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Abstract. The validity of using conventional saliency map models to
predict human attention was investigated for video captured with an
egocentric camera. Since conventional visual saliency models do not take
into account visual motion caused by camera motion, high visual saliency
may be erroneously assigned to regions that are not actually visually
salient. To evaluate the validity of using saliency map models for ego-
centric vision, an experiment was carried out to examine the correlation
between visual saliency maps and measured gaze points for egocentric
vision. The results show that conventional saliency map models can pre-
dict visually salient regions better than chance for egocentric vision and
that the accuracy decreases significantly with an increase in visual mo-
tion induced by egomotion, which is presumably compensated for in the
human visual system. This latter finding indicates that a visual saliency
model is needed that can better predict human visual attention from
egocentric videos.

1 Introduction

Our visual focus of attention is an important clue for inferring our internal
state and therefore can be used effectively for developing human-centric media
such as interactive advertising, intelligent transportation systems, and attentive
user interfaces. Since our visual focus of attention is closely related to our gaze,
many gaze sensing techniques based on various approaches have been developed.
However, it is still a difficult task to measure our gaze in unconstrained settings.

An alternative way of estimating the visual focus of attention is to use a vi-
sual saliency map model. Inspired by psychological studies of visual attention [1],
Koch and Ullman proposed the concept of the saliency map model [2]. Itti et
al. subsequently proposed a computational model [3] for predicting which image
locations attract more human attention. Since then, many types of saliency map
models have been proposed [4–9]. The models have been applied not only to
static images but also to video clips by incorporating low-level dynamic image
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features such as motion and flicker [4]. Studies based on actual gaze measure-
ment [10–12] have demonstrated that such saliency maps match distributions of
actual human attention well. However, those studies considered only recorded
images and videos. The saliency maps were computed from images shown to hu-
man subjects, and their effectiveness was evaluated against the gaze coordinates
on the display. While such visual saliency map models can be used for certain
applications such as image editing, they lack an important aspect: consideration
of the visual motion caused by motion of the observer, i.e., visual motion seen
in a static scene captured by a moving camera.

Egocentric vision refers to a research field analyzing dynamic scenes seen
from egocentric perspectives, e.g., taken from a head-mounted camera. Ego-
centric perspective cameras are well suited for monitoring daily ego activities.
Accurate prediction of visual attention in egocentric vision would prove useful
in various fields, including health care, education, entertainment, and human-
resource management. However, the mechanism of visual attention naturally dif-
fers significantly in egocentric perspectives. For instance, visual stimuli caused
by egomotion are compensated for in egocentric vision, but such a mechanism
is not considered in conventional saliency map models. Since conventional mod-
els have not been examined for egocentric videos, whether they are valid for
such videos is unclear. We have investigated the validity of using conventional
saliency map models for egocentric vision. Egocentric videos were captured using
a head-mounted camera, and gaze measurements were made using a wearable
gaze recorder. The performances of several saliency models and features were
quantitatively determined and compared, and the characteristics of human at-
tention in egocentric vision were discussed. To the best of our knowledge, this is
the first experimental evaluation of the performance of saliency map models for
egocentric vision.

2 Related Work

In this section, we first introduce background theory on visual saliency and
briefly review previous work on computational saliency map models.

Due to a person’s limited capacity to process incoming information, the
amount of information to be processed at a time must be limited. That is why a
mechanism of attention is needed to efficiently select and focus on an important
subset of the available information [13]. The same holds true for the human vi-
sual system; visual attention is necessary to enable a person to handle the large
amount of information received through the eyes.

A key to understanding the mechanism of visual attention is feature integra-
tion theory [1]. The human visual system first divides incoming images into sim-
ple visual features [14]. Since natural objects usually have two or more features,
after processing each simple feature separately, the visual system reintegrates the
incoming image information. Treisman et al. concluded from their studies that
the human mechanism of visual attention includes integration of such visual cues.
On the basis of this theory, Koch and Ullman proposed the concept of a visual
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Fig. 1. Procedure for computing saliency maps for videos

saliency map: a two-dimensional topographic map that encodes saliency values
for a scene [2]. Those values are generated by integrating simple visual features,
and they represent how strongly the region attracts a person’s attention.

