
「画像の認識・理解シンポジウム (MIRU2010)」 2010 年 7 月

Random Forests Based Image Categorization

Using Scene-Context Scale
Yousun KANG† and Akihiro SUGIMOTO†

† National Institute of Informatics

Hitotsubashi 2–1–2, Chiyoda-ku, Tokyo, 101–8430 Japan

E-mail: †{yskang,sugimoto}@nii.ac.jp

Abstract Scene-context plays an important role in scene analysis and object recognition. This paper presents

random forests based image categorization using scene-context scale. The proposed method uses the random forests,

which are ensembles of randomized decision trees. Since the randomized decision trees are extremely fast to both

train and test, it is possible to perform classification, clustering and regression in real time. We train the multi-scale

texton forests which efficiently provide both a hierarchical clustering into semantic textons and local classification

in various scale space. The use of the scene-context scale improves image categorization performance. We evaluate

on MSRC21 segmentation dataset. Our results advance the state-of-the-art in image categorization accuracy, and

the use of efficient decision forests facilitates execution speed.
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1. Introduction

Scene-context plays an important role in scene un-

derstanding. In fact, computer vision approaches have

demonstrated that the use of context improves recogni-

tion performance [1, 2, 3]. While the term context is

frequently used in the literature as an important key-

word, it is difficult to give its clear definition. There

are many sources of scene-context and numerous psy-

chophysics studies have presented new theories of con-

text for human object recognition [4, 5].

When the context is used on a per-pixel level, we can

capture the local context that image pixels within a re-

gion of interest carry useful information. Some image

pixels/patches have ambiguous features at a very local

scale, because the color and texture of local level can

not be enough to identify the pixel class. The more

the region of interest increases, the more it includes the

neighborhoods of pixels. Therefore, increasing the size

of a region of interest is one of the common methods to

include valid local context [6].

The size of a region of interest is related to size of

objects in a scene. Given object presence and location,

its scale or relative size in a scene can be a significant

cue for recognizing the objects in the scene. We refer

this scale as scene-context scale. We focus in this work

on the scene-context scale that is present in a scene,

but rarely used as a context to improve the recognition

performance.
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Fig. 1 Three examples of images with different

scene-context scale. The objects strongly differ

in their scale in an image.

The various scene-context scales of images are illus-

trated in Fig. 1. There are several possible sources to

estimate the scene-context scale in an image. If the ac-

tual scale of objects within an image is provided, or the

absolute distance between the observer and a scene can

be measured, we may easily estimate the scene-context

scale in each image. However, the estimation of the

scene-context scale still remains difficult and unreliable

in current computational approaches.

In this paper, we estimate the scene-context scale us-

ing multi-scale texton forests, which consist of several

randomized decision forests with different scales. Ran-

dom forests [7] have proven powerful tools with high

computational efficiency in vision applications [8, 9,

10]. For categorization and segmentation, Shotton et
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al. [11] proposed semantic texton forests as efficient tex-

ton codebooks without using of scene-context scale. We

propose multi-scale texton forests, which can generate

different textons according to scale space. We investi-

gate how scene-context scale combines with multi-scale

texton forests to improve the accuracy of categorization.

To assess the utility of the scene-context scale and

multi-scale texton forests in image categorization, we

compare the classification accuracy with that of the

state-of-the-art [11]. The results show that the proposed

method achieves better classification accuracy than the

methods without using of scene-context scale.

2. Randomized Decision Forests

In this section, we begin with a brief review of ran-

domized decision forests [7]. A decision forest is an en-

semble of T decision trees. A learned class distribution

P (c|n) is associated with each node n in the tree, where

c is a category label of a pixel. A decision tree works by

recursively branching left or right down the tree accord-

ing to a learned binary function of the feature vector,

until a leaf node l is reached. The whole forest achieves

an accurate and robust classification by averaging the

class distributions over the leaf nodes L = (l1, ..., lT ):

P (c|L) = 1

T

T∑

t=1

P (c|lt). (1)

Each tree is trained separately using a small random

subset of the training data I. Learning proceeds recur-

sively, splitting the training data In at node n into left

and right subsets Il and Ir according to a threshold κ

of some split function f of the feature vector v:

