )+ P�

P2 + Q2 − a
c
.

If � is greater than �, cos�− cos�>0. Thus

cQ(2K + 1)− 2a(P2 + Q2)>− 2cP�. (6)

Since we know that c, P,� are positive, the right-hand side of (6) is
always negative. Thus, if the left-hand side of (6) is not negative,
then �>�. Otherwise, we take the square of (6), so that we only
have to check whether the following inequality holds:

[cQ(2K + 1)− 2a(P2 + Q2)]2<4c2P2�2. (7)

Note that because � =
√
P2 + Q2 − (K + 1

2 )
2, we see that 4�2 in the

right-hand side of (7) contains only integer values. Therefore, we can
verify (7) with integer calculation. If it is true, �>�; otherwise, �>�.
Note that because of Theorem 6, it is impossible to obtain �= �.

We claim that this comparison of a hinge angle and a Pythagorean
angle is executed in a constant time because even in the worst case,
we only have to check Eqs. (6) and (7). �

We mention the importance of the rotation with angle �/2 and
its multiplications. In fact, if the angle of a rotation is equal to
�/2,�, 3�/2, we just have to flip x and/or y-coordinates by changing
their signs. It gives the justification that we can restrict the input
angle � to 0<�<�/2.

4.2. Computing the lower bound rotation angle for a set of grid points

In this subsection, we present an algorithm for computing the
lower bound rotation angle from a given Pythagorean angle � for a
digital image consisting of m grid points A. The output is a triplet of
integers that represents the lower bound rotation angle for A. We
note that the lower bound rotation is a hinge angle.

The algorithm computes all hinge angles for all points in A, and
sorts them to keep the largest one. More precisely, we first compute
the lower bound rotation angle for the first point of A, and store it
as a reference. Then, we compute the lower bound rotation angle
for the second point in A and compare it with the reference to keep
the larger one. After repeating this procedure for all points in A, our
algorithm returns the lower bound rotation angle � such that �<�.
The time complexity of this algorithm is O(m log(n)) because we call
m times the binary search (Function 1) whose time complexity is
O(log(n)). Function 2 illustrates our algorithm. As shown in Theorem
9, the comparison between two hinge angles is realized in a constant
time, so that our algorithm does not change the global complexity.

Theorem 9. Let �1,�2 be two hinge angles. We can check whether
�1>�2 in a constant time and with integer calculation.

Proof. Let �1(p, q, k) and �2(r, s, l) be two hinge angles in [0,�/2].
From (3) we obtain

cos�1 − cos�2 =
p(k+ 1

2 )+ q�1

p2 + q2
− r(l+ 1

2 )+ s�2

r2 + s2
. (8)

If �2 is greater than �1, cos�1 − cos�2>0. Thus

(r2 + s2)p(2k+ 1)− (p2 + q2)r(2l+ 1)

>2(p2 + q2)s�2 − 2(r2 + s2)q�1. (9)

If the left-hand side of (9) is negative and the right-hand side of
(9) is positive, then �1>�2. If the left-hand side of (9) is positive and
the right-hand side of (9) is negative, then �2>�1. We can easily
check the signs of the left-hand side and the right-hand side of (9)
with integer computation. Note that p, q, k, r, s, l are all positive, and
that (2(p2+q2)s�2)

2 and (2(r2+s2)q�1)
2 contain only integer values.

If the signs of the left-hand side and the right-hand side of (9)
are the same, we first compute the square of each side and then
compare the values to identify which is the greater. For simplicity,
we assume that the signs of the both sides of (9) are positive, and
let A = (r2 + s2)p(2k + 1), B = (p2 + q2)r(2l + 1), C = (r2 + s2)q and
D= (p2 + q2)s. Now (9) is rewritten as

A− B>2D�2 − 2C�1. (10)

Then we take the square of Eq. (10) to obtain

(A− B)2 − 4(C2�2
1 + D2�2

2)>− 8CD�1�2. (11)

If the sign of the left-hand side of (11) is positive, we can deduce
that �2>�1. Otherwise, taking the square of each side gives us

[(A− B)2 − 4(C2�2
1 + D2�2

2)]
2<64C2D2�2

1�
2
2. (12)

We note that we can easily verify whether (12) is satisfied with
integer computation alone. If (12) is true, �1<�2; otherwise �2<�1.
The same logic can be applied to the case where the signs of the
both sides of (9) are negative.

