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ABSTRACT

Line and plane recognition is one of the essential tasks
in the field of computer vision. While methods for digital
plane recognition based on digital geometry can detect the
global optimal solution, they require enormous computa-
tion time. In this paper, we propose a digital line/plane
recognition method using multiresolutional representation as
mixed integer linear programming problems which requires
much less computation time than the conventional method.
Our method reduces both the outliers of points and the
search space of the line/plane parameters at low resolutions.
Experimental results show that the computation time was
reduced significantly by our method.

1. INTRODUCTION

Line recognition in 2D space and plane recognition in
3D space are the essential tasks in computer vision and are
applied [1] in object recognition [2], image segmentation
[3], and parameter estimation [4]. Therefore, many conven-
tional methods for line/plane recognition are proposed. For
example, there are methods based on the least squares [5],
M-estimator [6], Hough transformation [7], RANSAC [8],
LMedS [9] and so on.

On the other hand, line/plane recognition in digital ge-
ometry is also an active research topic [10], [11], [12], [13],
[14], [15]. In digital geometry, a line in 2D space and a
plane in 3D space are defined as sets of points between two
parallel lines/planes [16], as shown in Figure 1.
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Figure 1. A statistical line (left) vs. a digital line (right).

There are many methods for determining whether a given
set of points is a digital line/plane or not [10], [11], [12],
[13], and for estimating the minimum thickness of the digital
line/plane assuming that a given set of points belongs to one
digital plane [14], [15]. These methods assume that a given
set of points does not contain outliers.

Recently, a method which is applicable for a set of points
containing outliers is proposed [17]. In this method, the
optimal subset of points is selected among the all possible
combinations of subsets. The optimal subsets contains the
maximum number of points which belongs to one digital
line/plane. This method is formalized line/plane recognition
problem by a mixed integer linear programming problem
and can deal with the outliers. However, the computation
time is much longer as the number of outliers increases.

In this paper, we propose an extension of a digital
line/plane recognition method as mixed integer linear pro-
gramming problems using multiresolutional representation
(Figure 2). Our method reduces both the outliers of points
and the search space of the line/plane parameters at low
resolutions. The reduction of the search space of the param-
eters is made possible by adding the constraints to the MILP
problem at the higher resolutions. The reduction of points
is done by deciding whether points belongs to the estimated
line at lower resolutions or not.

2. DIGITAL LINES AND DIGITAL PLANES

In the Euclidian space Rn (n = 2, 3), a line L and a plane
P are defined as:

L = {(x, y) ∈ R2 : ax + y + b = 0}, (1)
P = {(x, y, z) ∈ R3 : ax + by + z + c = 0}, (2)

where a, b, c ∈ R.
On the other hand, we consider the digital model in

digital geometry. A point in digital geometry has integer
coordinates. Let Z be the set of integers. Z2 denotes the set
of grid points whose coordinates are all integers in the 2D
Euclidean space R2. In the digital space Zn (n = 2, 3), a
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Figure 2. Multiresolutional representation of a digital line.

digital line D(L) and a digital plane D(P) are defined as:

D(L) = {(x, y) ∈ Z2 : 0 ≤ ax + y + b ≤ ω}, (3)
D(P) = {(x, y, z) ∈ Z3 : 0 ≤ ax + by + z + c ≤ ω},

(4)

where a, b, c, ω ∈ R. A digital line D(L) is a set of grid
points between two parallel lines ax + y + b = 0 and ax +
y + b = ω. The distance between two lines along the y
axis is ω and the y axis is called principal axis. When the
principal axis is the x axis, x in Equation (3) is replaced
with y. Similarly, a digital plane D(P) is a set of grid points
between two parallel planes ax + by + z + c = 0 and ax +
by + z + c = ω. The distance between two planes along the
z axis is ω and the z axis is called principal axis. When the
principal axis is the x axis, x in Equation (4) is replaced
with z. When the principal axis is the y axis, y in Equation
(4) is replaced with z.

