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Abstract We present a method for range image registra-
tion of specular objects devoid of salient geometric prop-
erties under complex lighting environment. We propose
to use illumination consistency on two range images to
detect specular highlights, which are used to obtain dif-
fuse reflection components. By using light information es-
timated from the specular highlights and the diffuse reflec-
tion components, we extract photometric features invariant
to changes in pose and illumination, even under unknown
complex lighting environment. We then robustly register
the two range images using these features. This technique
can handle various kind of illumination situations and can
be applied to a wide range of materials. Our experiments
using synthetic data show the effectiveness, the robustness
and the accuracy of our proposed method.

1 Introduction
Detailed modeling of real objects in controlled or uncon-
trolled environments has been of crucial interest in the past
decade. When creating a 3D model of a real object using
laser range scanners, multiple range images of the same ob-
ject are captured at different poses from a fixed viewpoint.
Because each range image is represented in the local co-
ordinate system depending on the position and pose of the
sensor, the transformations aligning all images have to be
computed. This process is called range image registration.

In this paper we will focus on range image registration
of a non-Lambertian textured object devoid of salient ge-
ometric features under uncontrolled environment. We as-
sume that two range images are captured from two different
poses, with a fixed viewpoint and fixed unknown illumina-
tion conditions.

The irradiance at a point on an object surface changes
when the object pose changes. As a consequence, the pho-
tometric appearance, such as color, of the same point in
different range images changes. Using photometric fea-
tures that depend on the object pose thus degrades the per-
formance of the registration when they are used for estab-
lishing matchings.

Albedo of the object surface is invariant to the object
pose, viewpoint or illumination conditions. This property
depends on only the object material and exhibits suffi-
cient saliency for matching in the case of textured surfaces.
Therefore, albedo is a powerful feature for range image
registration of textured objects devoid of salient geometric
features under fixed illumination conditions.
Albedo at a point is the ratio of the diffuse reflected light

over the irradiance. It can be directly computed when both
the diffuse reflection and the incident illumination at this
point are known. However, under uncontrolled environ-
ments or if the surface exhibits specular reflections (like
shiny objects for example), computing albedo becomes a
demanding problem. As a consequence, existing methods
that make use of albedo, for example [4, 17], assume the
Lambertian surface (diffuse reflection only) and known in-
cident illumination. In these approaches, the specular re-
flections at the surface of an object are not considered.

We propose a method for registering two range images
of a specular object under unknown illumination environ-
ment. To compute albedo at the surface, incident illumi-
nation and diffuse reflection components are required. For
each range image, we generate candidates of light source
directions, using normals at the surface and local peak of
intensity. Illumination consistency on two range images
allows us to select light source directions among the can-
didates. The detected light source directions then enable
us to define regions where the reflection components are
accurately separated. We compute albedo in these regions
and extrapolate it by using neighboring similarities. In this
way, we obtain albedo over the range images. The albedo
is used as an input of an existing registration algorithm to
show the usefulness of our proposed method. Our inten-
sive experiments show the effectiveness of our proposed
method. To our best knowledge, no method on range im-
age registration has been proposed that can handle specular
objects under unknown illumination environment.

2 Related works
For objects lacking in salient geometric features, many ap-
proaches using photometric features have been discussed.
For example, Godin et al. [5] proposed to use dense at-
tributes of range image elements as a matching constraint.
Weik [19] proposed to use texture intensity gradient and
intensity difference. Johnson and Kang [6] proposed to
deal with textured 3D shapes by using color. Okatani et
al. [12] proposed to use chromaticity for registration. Br-
usco et al. [3] proposed to incorporate texture information
in the concept of spin-images. Pulli et al. [13] proposed
a new mismatch error to improve registration using both
color and geometric information. However, because color
or chromaticity depends on the object pose, the viewpoint
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and illumination, the performance of these methods is de-
graded when the illumination change has significant effects
on the object appearance.