Il = {i ∈ In|f(vi) < κ}, (2)

Ir = In\Il. (3)

At each split node, several candidates for function f

and threshold κ are generated randomly, and the one

that maximizes the expected gain in information about

the node categories is chosen [9]:

ΔE = − |Il|
|In|E(Il)− |Ir|

|In|E(Ir), (4)

where E(I) is the Shannon entropy of the classes in the

set of examples I. The recursive training continues to

the maximum depth D or until no further information

gain is possible. The class distributions P (c|n) are esti-
mated empirically using a histogram of the class labels

ci of the training examples i that reached node n.

The split functions f act on small image patches p of

id

…
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Fig. 2 A region of interest for node split function

of randomized decision trees. The split nodes

of decision trees use simple functions of raw image

pixels within a (d× d) image patch.

size (d × d) pixels as shown in Fig. 2. These functions

can be computed with simple operations of raw image

pixels within a (d× d) patch: one of the raw value of a

single pixel, the sum, difference, and absolute difference

of a pair of pixels, namely,

f(p) = px1,y1,b1

f(p) = px1,y1,b1 + px2,y2,b2

f(p) = px1,y1,b1 − px2,y2,b2

f(p) = |px1,y1,b1 − px2,y2,b2 |,

where p is the value of a pixel at (x, y), and b1 and b2

are possibly different color channels.

The amount of training data may be significantly bi-

ased towards certain classes in some datasets. A classi-

fier learned on this data will have a corresponding prior

preference for those classes. To normalize this bias, we

weight each training example by the inverse class fre-

quency: wi = ξci , where ξc = (
∑

i∈I [c = ci])
−1. The

classifiers trained using this weighting tend to give a

better class average performance. After training, an

improved estimate of the class distributions is obtained

using all training data I, but not just the random sub-

set.

3. Multi-scale Texton Forest

Textons [12] have proven powerful discrete image rep-

resentations for categorization and segmentation. The

term texton means a compact representation for the

range of different appearances of an object. The collec-

tion of textons are clustered to produce a codebook of

visual words in bag of textons model [13].

By using random forests, we can build powerful

texton codebooks without computing expensive filter-

banks or descriptors, and without performing costly

k-means clustering and nearest-neighbor assignment.

Therefore, when the bag of textons method is employed

for categorization and segmentation, the random forests
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Fig. 3 Multi-scale texton forest. The multi-scale texton forest consists of

several randomized decision forests with various scale space and the ran-

domized decision forest consists of many decision trees at each scale step.

have the advantage of being extremely fast and high

performance.

Multi-scale texton forests are randomized decision

forests created in different scale space for textoniza-

tion of an image. The multi-scale texton forests consist

of several randomized decision forests FS with various

scale space S = (S1, ..., Sτ ). As shown in Fig. 3, a

random forest FS is a combination of T decision trees

at each scale space Sk, where the step of scale space

is k = (1, ..., τ). The nodes in the trees efficiently pro-

vide a hierarchical clustering into semantic textons with

scale-contextual features.

The split nodes in multi-scale texton forests use split

functions of image pixels within a region of interest.

Each random forest FS has different set of pixel combi-

nations within a region of interest as shown in Fig. 2 of

Section 2. We can increase the scale space S of a ran-

dom forest by dilatation of scale of a region of interest.

At the first scale step S1, the region of interest

RS1
covers whole pixels within a (d × d) image patch,

where the split functions f in FS1
act on. In next

scale step S2, the region of interest RS2
deals with

the pixels within the difference of (dk × dk) image

patch from the region RS1
of a previous scale step S1.

1 2

i i i……

Fig. 4 Dilatation of a region of interest according to

scale space Sk. Various sizes of a region of inter-

est are used for node split function in the multi-scale

texton forests.

Therefore, the region of interest RSk
increases within a

(dk×dk)−(d(k−1)×d(k−1)) image patch as illustrated

in Fig. 4.