3. FORMULATION OF LINE/PLANE RECOGNITION AS
MIXED INTEGER LINEAR PROGRAMMING PROBLEMS

3.1. About mixed integer linear programming problems

An optimization problem that maximizes (or minimizes)
a linear objective function subject to linear equality and
linear inequality constraints is called linear programming
(LP) problem. In other words, for a given matrix A and
vectors b, c, it is a problem for obtaining a vector x that
maximizes (or minimizes) c>x subject to constraints Ax≥b
and x≥ 0.

Especially, if the elements of x are all required to be inte-
gers, then the problem is called integer linear programming
(ILP) problem. If only some elements of x are required to
be integers, then the problem is called mixed integer linear
programming (MILP) problem. The linear programming

problem was solvable in polynomial time, but (mixed) inte-
ger linear programming problems were generally NP-hard.
The performance of the solvers are, however, improving
spectacularly in the recent years due to high-performance
computers and algorithms [18].

3.2. Formulation as mixed integer linear programming
problems

Firstly we consider a digital line recognition. Let N be
the number of points and pi (i = 1, . . . , N) be a binary
variable such that pi = 0 if a point (xi, yi) satisfies the
linear inequalities of a digital line; otherwise, pi = 1. Then,
a problem for obtaining a line that has the maximum number
of inliers (i.e. the minimum number of outliers) is expressed
as a mixed integer linear programming problem:

minimize
∑

i=1,...,N

pi (5)

subject to −Mpi ≤ axi + yi + b ≤ Mpi + ω

for all i = 1, . . . , N (6)
pi ∈ {0, 1} (7)

where M is a large number constant.
In the case that a point (xi, yi) is inlier, pi = 0 then

Equation (6) becomes

0 ≤ axi + yi + b ≤ ω (8)

that is equivalent to Equation (3). In the case that a point
(xi, yi) is outlier, pi = 1 then Equation (6) becomes

−∞ ≤ axi + yi + b ≤ ∞. (9)

The technique like this is called big-M method.
Concerning digital plane recognition, let N be the number

of elements of points set and pi (i = 1, . . . , N) be a binary
variable such that pi = 0 if a point (xi, yi, zi) satisfies the
linear inequalities of a digital line; otherwise, pi = 1. Then,
a problem that obtains a plane that has the maximum number
of inliers (i.e. the minimum number of outliers) is expressed
as a mixed integer linear programming problem:

minimize
∑

i=1,...,N

pi (10)

subject to −Mpi ≤ axi + byi + zi + b ≤ Mpi + ω

for all i = 1, . . . , N (11)
pi ∈ {0, 1} (12)

We consider that the width ω is 1 for easy description. Any
width is also available.

4. APPLYING MULTIRESOLUTIONAL REPRESENTATION

4.1. Multiresolutional representation by downsampling

Although optimizing solvers of MILP problems functions
faster, solving it takes enormous amount of time [17]. In



particular, if a ratio of outliers increases we cannot solve by
practical time. So, in this paper we use multiresolutional rep-
resentation to reduce computation time. For simplification,
we will explain only the 2D case hereafter, in this section,
since the 3D case is easily treated as its extention.

To use multiresolutional representation, downsampling is
defined as follows. Firstly, a point (xi, yi) exists at low reso-
lution when any point of (2xi, 2yi), (2xi+1, 2yi), (2xi, 2yi+
1), (2xi + 1, 2yi + 1) exist at high resolution, for the
representation at resolution 1/2 of original resolution like
Figure 3. By this definition, an image at a low resolution
is calculated uniquely. To iterate k times downsampling we
obtain a points set of resolution 2−k.

2xi 2xi + 1

2yi

2yi + 1

xi

yi

Figure 3. A model of downsampling

4.2. Reflection to higher resolution

In our method, we reduce computation time by reflecting
a recognition result of digital line/plane at low resolution to
recognition at high resolution. Precisely, reduction of points
and of search space of parameters of line/plane is performed
as explained in the following.