On the other hand, albedo is a photometric property in-
variant to the pose of the object, the illumination condition
and the viewpoint, and is thus powerful for the purpose of
matching. Cerman et al. [4] proposed to use albedo differ-
ence to match points for range image registration. However,
this point-based approach is sensitive to data noise and re-
quires precise knowledge on the illumination. Therefore it
is not practically applicable to real data.

More recently Thomas et al. [17] proposed to use local
distribution of albedo to enhance robustness for range im-
age registration. Adaptive regions are defined at the surface
of an object by using local distribution of albedo and a met-
ric is then defined to match points using the regions. The
rigidity constraint on surface is also introduced to eliminate
false matches to improve accuracy of matching. Though
this method achieves robust registration under a rough esti-
mation of illumination, it is limited to Lambertian objects
illuminated by a single distant light source.

In other approaches, Bay et al. [1] proposed a scale and
rotation invariant descriptor called SURF that makes use
of an integral image to speed up the computation and com-
parisons. Tola et al. [18] also proposed a local descriptor
that can be quickly computed and used even in low-quality
images. However, these approaches are more focused on
computational efficiency rather than accuracy.

To deal with specular reflections under complex illumi-
nation environments, recent works on reflectance analysis
can be used. Several methods to separate or decompose re-
flection components of textured surfaces can be found in the
literature ([10], [14], [8]). For example, Lin et al. [8] pro-
posed to separate reflection components from a sequence of
images by computing the median intensity of correspond-
ing pixels in the image sequence. However, this method
requires a large number of images as well as pixel corre-
spondences between all images. It is thus inappropriate for
range image registration.

Tan et al. [15] proposed a method to separate reflec-
tion components of textured surfaces from a single image.
By assuming the dichromatic reflection and a single distant
light source, a specular free image is generated by locally
and non-linearly shifting each pixel’s intensity and maxi-
mum chromaticity. This specular free image has exactly
the same geometrical profile as the diffuse components.
Though this method achieves accurate separation of reflec-
tion components, it can not handle multiple light sources
and high intensity textures.

In contrast to previous work, our proposed method can
handle changes in photometric appearance, non-Lambertian
surfaces and unknown complex illumination environments
even in the presence of high intensity textures.

3 Overview of the proposed method
Our approach can be decomposed into two parts. We first
locally compute albedo in some regions of the surface of the
object by using the input color images, normals and illumi-
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Figure 1: Basic flow of the proposed method.

nation consistency. The second uses neighboring similar-
ities of the input color images to extrapolate local albedo
into the rest of the surface. The obtained albedo is then
used as an input of an existing ICP-like [2] robust frame-
work to estimate the transformation aligning two range im-
ages [17]. Fig. 1 illustrates the flow chart of our proposed
method.

Local computation of albedo Computing albedo in the
presence of specular reflection under unknown illumination
environment is a demanding problem. Recent works on
reflectance analysis allow us to separate reflection compo-
nents of the surface using the dichromatic reflection model
and thus to retrieve the diffuse reflection component, under
the assumption of a single distant light source and without
high intensity textures. To deal with complex illumination
environment (multiple light sources), we propose to sep-
arate the reflection components of the surface only inside
sub-regions where the local illumination can be approxi-
mated by a single distant light source (in this paper we will
call such regions non-ambiguous regions in contrast to the
rest of the surface that is referred to as ambiguous region).
We use local peaks of intensity and normals at the surface
to estimate possible light source directions and we use the
illumination consistency to eliminate false detections. We
then define regions where the reflection components can be
separated, and use the separated diffuse reflection compo-
nent together with the estimated light source directions to
compute albedo in these regions.

Extrapolation of albedo into ambiguous regions It is
not possible to directly compute albedo in ambiguous re-
gions because these regions are significantly affected by
multiple light sources, and thus points in these regions
can not be directly used for matching. However, albedo
in non-ambiguous regions has been computed and it is to
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be expected that several points in the ambiguous region
have albedo similar to points in non-ambiguous regions.
We thus extrapolate albedo computed in non-ambiguous
regions to the rest of the surface. By considering a small
region at the surface and under the assumption of a smooth
surface, the irradiance changes are relatively small and thus
by comparing maximum chromaticity we are able to detect
points with similar albedo.