This comparison of a pair of hinge angles is executed in a constant
time because in the worst case, we only have to check Eqs. (9), (11),
and (12). �

Function 2. Function for finding the lower bound rotation angle for
a digital image.

INPUT: A set of points A, a Pythagorean angle �
OUTPUT: A hinge angle �

� = Function 1 (first point p1 of A, �);
for all p ∈ A\{p1} do

�temps = Function 1 (p, �);
if �<�temps then

� = �temps;
end if

end for
return �;

5. Digital image rotation by a lower bound rotation angle

This section uses the results obtained in Section 4 to present
an algorithm for rotating a set of points with a given lower bound
rotation angle.

It is already proved in [1] that we can obtain the same result as
the DER with respect to the original rotation angle. Note that our
input is a lower bound rotation angle and the input of the algorithm
presented in Function 1 is a Pythagorean angle. In spite of this differ-
ence, we can apply the same algorithm thanks to Theorem 9, since
we are looking for K, which gives the arriving pixel (K, ��+ 1

2 �), for
each pixel (P,Q). The algorithm is presented in Function 3. It sup-
poses that the center of rotation is the origin.

For each point, our algorithm calls the binary search (Function
1) to find the corresponding hinge angle, which designates its new
position. If we consider n as the biggest coordinate of all points in A,
we can assume that there are less than 4n2 points in A. Thus we can
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conclude that the complexity of our algorithm is O(n2 log(n)). The
first advantage of our method is that it does not require any floating
number calculation. The second advantage is that the exact rotation
of the set of points is obtained with only an integer triplet. We need
neither matrices nor angles for realizing the rotation.

Function 3. Discrete rotation algorithm by a lower bound rotation
angle.

INPUT: A set of points A, a lower bound rotation
angle � (hinge angle)
OUTPUT: A set of points A′

for all p ∈ A do
�1 = Function 1 (p,�);
Move p to (K, �� + 1

2 �) or (�� + 1
2 �,K),

depending on the sign of K and store
the new point in A′;

end for
return A′;

6. Obtaining ARA from two digital images

Let us assume that a set of grid points in the first image and its
corresponding set in the second image are given: A = {p1,p2, . . . ,pl}
and B= {q1,q2, . . . ,ql} are given where pi corresponds to qi. Given A
and B, we obtain a hinge angle pair {�inf ,�sup}. This pair of hinge an-
gles is the lower and the upper bounds of the ARA. Therefore, each �
such that �inf ��<�sup is consistent with the point correspondences
between A and B. Hereafter, we assume that A is the original point
set and B is the rotated point set by angle �. In this section, we show
how to obtain the ARA from A and B.

6.1. Setting rotation centers

For any rotation, we need to set a rotation center. Without loss
of generality, we may choose any grid point in a digital image for
the rotation center. Assuming that rotation centers for A and B are
p1 and q1, respectively, we define two translation functions TA and
TB such that

TA(pi)= pi − p1,

TB(qi)= qi − q1

for all pi ∈ A,qi ∈ B. We can regard the origin as the rotation centers
after these translations. Hereafter, we assume that these translations
have been already applied in order to obtain A = {p1,p2, . . . ,pl} and
B= {q1,q2, . . . ,ql}.

6.2. Computing lower and upper bounds of rotation angles from two
corresponding point pairs

In this subsection, we consider a special case of two correspond-
ing point pairs.

We let A={p1,p2} and B={q1,q2}where pi=(Pi,Qi) and qi=(Ri, Si).
We then define a circle C(p2) going through p2 whose center is
p1. Thus the radius of C(p2) is r = d(p1,p2) where d(p1,p2) is the
Euclidean distance between p1 and p2.