To textonize an image according to scale steps, im-

age patches centered at each pixel with various size are

passed down the multi-scale texton forests resulting in

semantic texton leaf nodes L = (l1, ..., lT ) and the aver-

aged class distribution of each random forest PFS (c|L).
The textons generated by each randomized decision for-

est can be extracted in different scales from the other

forests. By pooling the statistics of semantic textons

L and distributions PFS (c|L) over an image region, the

bag of semantic textons presents a much more powerful

feature for image categorization.

4. Image Categorization

One of the most important tasks in computer vision is

image categorization. Categorizing an image consists of

determining those categories (e.g. forest images, office

images, moon images) to which the image belongs. Im-

age categorization is one way in which we can perform

image retrieval and segmentation or object detection.

4. 1 Non-linear SVM

We use a bag of textons model [11] computed across

the whole image for image categorization. The bag of

textons model uses the histogram of semantic textons

and the node prior distributions over the whole image,

even discarding spatial layout. The histogram is used

as an input to a classifier to recognize object categories.

For a classifier we use a non-linear support vector ma-

chine (SVM). The non-linear SVM depends on a kernel

function K that defines the similarity measure between
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images. To take advantage of the hierarchy in the multi-

scale texton forest, we adapt the pyramid match kernel

method (based on [11]) to act on a pair of bag of textons

histograms computed across the whole image.

The kernel function (based on [14]) is then

K(P,Q) =
l√
Z
K̃(P,Q), (5)

where Z is a normalization term for images of different

sizes

Z = K̃(P, P )K̃(Q,Q), (6)

and K̃ is the actual matching function, computed over

levels of the tree as

K̃(P,Q) =
D∑

d=1

l

2D−d+1
(Γd − Γd+1), (7)

using the histogram intersection Γ

Γd =
∑

j

min(Pd[j], Qd[j]), (8)

whereD is the depth of the tree, P and Q are bag of tex-

tons, and Pd and Qd are the portions of the histograms

at depth d, with j indexing over all nodes at depth d.

There are no nodes at depth D + 1, hence ΓD+1 = 0.

If the tree is not full depth, missing nodes j are simply

assigned Pd[j] = Qd[j] = 0.

The kernel over all trees in a random forest FS is

calculated as K =
∑

t γtKt with mixture weights γt.

We build a 1-vs-others SVM kernel Kc per category,

in which the count for node n in the bag of semantic

textons histogram is weighted by the value PFS (c|n).
This helps balance the categories, by selectively down-

weighting those that cover large image areas (e.g. grass,

water) and thus have inappropriately strong influence

on the pyramid match, masking the signal of smaller

classes (e.g. cat, bird).

4. 2 Estimation of scene-context scale

At each image patch, a random forest with minimum

entropy of leaf nodes can be chosen among the multi-

scale texton forests. We use the entropy of a leaf node

as the criterion of an optimal scale space to be chosen.

The optimal scale space can be obtained by computing

entropy of the class label distribution and the scene-

context scale of an image is obtained by integrating the

optimal scale space at each image patch.

In order to estimate the scene-context scale of an im-

age, we compute the entropy E(I|LS) of each image

patch I at leaf nodes LS of every random forest FS .
Among the scale space S = (S1, ..., Sτ ), the one Sk that

Mul�-scale Random Forest
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Fig. 5 The scene-context scale of an images can be

estimated by computing the minimum en-

tropy of each image patch. Darker pixels cor-

respond to smaller scale, so white pixels represent

the largest scale Sτ .

contains the leaf node LSk
of a random forest FSk

with

minimum entropy is chosen as

S∗
k = argminSk

E(I|LSk
). (9)

We can estimate the scene-context scale in an image as

the proportion of the instances of scale space S∗
k of im-

age patches. This gives the distribution of scale space

P (S) as shown in Fig. 5. We can determine the Scale-

Level Prior (SLP) that is the most likely scale space Sk

in whole image.

For each test image, we estimate the scene-context

scale and we combine the output of SVM categoriza-

tion algorithm with it. The categorization performance

increases by multiplying the distributions of each cate-

gory P (c|FS) and of scene-context scale P (S) as

P ′(c|FS) =
τ∑

k=1

P (c|FSk
)× P (Sk). (10)

And the SLP is used to emphasize the likely cate-

gories and discourage unlikely categories, by multiply-

ing the average distribution of the multi-scale texton

forests and the distributions at SLP as

P ′(c|FS) = (
l

τ

τ∑

k=1

P (c|FSk
))×P (SSLP )

α(11)

using parameter α to soften the prior.