4 Local computation of albedo
Computing albedo at the surface requires the diffuse re-
flection components and the light source directions. In the
case of a scene illuminated by a single distant light source
and given the corresponding illumination chromaticity, a
method exists that separates the reflection components of
the textured surface [15]. On the other hand, in our case,
the illumination environment is not restricted to a single
light source and such a separation technique can not be ap-
plied to the whole surface. However, even in the case of
multiple light sources, there exist some regions where the
incident illumination can be approximated by a single light
source. We thus divide the whole image into regions so that
we have a region illuminated by a single light source. We
can then separate the reflection components of the region
to locally compute albedo.

For each region specified above, the incident illumina-
tion is approximated by a single light source. To separate
the reflection components in this region, the corresponding
illumination chromaticity is required. To compute illumina-
tion chromaticity, several methods based on color constancy
can be found in the literature ([16], [7] for example). In
particular, the method [16] achieves robustness as well as
accurate estimation of the illumination chromaticity by us-
ing specular reflection intensity. However, this method does
not account for high intensity texture regions that may ap-
pear like specular highlights and that would degrade the
estimation of the illumination chromaticity. We employ
illumination consistency to discriminate between specular
highlights and high intensity texture regions. Light source
directions are then selected accordingly.

4.1 Detection of specular highlights
To define a region where the incident illumination can be
approximated by a single light source, a light source direc-
tion is required. For a smooth surface, a specular highlight
is centered on the mirror-like reflection direction, which is
useful to estimate incident illumination direction. More-
over, as proposed in [16], we estimate the illumination
chromaticity by using specular reflection intensity. As a
consequence, detecting the specular highlights at the sur-
face is of major importance. If the surface exhibits regions
with high intensity texture, it becomes difficult to distin-
guish between specular highlights and regions with high
intensity texture. Therefore, we first detect all highlights at
the surface that can be either a specular highlight or a high
intensity texture region. We then employ illumination con-
sistency between two range images to discriminate specular
highlights from high intensity texture regions.
Highlight detection If we consider a region with homo-
geneous texture, then a specular highlight will exhibit a
local peak of intensity. This is because the specular reflec-
tion component increases as the viewing direction comes
closer to the mirror-like reflection direction. We thus de-
tect local peaks of intensities at the surface. Points with
lowest intensities in the image are first removed to focus
on only significant specular highlights (with sufficient in-
tensity). Then we obtain several connected regions. For
each connected region, the average avg and standard de-
viation std of the intensities are computed and each pixel
x such that I(x) > avg + std is selected, where I(x) is
the intensity at x. Then, if the initial connected region is
separated into several connected parts the process is iter-
ated. The detection stops when the number of connected
regions becomes stable. Each connected region represents
one possible specular highlight.

Specular highlights Some of the detected highlights may
be high intensity texture regions, which may cause inac-
curate estimation of the illumination chromaticity as well
as inaccurate estimation of incident illumination directions.
This is because the surface may exhibit high intensity tex-
ture regions that behave like a specular highlight. We thus
employ illumination consistency to discriminate between
specular highlights and high intensity texture regions.

The illumination condition is the same for two range im-
ages. This means that the light source directions producing
corresponding specular highlights are the same. We will
call this illumination consistency below. Because normals
at the surface are available for two range images, for each
highlight in two range images, we estimate the incident il-
lumination direction that can produce such highlight. To be
more specific, we first compute the average of the viewing
directions in the highlight region and then rotate this vec-
tor around the averaged normal vector with an angle equal
to π

2 to estimate the incident light vector. This is because
for smooth surfaces, the viewing directions in this region
is roughly centered on the mirror-like specular reflection
direction.