Let us define the half-grid H(q2) around q2:

H(q2)= {(x, y) ∈H : S2 − 1
2 �y�S2 + 1

2 if x= R2 ± 1
2

R2 − 1
2 �x�R2 + 1

2 if y= S2 ± 1
2 }.

We set p1 and q1 to be the rotation centers. Then, we need to
detect intersections between C(p2) and H(q2) in order to find a

Fig. 2. The corners of H(q), namely, four corners of a pixel around q.

hinge angle pair. We thus investigate which corners of H(q2) are
inside of C(p2).

Setting four corners ofH(q2) to be C1(q2)=(R2− 1
2 , S2− 1

2 ),C2(q2)=
(R2 − 1

2 , S2 + 1
2 ),C3(q2)= (R2 + 1

2 , S2 + 1
2 ),C4(q2)= (R2 + 1

2 , S2 − 1
2 ) as

shown in Fig. 2, we define a binary function F:

F(Ci(q2))=
{
1 if Ci(q2) is inside of C (p2),
0 otherwise.

In order to obtain F(Ci(q2)) with integer calculation, we com-
pare each of ‖(2(R2 ± 1

2 ), 2(S2 ± 1
2 ))‖2 with (2r)2. Note that we may

assume that C(p2) andH(q2) always intersect with each other. This
is because no intersection between C(p2) and H(q2) indicates that
p2 and q2 are not corresponding.

The following lemmas are needed to prove Theorem 12.

Lemma 10. For a circleC(p2) centered on p1, any Ci(q2)=(R2± 1
2 , S2±

1
2 ) cannot be on C(p2) for i ∈ {1, 2, 3, 4} where R2, S2 ∈ Z.

Proof. Let r be the radius of C(p2). Because C(p2) goes through p2,
r2 ∈ Z. Let us assume that Ci(q2) is on C(p2). Thus the Euclidean
distance between the origin and Ci(q2) is equal to r. This indicates
that r2 = (R2 ± 1

2 )
2 + (S2 ± 1

2 )
2. However, this contradicts the above

fact that r2 ∈ Z. �

Lemma 11. Let D be a line that belongs to H. If C(p2) is a circle
centered on p1, then, the number of distinct intersections of C(p2) and
D is two or zero.

Proof. Let p2 = (P2,Q2) ∈ Z2 and the equation representing D be
x = i + 1

2 where i ∈ Z. Letting (x1, y1) be the coordinates of the
intersecting point of D and C(p2). Then we have
{
x21 + y21 = P22 + Q2

2 ,
x1 = i+ 1

2 .

From these equations, we obtain y21=P22+Q2
2 − (i+ 1

2 )
2. Because P22+

Q2
2 −(i+ 1

2 )
2 does not belong to Z, y1 cannot be equal to 0. Therefore,

there are two distinct solutions for y1 if P22 + Q2
2 − (i + 1

2 )
2>0; no

solution otherwise. Similar discussion can be done for the case of
y1 = j+ 1

2 where j ∈ Z. �

Theorem 12. If two points p2 and q2 are corresponding, the circle
C(p2) and the half-grid H(q2) always have two or four distinct inter-
sections.

Proof. In general, if a circle intersects with a square and the center of
the circle is not inside of the square, we have 1,2, or 4 intersections.
Having just one intersection means that the circle goes through one
corner of the square or the circle is tangential to a half-grid. Lemma
10 shows that the circle cannot go through one corner. Lemma 11
shows that the circle cannot be tangential to any half-grid. Therefore,
we have only 2 or 4 intersections. �
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Fig. 3. Illustration of cases �F(Ci(q2))= 0 (a), 1 (b), 2 (c and d), or 3 (e).