4.2.1 Reduction of points
We recognize a digital line/plane from points that may

be inliers at high resolution using parameters of a digital
line/plane at low resolution. Then computation time will be
reduced drastically because of reduction of points that may
be outliers.

We use the points such that their corresponding points at
lower resolution were inliers.

If outliers are scattered all over the area, the number of
points will decrease by reducing resolution, but the number
of outliers will not. As a result, the ratio of the numbers of
outliers to the number of all points will be higher.

4.2.2 Reduction of the search space of parameters
In the previous section, we showed how to reduce com-

putation time by decreasing the number of points. We will
aim to further reduce the computation time by reduction of
a search space of parameters.
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(b) Examples of results of recognitions at higher resolutions

Figure 4. Relationship between lines of different resolutions

Concerning 2D space, a digital line at low resolution is
equal to a line of triple width at high resolution. For instance,
in Figure 4 (a) if a red digital line is recognized, points can
exist within the pink area. Even at higher resolution, points
should lie within the pink area. So any red digital line like
in Figure 4 (b) is recognized at its resolution. Therefore
if (xi, yi) is inlier at low resolution, parameters a, b are
supposed to satisfy the following inequality:

−2 ≤ axi + yi + b ≤ 3. (13)

We can add it as a constraint of a mixed integer linear
programming problem.

4.3. Use of connectivity

Our proposed method attempts to minimize the com-
putational time by using multiresolutional representation
and the reduction of resolution which diminishes outliers.
However, when several lines/planes exist densely, reducing
the resolution may fill up the empty areas and lines/planes
may disappear. This can be resolved by not reducing the
resolution significantly, which will result in increase of
computational time by contrast. Thus, in dealing with large
amount of points, as in the actual data, we do not take into
consideration the connectivity of points.

4.4. Algorithm

Since a principle axis is unknown, mixed integer linear
programming problems of all axes must be solved at initial
resolution. Then onwards, digital line/plane recognition is



Input: a set of N points in dimension n for n = 2 or 3, initial
resolution 1/2k

Output: the parameters of the hyperplane in dimension n and
pi of every point in S

1 foreach assumed principle axis of x，y，z do
2 generate a set of points Sk of resolution 1/2k from S
3 solve the MILP problem and obtain the parameters
4 end foreach

for the axis that the minimum number of outliers at
lower resolution

5 for r = k − 1, k − 2, . . . , 1 do
6 generate a set of points Sr of resolution 1/2r from

the parameters at lower resolution 1/2r+1

7 solve the MILP problem and obtain the parameters
8 end for
9 set obtained parameters to be the optimal values

10 return

Figure 5. An algorithm for digital line/plane recognition using
combinatorial optimization by multiresolutional representation

performed only on the axis with the largest number of inliers.
If multiple optimal solutions are obtained, recognition is
performed on each of the parameters.

Using the strategy above, our digital line/plane recognition
algorithm is obtained as shown in Figure 6.

5. EXPERIMENTAL RESULTS

To evaluate the proposed method, we use the synthetic
data and the real data in our experiments. The following
results for the computation time shown below contains the
time for loading data and displaying the results.

5.1. Digital line recognition for the synthetic data

We compare the results of the synthetic data by the
proposed method and the conventional method [17] which
has only one resolution. In this experiment, the SCIP Version
1.101 was used as the solver of the MILP.

The example of the synthetic data is shown in Figure 6.
There were two kinds of synthetic data: (A) various numbers
of points, 100, 200, 300, 400, and 500 which contains the
fixed number of outliers, 10, and (B) the fixed number of
points, 200, which contains various number of outliers, 10,
20, 30, 40, and 50.

The computation times are shown in Figure 7 for (A),
and in Figure 8 for (B), respectively. The axes for the
computation time in both Figure 7 and Figure 8 are shown
with the logarithm scale. The computation time was reduced
greatly by the use of multiresolutional representation.