The highlight regions are then clustered into groups that
are produced by similar light sources. Namely, consider
the sets (H1,j)j∈[0,n1] and (H2,j)j∈[0,n2] of the highlight
regions of two range images, with n1 and n2 the number
of highlight regions. We regroup highlight regions using
the criterion below:

∀i ∈ [1, 2],∀(j, j′) ∈ [0, ni], if acos(li,j · li,j′) < Thl

then the corresponding regions are regouped,
(1)

where li,j is the estimated normalized light direction for
the highlight region Hi,j , (l · l′) is the scalar product of
two vectors l and l′ and Thl is a threshold (for example 20
degrees). When two regions Hi,j and Hi,j′ are regrouped,
Hi,j′ is added to Hi.j , li,j = li,j+li,j′

2 and Hi,j′ is removed
from the list of highlight regions.

We then eliminate high intensity texture regions using
the illumination consistency constraint. Namely, we use the
3
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Figure 2: Illumination consistency constraint.

criterion below:

∀i ∈ [1, 2],∀j ∈ [0, ni],
if for i′ ∈ [1, 2], i′ 6= i,∀j′ ∈ [0,ni′ ],

acos(li,j · li′,j′) > Thl,

then the region Hi,j is eliminated.

(2)

Fig. 2 illustrates the illumination consistency constraint un-
der a fixed viewpoint and fixed illumination condition.

We finally obtain consistent specular highlights on two
range images with their estimated incident light direction.
These specular highlights are then used to compute the
illumination chromaticity of each light source. The esti-
mated light source direction are used to divide the image
into regions each of which is mostly illuminated by a single
dominant light source.

4.2 Detection of non-ambiguous regions
For each specular highlight, we have estimated its mostly
dominant light source direction. If the incident illumination
of a region is a single distant light source, we can use the
method [15]. We can not directly apply the method [15] to
the whole surface. This is because the illumination envi-
ronment can be composed of multiple light sources. In fact,
this method requires a normalized image that simulates pure
white illumination. However, the normalization process is
not additive, not even linear and thus this is impossible to
obtain if the scene is illuminated by unknown multiple light
sources with different colors. Each light source illuminat-
ing the scene has different positions and accordingly the
energy emitted at a point from each light source is differ-
ent. This means that the surface exhibits regions where the
incident illumination can be approximated by a single light
source. We thus divide the surface into sub-regions, so that
non-ambiguous regions are specified where the local inci-
dent illumination can be approximated by a single distant
light source.

We assume that each detected light source is distant from
the surface so that the incident light rays coming from one
light source is the same for all points at the surface. By
using the detected incident light directions we compute a
shadow map for each detected light source. Namely, for
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a light L with directional vector l = (lx, ly, lz), we define
the shadow map S induced by L proportional to the en-
ergy received from L by each point at the surface. More
precisely, for a point x on the surface with normal n and
with angle Θ between l and n we define

S(x, L) = cosΘ. (3)

To detect non-ambiguous regions, we use the criterion
below:

if (S(x, L1) > Thα and S(x, L2) > Thα)
then x is in an ambiguous region

else x is in a non-ambiguous region,
(4)

where L1 and L2 are the two light sources such that the
intensities of the shadow maps at the point x are the great-
est. The threshold Thα is a value between 0 and 1. In the
experiments, we chose Thα = 0.7 that corresponds to an
angle Θ of about 45 degrees. For each non-ambiguous re-
gions, we attach the light source that emits the most energy
inside this region and regroup regions with the same cor-
responding light sources. We remark that it is preferable to
over-detect ambiguous regions rather than non-ambiguous
regions. This is because high errors in the albedo estima-
tions may propagate during the subsequent extrapolation
process.

As a consequence, we obtain non-ambiguous regions in
two range images in which we can reliably and adaptively
separate reflection components using a single distant light
source.