From Theorem 12, we always have two or four distinct intersec-
tions between C(p2) andH(q2), and we see that there are five cases
corresponding to different possibilities to have 0, 1, 2, or 3 corners
inside of C(p2), as illustrated in Fig. 3. Note that in [6], Proposition 5
which corresponds to Theorem 12 in this paper shows that there are
always two intersections. During the period of writing this extended
paper, we discovered a hypothetical case where four intersections
arise.

Remark 13. The cases represented in (a) and (c) in Fig. 3 never
happen unless two conditions are satisfied.

(1) q2 is on the x-axis or on the y-axis.
(2) The radius r of C(p2) is sufficiently close to a half-integer.

The case of Fig. 3(c) is problematic because it generates two
distinctive ranges of ARA. These two ranges are symmetric with
respect to the x-axis or the y-axis. Note that this case was not ad-
dressed in [6]; it represents the case of four intersections discovered
during the redaction of this paper. However, this case rarely occurs
as explained below.

Supposing that q2 is neither on the x-axis nor the y-axis, we see
that neither R2 nor S2 is zero.We assume that they are positive. In the
first quadrant, the y-coordinate (respectively, the x-coordinate) of
points in C(p2) is strictly decreasing with respect to x (respectively,
y). Thus it cannot intersect twice with a line parallel to the x-axis
(respectively, the y-axis).

Supposing that q2 is on the y-axis, we see that the distance
between the origin and C1(q2) (respectively, C3(q2)) is greater

(respectively, smaller) than r. Thus we have r <
√
(R2 − 1

2 )
2 + ( 12 )

2

(respectively, r >
√
(R2 + 1

2 )
2 + ( 12 )

2). Letting � = r − (R2 − 1
2 ) (re-

spectively, � = r − (R2 + 1
2 )) where �< 1

2 , we obtain �(8r − 4�)<1
(in both cases). We experimentally observe that as far as r�105,
�(8r−4�)<1 never holds. On the other hand, if r is sufficiently large
enough to have 8r − 4� ≈ 8r then we have �<1/8r, which means
that r is sufficiently close to a half-integer. We can thus conclude
that (2) in Remark 13 is satisfied only if r is sufficiently large. Note
that a similar discussion can be done when supposing that q2 is on
the x-axis.

As explained above, the case of Fig. 3(c) occurs extremely rarely.
Thus, we take no account of this case from now on, which causes no
problem from the practical point of view.

The main function of our algorithm for finding the lower and
the upper bounds of ARA, consists of three steps. The first step sets
the rotation center at p1 and q1, as described in Section 6.1. The
second step computes which corners are inside of C(q2) and then
compute the index Iq2 =

∑
i2

i ×F(Ci(q2)). Therefore, we can easily
identify which corners are inside of C(p2) from Iq2 . The third step
calls a function that returns hinge angles corresponding to Iq2 . There
exist fourteen possible values for Iq2 from 0 till 15 except for 5 and
10. Note that geometrically Iq2 can be neither 5 nor 10. The value
15 of Iq2 implies an error such that all corners are inside of C(q2).
Since Iq2 whose value is 0 corresponds to the case �F(Ci(q2)) = 0,
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we should verify whether H(q2) really intersects with C(p2). Note
that for the other values for Iq2 , we can make a pair (d, e) such that
d+e=15. The two indices of each pair design the same pair of lower
and upper bounds of ARA. Table 1 gives the corresponding lower
and upper bound rotation angles for each value of Iq2 . Each step of
this algorithm has the constant time complexity. Thus the global
complexity of this algorithm is also O(1).

6.3. Incremental computing lower and upper bounds of rotation angles

In general, the corresponding point sets contain more than two
points. Therefore, in this section, we extend our algorithm in Section
6.2 to two sets of corresponding point pairs, A and B, each of which
has l points where l>2.

To simplify the notation, we denote by ARA(pi,qi) = (�i inf ,�i sup)
the pair of angles that gives the lower and the upper bounds of ARA
for the pair of points (pi,qi). Note that �i inf ,�i sup are hinge angles.
ARA(An,Bn) denotes the two most restrictive angles for all points i

Table 1
Corners of H(q2) inside of C(p2) and ARA.