5. Experimental Results

We evaluate our algorithm using challenging MSRC21

segmentation dataset that includes a variety of objects

such as building, grass, tree, cow, sheep, sky, aeroplane,

water, face, car, bike, flower, sign, bird, book, chair,

road, cat, dog, body, boat. Note that the ground-truth

labeling of the 21-class database contains pixels labeled
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6 Clustering and classification results using the multi-scale texton

forest. The multi-scale texton forest can generate the different textons

according to scale steps. (a) Input images. (b) Ground-truth images. (c) -

(h) Clustering results according to scale space S = (S1, ..., S6). The results

correspond to each scale space such as S1 = (c), S2 = (d), S3 = (e), S4 =

(f), S5 = (g), and S6 = (h).

as ’void’. These were included both to cope with pix-

els that do not belong to any database class, and to

allow for a rough and quick hand-segmentation which

does not align exactly with the object boundaries. Void

pixels are ignored for both training and testing.

Before presenting categorization accuracy, let us show

the clustering and classification results using the multi-

scale texton forests. The multi-scale texton forests pro-

vide both a hierarchical clustering into semantic textons

and local classification in various scale space. We sepa-

rately train the forests in different scale space.

To train the multi-scale texton forest, we prepared

six scale steps S = (S1, ..., S6) and a initial image patch

size is (15 × 15). Therefore, the size of image patches

for split function f is (15k× 15k) at each scale step Sk.

A randomized decision forest FS has following parame-

ters : T = 5 trees, maximum depth D = 10, 500 feature

tests and 10 threshold tests per split, and 0.25 of the

data per tree, resulting in approximately 500 leaves per

tree. Training the randomized decision forest on the

MSRC dataset took only 10 minutes at each scale step.

At test time, the most likely class in the averaged

category distribution gives the clustering and classifica-

tion results for each pixel as shown in Fig. 6. As can

be seen, the pixel level classification based on the local

distributions gives poor, but still good performance and

gives different results according to each scale step.

Using the multi-scale texton forest, we estimate the

scene-context scale in test images. Fig. 7 shows the test

images and ground-truth images and its scene-context

scale. The categorization accuracies (percent) over the

whole dataset, are also shown in table of Fig. 7.

We obtained the results (a) and (c) without using the

scene-context scale, and (b) and (d) with using scene-

context scale. (a) None in the first row of the table

used only one scale space, as the previous work [11]. (b)

SLP in the second row of the table used the equation

(11) in Section 4. (c) Mean in the third row of the

table used the average of categorization accuracies over

the whole randomized decision forests in the multi-scale

texton forests. (d) Distribution in the forth row of the

table used the proportion of the scene-context scale in

a test image as like equation (10).

The proposed method (d) using the distribution of

scene-context scale gives better results than any other

methods without using scene-context scale. Across
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Fig. 7 Image categorization results on MSRC21 datasets. Above: Scene-

context scale of test images using multi-scale texton forests. Below: Cate-

gorization accuracies (percent) over the whole dataset. Scene-context scale

achieves a improvement on previous work.

the whole challenging dataset, using the distribution

of scene-context scale achieved a class average perfor-

mance of 74.9%, which is better than all the 72.8% of

(a), the 72.2 % of (b), and the 73.7 % of (c). The pro-

posed method improves performance for all but three

classes. In particular, significant improvement can be

observed difficult classes: grass and cat.

6. Conclusion

This paper presented a new framework for image cate-

gorization using the multi-scale texton forest and scene-

context scale. We have (i) introduced the concept of

scene-context scale in object recognition, (ii) described

the randomize decision forests and expanded it to multi-

scale texton forest, and (iii) achieved efficient categoriz-

ing by using a combination of scene-context scale and

multi-scale texton forest. The multi-scale texton for-

est can be utilized in semantic segmentation and object

recognition by integrating scene-context scale with bag

of textons method.
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