4.3 Estimating albedo
The energy emitted from a specular highlight to the view-
point comes mainly from a single light source. Each light
source induces a specular highlight at the surface, which al-
lows us to compute its illumination chromaticity, and each
non-ambiguous region has its corresponding light source.
As a consequence, for each non-ambiguous region the in-
cident illumination can be approximated by a distant single
light source whose illumination chromaticity can be com-
puted. We can thus independently apply the method pro-
posed in [15] to each non-ambiguous regions for separating
the reflection components of these parts of the surface. We
briefly recall the method proposed in [15].
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The dichromatic reflection model at a pixel x can be
expressed as:

I(x) = ωd(x)B(x) + ωsG, (5)

where I = (Ir, Ig, Ib) is the color vector of image intensity,
x = (x, y) is the image coordinate, ωd(x) and ωs(x) are
the weighting factors for diffuse and specular reflections,
B(x) represents the color vector of diffuse reflection and G
represents the color vector of the specular reflection. Note
that we assume that the specular reflection intensity is equal
to the illumination intensity, without any inter-reflections.
The first part of the right-hand side of the equation repre-
sents the diffuse reflection component and the second part
represents the specular reflection component. The basic
idea is to iteratively compare the intensity logarithmic dif-
ferentiation of an input image and its specular-free image.
We remark that a specular-free image is an image that have
exactly the same profile as the diffuse image.

The input image should be a normalized image that sim-
ulate a pure white illumination. To do so, the input image
is normalized by the illumination chromaticity, which is
computed from the specular highlights using the method
proposed in [16]. The specular-free image is generated by
shifting each pixel’s intensity and maximum chromaticity
nonlinearly. Given a normalized and a specular-free image,
the reflection components are then iteratively separated un-
til the normalized image has only diffuse pixels.

As a result a diffuse normalized image is obtained. This
estimated diffuse image is then used, together with the es-
timated light source direction corresponding to the non-
ambiguous region and the diffuse reflection model to esti-
mate albedo in this region.

5 Extrapolation of albedo
Up to here, we have computed albedo in non-ambiguous
regions. However, in ambiguous regions, albedo is still
unknown and matching points in these regions is not yet
possible. We remark that albedo has been computed in
several parts of the surface and it is to be expected that
several points in the ambiguous region have albedo simi-
lar to points in non-ambiguous regions. We thus estimate
albedo in the ambiguous region by extrapolating albedo
computed in non-ambiguous regions.

We consider a small region at the surface without spec-
ular highlights. The energy reflected at points inside this
region is then mostly diffuse. As a consequence, the chro-
maticity or maximum chromaticity of points inside this
small region with the same surface color is similar to each
other. Therefore, by comparing maximum chromaticity of
points inside small regions we can detect points having
similar albedo.

For a point x at the surface, the maximum chromaticity
σ(x) of the point x is defined as follows:

σ(x) =
max(Ir (x), Ig(x), Ib(x))
Ir (x) + Ig(x) + Ib(x)

. (6)

Starting from the diffuse points in the ambiguous region
that have a neighbor in a non-ambiguous region, albedo
Non-ambiguous point
Ambiguous point

Points at the border

(a) Initial status.

Point p with unknown albedo
Vicinity of point p with known albedo

p

(b) The vicinity is considered.

Point q with maximum chromaticity closest to 

the one of p

p
q

(c) The closest point is extracted.

The albedo value of point p is set to the one of 

point q and p is no longer an ambiguous point

p
q

(d) albedo value is extrapolated.

Figure 4: The different stages for the extrapolation.

values are iteratively and locally extrapolated until the size
of the ambiguous region converges to a constant value. At
each iteration, considering a point x at the border of the
ambiguous region, we extract the point y in the vicinity of
x such that ε = |σ(x)− σ(y)| is minimal and albedo of y
is known. If ε is smaller than a threshold Thε (for example
Thε = 0.1) then we set the albedo value of x to the one of
y and remove x from the ambiguous region. Namely, we
process as follows:

y = argminp∈V (x)(|σ(x)− σ(p)|),
if |σ(x)− σ(y)| < Thε,

then alb(x) = alb(y)
and we remove x from the ambiguous region,

(7)

where alb(x) is the albedo of point x and V (x) is a vicinity
of x such that ∀p ∈ V (x), ‖x− p‖2 < ThV and p is in a
non-ambiguous region, with ThV a threshold (for example
ThV = 0.06 mm if the resolution of range image is 0.01
mm). Fig. 4 illustrates different stages of the extrapolation
procedure.