Value of Iq2 �inf �sup

Iq2 = 1 or 14 �(P1,Q1,R2 − 1) �(P1,Q1, 1− S2)
Iq2 = 2 or 13 �(P1,Q1,R2 − 1) �(P1,Q1,−S2)
Iq2 = 3 or 12 �(P1,Q1, 1− S2) �(P1,Q1,−S2)
Iq2 = 4 or 11 �(P1,Q1,R2) �(P1,Q1,−S2)
Iq2 = 6 or 9 �(P1,Q1,R2 − 1) �(P1,Q1,R2)
Iq2 = 7 or 8 �(P1,Q1,R2) �(P1,Q1, 1− S2)
Iq2 = 0 and R2 = 0 �(P1,Q1, 1− S2) �(P1,Q1, 1− S2)
Iq2 = 0 and S2 = 0 �(P1,Q1,R2 − 1) �(P1,Q1,R2 − 1)

Fig. 4. Running of the incremental algorithm.

such as i�n. We recursively define it by

ARA(An,Bn)= ARA(An−1,Bn−1) ∩ ARA(pn,qn).

A new algorithm handles all points incrementally. This algorithm
is divided into two parts. The first part is to initialize the algorithm
by computing ARA(p2,q2). The second part computes ARA(Ai,Bi) for
i = l. Note that ARA(p1,q1) cannot be computed because p1 and q1
are the centers of the rotation.

The time complexity of this algorithm is O(l). As explained in
Section 6.2, the function giving a pair of lower and upper bound
rotation angles from a pair of points is realized in a constant time
O(1). Moreover, as explained in Section 3, we can compare two hinge
angles in a constant time O(1). Therefore, the computation of this
algorithm for l points takes the time complexity of l× (O(1)+O(1))=
O(l) as a whole.

Fig. 4 gives an example of the incremental algorithm for two
sets of three points. Given input data of the algorithm as shown in
Fig. 4(a), we first obtain the result of the translation described in
Section 6.1 as illustrated in (b). We then compare, for each pair of
points (pi,qi) with i�2, the distance of pi from the origin with that
of each corner from H(qi) to deduce the corresponding hinge angle
as explained in Section 6.2. Finally, we obtain (d) which shows the
intersection of all ARA(pi,qi) obtained in (c).

7. Experimental evaluation using synthetic data

We evaluated our algorithm using synthetic data and verified
the quality of obtained ARA. To test our algorithm, we need two sets
of points. We randomly generated the set F of 100 floating points in
a 200× 200 square. The first set I is obtained by discretizing F. The
second set I′ is obtained by applying the DER with angle �= 50◦ to
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Fig. 6. Result of our algorithm applied on the sets of points in Fig. 5.

the first set I (Fig. 5). We assumed that the point correspondences
across the two sets I and I′ are known.

Fig. 6 shows the hinge angles obtained by our algorithm. The
green and the red curves give the lower and the upper bound rota-
tion angles for each pair of point in correspondence. We can see that
lower bound rotation angles are always lower than � and that upper
bound rotation angles are greater than �. The blue and purple lines
give the lower and the upper bound rotation angles for points with
the lower IDs than the point of interest. As we can see, after only
ten pairs of points, the range of ARA becomes less than 0.1◦ while
the range is reduced to 0.02◦ after twenty pairs of points. Then the
precision increases slowly. This shows that the precisions of ARA
acquired after twenty pairs of points are not significant in this par-
ticular case. Fig. 6 also indicates that most pairs of points give the
ARA range smaller than 1◦ (for example, pair #39). Pair #34 and pair
#66, however, give a range greater than 4◦. In fact, the maximum
range for a pair of points is directly related to the distance between
the center of rotation and the pair of points. We denote by d the
distance between the rotation center and the pair of points. Then,
the maximum difference between the lower and the upper bound
rotation angles is sin−1(

√
2/d). For the pair #34, d=√173; thus the

maximum range is approximately 6.1◦. For the pair#39,d=√16505
and thus the maximum range is approximately 0.63◦. This is consis-
tent with our experimental result.
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Fig. 7. Result of our algorithm applied on a sets of floating points.