Itti et al. [3] proposed and developed a fully bottom-up computational saliency
map model. They introduced procedures for extracting simple visual features
from images; the saliency values are computed through procedures for imitating
visual receptive fields. The input is static images, and the output is saliency maps
corresponding to the input images. The model was later extended by adding two
dynamic features, motion and flicker, so that it can deal with dynamic scenes [4].

Other approaches to saliency map modeling have been proposed. For in-
stance, in the recently introduced graph-based approach [7–9], graph represen-
tations of input images are generated by defining dissimilarity functions and
distance functions between nodes. Saliency values are computed through steady-
state analysis of the graphs. Studies using this approach focused mainly on the
procedures for computing the saliency values from simple image features rather
than on validating the efficiency of the image features used in the models.

3 Procedure for Computing Saliency Maps for Videos

In this study, we used two representative saliency map models to evaluate the
validity of using saliency map models for egocentric vision. One is Itti et al.’s
model [4] which is based on the center-surround mechanism, and the other is
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Harel et al.’s graph-based model [7]. We first introduce the computational pro-
cedure of Itti et al.’s model, and then explain Harel et al.’s model.

Figure 1 illustrates the procedure which consists of three main stages. In the
first stage, feature decomposition generates Gaussian pyramids of feature images
from an input frame. In the second stage, “center-surround” mechanism gener-
ates feature maps from feature images; i.e., saliency maps are computed from
each feature. In the third stage, the feature maps are normalized and integrated
into a single saliency map.

In the first stage, the input image is decomposed into five types of visual fea-
ture images using simple linear filters. The features are typically intensity, color
and orientation as static features, and motion and flicker as dynamic features.
The intensity feature image is obtained as the average of the red, green, and blue
channels of the input images. Itti et al. used two difference images generated
by sets of two color channels, i.e., red-green and blue-yellow, for the color fea-
ture images. In contrast, we use the Derrington-Krauskopf-Lennie (DKL) color
space [15] as color features instead of these difference images. The DKL color
space is defined physiologically by three channels used for color processing in the
retina and thalamus. Orientation feature images are computed from the intensity
image using four oriented (0◦, 45◦, 90◦, 135◦) Gabor filters.

Two input frames are required for obtaining flicker and motion feature im-
ages. The flicker feature image is computed from the absolute difference between
the intensity feature images in the current and previous frames. The motion fea-
ture images are obtained from the spatially shifted differences between every four
orientation feature images of the current and previous frames. As a result, 12
feature images are obtained: one for intensity, two for color, four for orientation,
one for flicker, and four for motion. Next, nine spatial scales (scale zero = 1:1
to scale eight = 1:256) are created using dyadic Gaussian pyramids [16] for each
feature image.

In the next stage, feature maps are computed from these Gaussian pyramids
using the center-surround mechanism. We made six sets of two different sizes of
Gaussian pyramids. Six feature maps were computed from each feature image
using across-scale image subtraction, which is obtained by interpolation to the
finer scale and point-wise subtraction.

In the last stage, the final saliency map is obtained by combining the 72 nor-
malized feature maps (six for intensity, 12 for color, and 24 for orientation, six for
flicker, 24 for motion). The normalization is performed by globally multiplying
each feature map by (M − m̄), where M is the map’s global maximum and m̄ is
the average of its other local maxima. This normalization process suppresses the
feature maps with more peaks and thus enhances the feature maps with fewer
peaks.

