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Abstract

Scene-context plays an important role in scene analysis
and object recognition. Among various sources of scene-
context, we focus on scene-context scale, which means the
effective region size of local context to classify an image
pixel in a scene. This paper presents semantic segmenta-
tion and object recognition using scene-context scale. The
scene-context scale can be estimated by the entropy of the
leaf node in multi-scale texton forests. The multi-scale tex-
ton forests efficiently provide both hierarchical clustering
into semantic textons and local classification depending on
different scale levels. For semantic segmentation, we com-
bine the classified category distributions of scene-context
scale with the bag-of-textons model. In our experiments, we
use MSRC21 segmentation dataset to assess our segmenta-
tion algorithm and show that the usage of the scene-context
scale improves recognition performance.

1. Introduction

There are many sources of scene-context, which play an
important role in scene analysis and object recognition [3].
When the context is used on a per-pixel level, we can cap-
ture the local context in which image pixels carry semantic
information within a region of interest. Some image pixels,
however, have ambiguous features at a very local scale, be-
cause the color and texture of the local level do not have ca-
pability of identifying the pixel class. Therefore, using the
multi-scale features [4] or increasing the size of a region of
interest [2] is one of the common methods to include valid
local context in computer vision approaches.

In object recognition process, the size of a region of in-
terest means available range to search local context for an
image pixel. Given object presence and location in a scene,
its scale or relative size in the scene is related to this range
and it can be a strong cue for recognizing the objects in the
scene. We refer the effective region size for local context
as scene-context scale. We focus in this work on the scene-
context scale that is present in a scene, but rarely used as a
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Figure 1. Three examples of images with different scene-
context scale. The objects strongly differ in their scale in an im-
age. When the object (cow) is recognize in a scene, the scene-
context scale should be considered to improve the recognition per-
formance.

context to improve the recognition performance.

The various scene-context scales of images are illus-
trated in Fig. 1. There are several helpful sources to es-
timate the scene-context scale in an image. If the actual
scale of objects within an image is provided, or the abso-
lute distance between the observer and a scene is measured,
we may straightforwardly estimate the scene-context scale
in each image. Torralba and Oliva inferred the scene scale
and estimate the absolute depth in the image [14]. Saxena
et. al presented an algorithm for predicting depth from a
single still image [10]. They dealt with the scale problem in
a scene, however, they did not use the scale information as
a cue to recognize the object in a scene.

In this work, we estimate the scene-context scale of ob-
jects in a scene using multi-scale texton forests and use the
scene-context scale to improve the accuracy of segmenta-
tion and recognition. We propose the multi-scale texton
forests, which can generate different textons according to
scale levels. In addition, we combine the bag-of-textons
model [12] with a histogram of the category distribution
at scene-context scale for semantic segmentation. The his-
togram is used as an input to a classifier to recognize object
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categories. At last, we illustrate performance by using the
scene-context scale for semantic segmentation and object
recognition. To assess the utility of the scene-context scale
based on multi-scale texton forests for semantic segmenta-
tion, we compare the classification accuracy with that of the
state-of-the-art [11]. The results show that our segmenta-
tion method achieves better classification accuracy than the
methods without using of scene-context scale.

This paper is organized as follows: Section 2 explains the
multi-scale texton forests in detail. Section 3 describes the
scene-context scale and how to combine the scene-context
scale with the semantic segmentation module using bag-of-
textons model. Section 4 shows experimental results on per-
formance and our conclusions are presented in the final sec-
tion.

2. Multi-scale Texton Forests

Textons have been proven effective in categorizing ma-
terials [15] as well as generic object classes [16]. Recently,
textonization process is performed on random forests to
generate semantic texton by Shotton et.a/ [11] for image
categorization and segmentation. By using random forests,
texton codebooks are available without computing filter-
banks or descriptors, and without performing expensive k-
means clustering and nearest-neighbor assignment. There-
fore, the random forests have the advantage of being ex-
tremely fast and high performance.

In this section, we explain multi-scale texton forests us-
ing random forests [1]. The scene-context scale can be ob-
tained by using multi-scale texton forests, which consist of
several random forests with different scales.

2.1. Textonization using random forests

In general, random forests is an ensemble of randomize
T decision trees [8]. A learned class distribution P(c|n) is
associated with each node n in the tree, where c is a cate-
gory label of a pixel. A decision tree works by recursively
branching left or right down the tree according to a learned
binary function of the feature vector, until a leaf node [ is
reached [11].