8. Discussion on practical application to digital images

In the previous section, we start with grid points in the discrete
plane. In other words, all coordinates of the points are integers. But in
reality, points in the Euclidean space are not represented by integers
but real numbers. Thus we start here with the set of floating points
to see how our algorithm works. Then we test our algorithm with
real data acquired by a digital camera.

8.1. Synthetic data

To test our algorithm using synthetic data more similar to real
data, we applied the Euclidean rotation with angle � = 50◦ directly
to the set F that is used in Section 7. Then we discretized the rotated
image to obtain the second set I′′. To the two sets I and I′′, we applied
our algorithm. We note that the set I comes from Section 7.

Fig. 7 shows the hinge angles obtained. Because we started with
the set of floating points, we observe some errors in bounding ARA.
In fact, we see that some pairs of points, the pairs #64 and #73 for
instance, do not contain �.

Fig. 8 (left) explains how errors arise in rotating floating points.
Let us assume that point q1 is obtained after the Euclidean rota-
tion of the floating point p1 with angle �. Let p2 and q2 denote the
discretization of p1 and q1. If we apply our algorithm to the pair
of points {p2,q2}, we obtain ARA(p2,q2) = (�inf ,�sup). In this case, �
does not belong to the interval [�inf ,�sup] (Fig. 8 (right)). We see that
this is caused by discretization of the floating points. We can give a
bound for this error. In fact, this bound directly depends on the dis-
tance between the rotation center and the pair of points. If we denote
by d this distance, the maximum error is equal to sin−1 (

√
2/(2d)).

Note that the pair of points {p3,q3}and the angle 	 bring the same
problem.

To avoid this problem, we modify our algorithm for example as
follows. We keep all the pairs of bound rotation angles determined
by all pairs of points. After sorting all lower and upper bound rotation
angles into two lists Linf ,Lsup, we remove all hinge angles �inf
fromLinf such that for ∃�sup ∈Lsup, �inf >�sup. We also remove all
hinge angles �sup from Lsup such that for ∃�inf ∈Linf , �sup<�inf .

With this procedure, we can guarantee that the lower bound
hinge angle is smaller than the rotation angle applied to the points
and that the upper bound hinge angle is larger than the rotation
angle. The complexity O(n logn) is required in sorting the remaining
hinge angle pairs, which does not increase the computational cost
of the algorithm as a whole.
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Fig. 8. Examples of errors for computing lower and upper bounds of rotation angles introduced by rotation of floating points.

Fig. 9. Result of our algorithm applied on real data.

Another way to avoid the problem is to compute the smallest
distance d of all the points from the rotation center and then compute
a Pythagorean angle � satisfying �> sin−1 (

√
2/(2d)). We then add

(subtract) � to the upper (lower) bound rotation angle obtained by
our algorithm in Section 6. As a result we obtain the upper and
the lower bound rotation angles that define the interval accurately
including the true rotation angle. Thanks to Theorem 7, the addition
of a Pythagorean angle does not change the nature of the upper
(lower) bound rotation angle.

Both methods return a valid ARA. It is preferable to use the sec-
ond method when there are few pairs of points because it does not
remove any hinge angles. The first method is preferable when data
contains many pairs of points in correspondence because the ob-
tained ARA is more restrictive than the ARA obtained by the second
method.

8.2. Real data

We applied our algorithm to see its practical usefulness. We used
a turntable that is rotated with respect to the vertical axis with
respect to a digital image plane. The precision of rotations in control
is 10−3

◦
.

We put a toy block on the turntable and then took its image
using a standard digital camera where the camera was fixed so that
its optical axis is parallel with the rotation axis (Fig. 9(a)). Next we
rotated the turntable with the angle of 44.99◦ and then took another
image of the toy block by the fixed camera (Fig. 9(b)).