Harel et al.’s model [7] follows the graph-based approach in the second and
the third stages. The feature maps and final saliency map are generated by
computing the equilibrium distributions of Markov chain graphs. For the second
stage, they defined a dissimilarity function and a distance function between
nodes and multiplied them together to obtain the weight of each node. In the
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Fig. 2. (a) EMR-9 [17], mobile eye tracking system developed by NAC Image Technol-
ogy. EMR-9 has two eye cameras and two IR light sources to measure gaze movements
at 240 [Hz]. It captures egocentric video at 30 [fps] using head-mounted scene cam-
era. Horizontal view angle of scene camera is 121◦, and resolution of recorded video is
640× 480. (b) Example video frame captured the scene camera during experiment.

last stage, they obtained the weight of each node by multiplying the value of the
location on the feature maps by the distance function.

4 Experiment

As summarized above, conventional saliency map models use simple, low-level
image features as sources to compute saliency maps. They are designed to com-
pute visual saliency for recorded images and videos, but no consideration is given
to dealing with visual motion induced by camera motion. To evaluate the validity
of using conventional models for egocentric vision, we conducted an experiment.

4.1 Experimental Procedure

To enable us to evaluate the validity of saliency map models for egocentric vision,
we designed an experiment that would enable us to determine the correlation
between the actual gaze points and the saliency maps for videos captured with
a head-mounted camera.

We used the EMR-9 mobile eye tracking system developed by NAC Image
Technology [17] to determine the gaze points and to capture egocentric videos.
As shown in Figure 2(a), the EMR-9 has two eye cameras and two IR light
sources for measuring gaze movement at 240 [Hz]. The scene camera attached to
the head captures egocentric video at 30 [fps]. The horizontal view angle of the
scene camera was 121◦, and the resolution of the recorded video was 640× 480.

We used the saliency map models of Itti et al. [4] and Harel et al. [7] as
baseline models. The experiment was conducted in a room. Four human subjects
(one at a time) sat on a chair while another person walked randomly around the
room. The subjects were asked to look around the room by moving their head
freely for one minute. Figure 2(b) shows an example video frame captured by
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(a) Each feature/Itti et al. [4]
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(b) Each feature/Harel et al. [7]
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(c) Combined features/Itti et al. [4]
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(d) Combined features/Harel et al. [7]

Fig. 3. ROC curves for each feature ((a) Itti et al. [4], (b) Harel et al. [7]) and for static,
dynamic, and all features ((c) Itti et al. [4], (d) Harel et al. [7]). Curves were calculated
by changing saliency threshold values from minimum to maximum. Horizontal axis
indicates false positive rate, i.e., rate of pixels above threshold. Vertical axis indicates
true positive rate, i.e., rate of gaze points for which saliency value of corresponding
point on saliency map was higher than threshold.

the scene camera. We obtained about 12,000 gaze points for each subject after
removing errors caused by eye blinks.

Human attention is affected by performing a task, but the high-level mech-
anism of attention cannot be treated efficiently with conventional saliency map
models. Since the purpose of our study was to examine the validity of saliency
map models for egocentric vision, and thus, we did not assign a task to the
subjects.

4.2 Results

To examine how each feature contributes to the accuracy of estimating attention,
we compared the correlation between each feature saliency map, computed using
only one feature, and the actual gaze points. The curves in Figure 3 are the
average receiver operating characteristic (ROC) curves, which were calculated



Can Saliency Map Models Predict Human Egocentric Visual Attention? 7

Fig. 4. Examples of gaze trajectory of subject facing moving object (walking person).
Images are overlaid with motion feature saliency maps. Crosses show gaze points.

by changing the saliency threshold values from minimum to maximum. The
horizontal axis indicates the false positive rate, i.e., the rate of pixels on the
map above a threshold. The vertical axis indicates the true positive rate, i.e.,
the rate of gaze points for which the saliency value of the corresponding point
on the saliency map was higher than the threshold.