As a result we extrapolate albedo to the rest of points
at the surface that are not inside a specular highlight. We
then obtain photometric features that are globally invariant
to the pose of the object, the viewpoint and illumination
conditions. These features are thus useful for registering
range images. The obtained range image where each point
has its corresponding albedo is called the albedo map.

6 Registration
In order to show the usefulness of our method, we use our
estimated albedo map as an input of the iterative method
for range image registration proposed in [17].
5
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The method [17] uses adaptive regions defined from the
local distribution of albedo. Namely, by defining a speed
image for a range image, from each point a contour is prop-
agated using a level-set approach, which defines an adapted
region for each point.

A similarity metric between two points of interest is then
defined based on supports from the corresponding points
inside regions for the two points. This similarity metric
represents the albedo similarity of corresponding points in-
side the regions weighted by the geometric similarity of
the regions. To eliminate incorrect matches the rigidity
constraint is used.

As a result, the obtained list of matches is robust and
accurate enough to be used for the estimation of the trans-
formation using a weighted least square approach [9].

7 Experiments
We conducted experiments with synthetic data to verify the
robustness of our proposed method against changes in il-
lumination conditions, surface properties and noise in both
normals and intensities. The synthetic data were obtained
with a 3D modeler software (3D Studio Max) (see Table 1).
The exact albedo image is known and we simulated inten-
sity at the surface with a known specular reflection com-
ponent and synthetic light sources using the Torrance and
Sparrow reflection model [11] (Fig. 5).

In order to see the effects against data noise we ran-
domly transformed the normals and intensity of the two
range images. More precisely, the normals were first ro-
tated around an arbitrary axis orthonormal to the ground
truth normal with an angle α. Then the rotated normal
is rotated around the ground truth normal with a random
angle θ with value ranging from 0 degrees to 360 degrees.
On the other hand, the surface intensity was perturbed with
Gaussian noise with 0 mean and λ variance, where λ is a
percentage of the average over the ground truth intensity of
the surface.

In order to see the effects against illumination conditions.
We rendered two images with various kinds of illumination.
The light source direction is computed using the normal at
a point x and the viewpoint, and the light source position is
defined at an arbitrary distance on the light direction. This
is because we need specular highlights at the surface to test
our method. Rather than choosing the position of the light
source randomly we preferred to choose a random point x
at the surface that represents the perfect specular reflection
from the viewpoint.

Before applying our method, we manually established
a rough pre-alignment of two range images. This align-
ment allowed us to simulate the case where the input
data were captured from two different viewpoints rota-
tionally differentiated by 18.09 degrees around the axis
(0.0057, 0.9997,−0.025) .

We evaluated our method with different values of α and
λ. The value α was changed from 0 to 54 degrees by 2.86
degrees. The value λ was changed from 0 to 9 percents
by 0.5 percents. For each values of α, λ, we applied our
method 20 times under the same initial conditions.
6

Table 1: Description of the synthetic data.

Nb Points Resolution Expected rot (angle; axis)
30650 0.01mm (18.09; 0.0057, 0.9997,−0.025)

(a) Superimposed
range image.

(b) First image. (c) Second image.

Figure 5: The input synthetic data.