We manually selected five points in the first image and their cor-
responding points in the second image. Then we applied our algo-
rithm to the five pairs of corresponding points.

Our algorithm might return the empty result (Fig. 9(c)). This is
because no intersection between C(pi) and H(qi) was found for all
i= 1, 2, . . . , 5.

In the case of real data, we cannot always guarantee to detect
correct corresponding pairs of points even manually. This indicates
that a problem different from the discretization problem (see Section
8.1) arises.3 Namely the maximum difference of distances from the
rotation center between two points in correspondence can become
greater than

√
2. This is illustrated in Fig. 10 where points p and q

are in correspondence and �d = |dp − dq| is greater than
√
2 where

dp, dq are, respectively, the distances from p,q to the origin. We see
that no intersection exists between the circle C(p) going through p
and H(q).

To avoid this problem on corresponding points, we can change the
resolution of the images. Namely, we degrade the image resolution
until we find an intersection between C(p) andH(q).4 Because of
the change in image resolution, we cannot accept the obtained hinge
angles as they are. Instead, we add (subtract) a Pythagorean angle �
to (from) the obtained upper (lower) hinge angle. Let us assume that
dp<dq and that H(q) is defined for the image whose resolution is
degraded with 2−n from the original one. Then we have to choose
� satisfying �> (n

√
2)/(2dp). As mentioned in Section 8.1, thanks to

Theorem 7, the addition of a Pythagorean angle does not change the
nature of the upper (lower) bound rotation angle.

Fig. 9(d) shows the results obtained by the modification above
to the same data. We can see that the real rotation angle (44.99◦)
is included in the ARA obtained by our algorithm with this mod-

3 We assume here that we are to find ARA from given correspondences.
4 There are other criteria for finding a reasonable image resolution. For example,

Brimkov presents criteria of faithfully digitization for continuous objects in [11].
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Fig. 10. Problem of corresponding points with real data.

ification. Accordingly, we can conclude that our modification is
effective.

9. Conclusion

In this paper, we have introduced problems of rotations in the
discrete space. Because rotations are mathematically defined for the
continuous space, it is necessary to develop new operational tools
for such discrete rotations.

Our problem was from two digital images to find all possible ro-
tation angles to rotate the first image into the second, namely, to
find the ARA between two digital images. Since we need to have only
exact computation without any approximation, we decide to adopt
hinge angles which allow us rotations using only integer computa-
tion. By using their properties, we have proposed a method for incre-
mentally computing the lower/upper bound rotation angles from a
Pythagorean angle for a set of discrete points. Based on this method,
we have also proposed a linear algorithm for finding from two digital
images the lower and the upper bound rotation angles representing
the ARA between them.

In addition, we have shown with experiments that our algorithm
is efficient with synthetic data and gives consistent results. Then we
also have done some experiments to real data. Results given by our
algorithm were not consistent because of the loss of correct point
correspondences in our input. We then explained why these prob-
lems appear and gave necessary modifications to obtain consistent
results. These modifications did not increase the time complexity
while keeping the integer computation.

The range size of ARA can be considered as the unreliability of the
point correspondence. In other words, larger the range of ARA be-
tween two points, less is the reliability of their point correspondence.
Therefore, it may be interesting if we can propose a new method for
evaluating “good” point correspondence from a given pair of digital
images by using our results.

In this paper we always assume that centers of rotations are on
integer points. But with real data it is not always the case. One of our
future work will be to adapt the presented method to such rotations.
In this purpose, studies on digital discs whose centers are not only
on integer points [12,13] would help.

Another future work is to extend our proposed method to the
3D space. In 3D, hinge angles are not yet defined and hence the
first direction we should take is to design 3D hinge angles and then
develop a 3D discrete rotation algorithm based on 3D hinge angles.
Then we will improve such a rotation algorithm in order to find ARA
in 3D as we did for 2D in this paper.
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