Figures 3 (a) and (b) compare the feature saliency maps explained in Sec-
tion 3. Figure 3 (a) shows the results of using Itti et al.’s model [4], and Figure 3
(b) shows the results of using Harel et al.’s model [7]. Figures 3 (c) and (d)
compare the static, dynamic, and standard saliency maps. The static maps were
computed using only the static features (intensity, color, and orientation), and
the dynamic maps were computed using only dynamic features (motion and
flicker). The standard maps were computed using all the features. Figure 3 (c)
shows the results of using Itti et al.’s model [4], and Figure 3 (d) shows the re-
sults of using Harel et al.’s model [7]. The areas under the curves (AUC) of these
three curves, a measure of prediction performance, are shown in Table 1. These
results indicate that these saliency map models can predict human egocentric
visual attention better than chance. However, with both models, the dynamic
features did not contribute to performance. In fact, they even reduced accuracy.

Table 1. AUC of combined saliency maps for two models.

Static features Dynamic features All features

Itti et al. [4] 0.803 0.615 0.778

Harel et al. [7] 0.838 0.690 0.793

4.3 Discussion

Our experimental results show that the performance of the dynamic features,
motion and flicker, significantly degrades prediction performance for egocentric
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Fig. 5. Example of the scene in which object quickly changed its color (laptop monitor).
Images are overlaid with flicker feature saliency maps. Crosses show gaze points.

vision. However, during the experiment, we observed situations in which dy-
namic visual stimuli attracted the subject’s attention. Figure 4 shows examples
of the gaze trajectory when the subject was facing a moving object (walking
person). Figure 5 shows an example scene in which an object quickly changed
its color (laptop monitor). In these cases, the subject paid attention to the dy-
namic changes of the visual features; however, large saliency values are given to
the other locations which did not dynamically change. Hence, previously pro-
posed features could not capture dynamic visual stimuli appropriately in our
experimental situation.

Unlike the case with recorded images and videos, the case in which we are
interested includes the effects of egomotion. While human beings have the ability
to compensate for egomotion [18], conventional saliency map models do not have
a mechanism for such compensation, so high saliency values appear in dynamic
feature saliency maps regardless of whether they are caused by egomotion.

Figure 6 shows example dynamic feature saliency maps with and without
the effect of egomotion. Figure 6 (a) and (b) shows video frames with small
egomotion, and (c) and (d) show ones with large egomotion. Figure 6 (a) and
(c) are motion feature saliency maps, and (b) and (d) are flicker feature saliency
maps. The images in the top row are input images, those in the middle row are
feature saliency maps, and those in the bottom row are input images overlaid
with feature saliency maps. As shown in Figures 6 (a) and (b), many peaks
appear within dynamic feature saliency maps when the egomotion is small. Since
they are suppressed by the normalization in the last combining step, explained
in Section 3, these peaks do not substantially affect the final saliency map. In
contrast, as shown in Figures 6 (c) and (d), large saliency values are given to the
locations with large disparity and to the edges of large intensity difference caused
by large egomotion. These feature saliency maps can greatly affect the final
saliency map. This indicates that, to model dynamic visual stimuli efficiently, it
is necessary to compensate for large egomotion.
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(a)Small egomotion,
motion feature map

(b)Small egomotion,
flicker feature map

(c)Large egomotion,
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Fig. 6. Examples of dynamic feature saliency maps with and without effect of egomo-
tion. (a) and (b) show video frames with small egomotion, and (c) and (d) show frames
with large egomotion. (a) and (c) are motion feature saliency maps, and (b) and (d) are
flicker feature saliency maps. Images in the top row are input images, those in middle
row are feature saliency maps, and those in bottom row are input images overlaid with
feature saliency maps.

5 Conclusion and Future Work

We have investigated the validity of using saliency maps computed from videos
captured from an egocentric perspective by experimentally examining the cor-
relation between saliency maps and gaze points. The results show that saliency
map models can predict human egocentric visual attention better than chance;
however, the dynamic features decreased their performance for egocentric vision
because these models cannot model the way a person compensates for the effects
of egomotion. The models thus need to be improved to enable them to deal with
egocentric videos.

We plan to conduct more experiments under various conditions, e.g., in out-
door scenes and with walking subjects. We also plan to develop a motion compen-
sation mechanism so that the dynamic feature maps work better for egocentric
vision.
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