Fig. 6 shows quantitative evaluation of registration re-
sults in terms of averages and variances of the angle error
and axis error of the obtained results under various differ-
ent level of noise in both normals and in intensity. Our
method achieves robustness for both noise in normals and
intensity. We observe that even with a noise in intensity
of variance 8% the largest error remains under 0.8 degrees
for the angle accuracy and under 2.5 degrees for the axis
accuracy. For noise in normals, we observe that even with
a noise of variance 10 degrees, the largest error remains un-
der 0.2 degrees for the angle accuracy and under 1 degree
for the axis accuracy. Fig. 8 shows an example of the es-
timated photometric features computed for the input range
images in Fig. 5 and the qualitative result of the registra-
tion. In this example, we obtained an angle error of 0.07
degrees and an axis error of 0.06 degrees. The resolution
of this data is about 0.01mm and its depth is about 0.5mm,
therefore the transformation error corresponds to a distance
error between the obtained and the ground truth position of
points of approximately 0.09mm. We thus observe that the
registration achieves accuracy of the same precision of the
acquisition device accuracy. We also observe that as ex-
pected the specular effects are correctly removed and that
the features are globally invariant to the viewpoint, the pose
of the object and the illumination. As we expect, the ob-
tained photometric features are consistent for the two range
images.

In order to test the accuracy of our method under com-
plex illumination conditions, we changed the position be-
tween the specular highlights that define the light source
directions. One light was fixed and considered as a refer-
ence light. We then evaluated our method with three dif-
ferent values of d, where d is the distance of two different
specular highlights: 1.8, 1.2 and 0.8. For each value of d
the method was applied 20 times with a random light direc-
tion. Table 2 shows the results obtained with our method.
The value Ratio is the ratio of ambiguous points over the
total number of points in the two range images. We ob-
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(a) Angle error. (b) Axis error.

Figure 6: Results under noise in intensities.

(a) Angle error. (b) Axis error.

Figure 7: Results under noise in normals.

(a) Photometric features of
the first image.

(b) Photometric features of
the second image.

(c) Result with our method. (d) Zoom into border of
range images.

Figure 8: The photometric features and the result.
(a) First range im-
age.

(b) Second range
image.

(c) Superimposed
ranged images.

Figure 9: Simulation with two light sources.

(a) Diffuse reflection model. (b) Our method.

Figure 10: Results obtained with the diffuse reflection
model and with our method.

serve that the largest error remains under 1.0 degree for
the angle accuracy and under 4 degrees for the axis ac-
curacy. Figs. 9, 10 and 11 illustrate the results obtained
with our method when using two light sources. We show
for comparison, results obtain with the method proposed in
[17]. The result obtained with the method proposed in [17]
has an angle error of 4.47 degrees and an axis error of 8
degrees. In contrast our method obtained accurate result,
with an angle error of 0.26 degrees and an axis error of
0.84 degrees. We observe that the diffuse reflection model
is useless to obtain photometric features invariant to the
pose, the viewpoint or illumination conditions while our
method effectively extracts photometric features invariant
to the pose, the viewpoint and the illumination conditions.
The ratio of ambiguous points was of 0.285 in this experi-
ment.

8 Conclusion
We proposed a technique for the registration of range im-
ages of a specular object devoid of salient geometric fea-
tures under unknown complex illumination. By using geo-
metric information and illumination consistency, we effec-
tively estimate photometric properties for each light source
that have significant effects in the scene. These photometric
properties are invariant to the illumination or pose changes.
In order to handle the case of multiple light sources, we ex-
7
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Table 2: Results obtained with two light sources.

d Angle error Variance of angle error Axis error Variance of axis error Ratio Variance of ratio
1.8 0.307 degrees 0.073 degrees 0.816 degrees 0.389 degrees 0.501 0.007
1.2 0.343 degrees 0.347 degrees 2.07 degrees 1.95 degrees 0.502 0.335
0.8 0.427 degrees 0.415 degrees 1.767 degrees 1.64 degrees 0.392 0.39
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[14] Y. Sato and K. Ikeuchi. Temporal-color space analysis of reflection.
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(a) Albedo esti-
mated with diffuse
reflection model.

(b) Albedo in non-
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Figure 11: Estimated albedo maps.

trapolate reliable albedo estimates onto ambiguous regions.
A robust approach for range image registration is then used
to estimate the transformation aligning two range images.
Experiments using synthetic data confirm the flexibility, the
robustness and the accuracy of our proposed method.
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