1http://scip.zib.de/
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Figure 6. An example of 2D synthetic data and a recognized line
by our method (red: outliers, blue: digital line)

10 20 30 40 50

Number of outliers

1

10

100

1000

C
o
m

p
u
ta

ti
o
n
a
l 
ti
m

e
 [
s
]

One resolution

Two resolutions

Three resolutions

Four resolutions

Figure 7. Relation of computation time to number of points for
digital line recognition (the number of outliers is 10)

5.2. Digital plane recognition for the synthetic data

For the 3D synthetic data, an example is shown in Figure
9. There were two kinds of synthetic data: various numbers
of points, 10 and 20 which contains the fixed number of
outliers, 50, and the fixed number of points, 100, which
contains various numbers of outliers, 10, 20, 30, 40, and 50.

The computation times are shown in Figure 10. The
computation time was reduced greatly by the use of mul-
tiresolutional representation.

5.3. Digital line and plane recognition for the real data

The results by our method for the real data are shown. In
the experiments shown in this section, lp solve2 was used

2http://lpsolve.sourceforge.net/5.5/
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Figure 8. Relation of computation time to number of outliers for
digital plane recognition (the number of points is 200)
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Figure 9. An example of 3D synthetic data and a recognized
plane by our method (red: outliers, blue: digital plane)

as the MILP solver.
The results of 2D line recognition are shown in Figure

11 and for 3D plane recognition is shown in Figure 12. The
real datas are premeasured because they has many outliers.

C
om

pu
ta

tio
n

tim
e

[s
]

1

10

100

1000
One resolution
Multiresolution

10 20 10 20 30 40 50
50 100

first row: Number of outliers / second row: Number of points

Figure 10. Relation of computation time to the number of points
and outliers for digital plane recognition
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Figure 11. Digital line recognition for 2D real data by our method
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Figure 12. Digital plane recognition for 3D real data by our
method

5.4. Comparison of RANSAC

We recognize digital lines from sets of points using our
method and RANSAC and compare their results. The sets
are rounded squares of different angles. The most inlier
points were the same; however, with RANSAC an optimal
solution was not determined when the angle was 45◦ while
our method succeeded in determining an optimal solution.
The results of our method and RANSAC are shown in Figure
13 and 14 respectively.

6. DISCUSSION

Computation times rose significantly as the number of
points and the ratio of the number of outliers to the
number of points increased in results of both 2D and 3D.
Furthermore, computation time reduced undoubtedly using
multiresoultional representation.

If we know the magnitudes of coefficients and their
relative relationships, the number of mixed integer linear
programming problems which need to be solved can be
reduced since the principle axis can be identified. Sloving
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Figure 13. Digital line recognition by our method
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Figure 14. Digital line recognition by RANSAC

unnecessary mixed integer linear programming problems is
equivalent to recognizings digital lines/planes from a set of
points including numerous outliers, which increases compu-
tation time. Therefore, if we could determine the relative
relationships of the magnitude of coefficients beforehand,
significant reduction of computation time can be expected.

Initial resolution can be only determined empirically
through the number of points and coordinates. If we do not
lower the resolution, it takes enormous computation time;
however, if we overly lower the resolution, the geometric
structure may collapse and the expecting result may not be
obtained or it may lead to infeasible solution if worse.

7. CONCLUSION

In this paper, we proposed a method to reduce a com-
putation time of digital line/plane recognition as mixed
integer linear programming problem using multiresolutional
representation. Our method reduces both the outliers of
points and the search space of the line/plane parameters
at low resolution. Experimental results showed that the
computation time was greatly reduced by our method. We
also confirmed that the proper line/plane can be recognized

by our method.
Notice that if the variances of direction of x, y, z are

not in the same range, overly lowering resolution will
cause problems such as inability to maintain the geometric
structure of the axis of a small variances.

Future work will focus on the automatic adjustment of
the width of the digital line/plane.
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