Each tree is trained separately using a small random sub-
set of the training data /. Learning proceeds recursively,
splitting the training data I,, at node n into left and right
subsets I; and I,. according to a threshold s of some split
function f of the feature vector v:

(M
2

The split functions f act on small image patches p of
size (d x d) pixels as shown in Fig. 2. These functions can
be computed with simple operations of raw image pixels

I ={i e L,|f(v:) <k},

I, = I,\I,.
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Figure 2. A region of interest for node split function of random-
ized decision trees. The split nodes of decision trees use simple
functions of raw image pixels within a (d X d) image patch.

within a (d x d) patch: one of the raw value of a single
pixel, the sum, difference, and absolute difference of a pair
of pixels, namely,

f(p) = Pzy,y1,01

J(P) = Payyi by + Paoyo,bo
J(P) = Payy1 by — Paoyo,bo
F(P) = [Pa1,y1.br = Paayobals

where p is the value of a pixel at (x,y), and by and by are
possibly different color channels.

At each split node, several candidates for function f and
threshold ~ are generated randomly. We compute the ex-
pected gain information and choose the one that maximizes
in the information about the node categories as follows [7]:

|| ||
Ll I

where E(I) is the Shannon entropy of the classes in the set
of examples /. The recursive training continues to the max-
imum depth D or until no further information gain is pos-
sible. The class distributions P(c|n) are estimated empiri-
cally using a histogram of the class labels ¢; of the training
examples 7 that reached node n.

A random forest achieves an accurate and robust clas-
sification by averaging the class distributions over the leaf
nodes of whole trees L = (1, ..., I7):

ZP c|ly).

At this time, the number of training data may be biased
towards certain classes in some datasets. To normalize this
bias, we adjustment the number of each training data using
by weight factor such as the inverse class frequency, w; =

&,. The & means (3, [c = ¢;]) "

2.2. Random forests with multi-scale

AE = — N E(n) - SR E(L), 3)

P(c|L) “)

We increase the size of image patches of split func-
tions to expand scale level of random forests. Each ran-
dom forests have their own scale level and its scale level
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Figure 3. Multi-scale texton forest. The multi-scale texton forest consists of several randomized decision forests with various scale space
and the randomized decision forest consists of many decision trees at each scale level.

can expand by using multi-scale texton forests. The effec-
tive region size for local context can be chosen among the
multi-scale texton forests with different scale.

Multi-scale texton forests are randomized decision
forests created in different scale space for textonization of
an image. The multi-scale texton forests consist of several
randomized decision forests Fs with various scale space
S = (S1,...,5;). As shown in Fig. 3, a random forest Fs
is a combination of 7" decision trees at each scale space Sk,
where the level of scale space is kK = (1, ..., 7). The nodes
in the trees efficiently provide a hierarchical clustering into
semantic textons with scale-contextual features.

The split nodes in multi-scale texton forests use split
functions of image pixels within a region of interest. Each
random forest Fs has different set of pixel combinations
within a region of interest as shown in Fig. 2. We can in-
crease the scale space S of a random forest by dilatation of
scale of a region of interest.

At the first scale level S, the region of interest Rg, cov-
ers whole pixels within a (d x d) image patch, where the
split functions f in Fg, act on. In next scale level So, the
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Figure 4. Dilatation of a region of interest according to scale
space Si. Various sizes of a region of interest are used for node
split function in the multi-scale texton forests.

41

region of interest Rg, deals with the pixels within the dif-
ference of (dk x dk) image patch from the region Rg, of
a previous scale level S7. Therefore, the region of interest
Rg, increases within a (dk x dk) — (d(k — 1) x d(k — 1))
image patch as illustrated in Fig. 4. The number of possible
combinations of selecting two pixels inside a region of in-
terest also increases quadratically with respect to the scale
factor k.

To textonize an image according to scale levels, image
patches centered at each pixel with various size are passed
down the multi-scale texton forests resulting in semantic
texton leaf nodes L = (l1, ..., 1) and the averaged class dis-
tribution of each random forest Pr, (c|L). The textons gen-
erated by each randomized decision forest can be extracted
in different scales from the other forests. By pooling the
statistics of semantic textons L and distributions Pr, (¢|L)
over an image region, the bag-of-textons presents a power-
ful feature for semantic segmentation.

3. Segmentation and Recognition

The study of textons facilitates a compact representation
for image decomposition and the collection of textons pro-
duce a codebook of visual words in bag-of-textons model.
The bag-of-textons model treats an object class as an un-
ordered collection of textons and it has the advantage of
simplicity and good performance. In this section, we ex-
plain how to estimate the scene-context scale in an image
pixel and combine it with the bag-of-textons model for seg-
mentation and recognition.

3.1. Scene-context scale

To estimate the scene-context scale of each image pixel,
we use the entropies in the leaf nodes of each random for-
est. Since the confidence of each random forest can be com-
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puted as the sum of entropies of the class label distribution
in leaf nodes, we regard the confidence as the criterion of
an optimal scale level to be chosen. At each image pixel,
therefore, the scale level of a random forest with minimum
entropy of leaf nodes is chosen as the scene-context scale
among the multi-scale texton forests.
At first, we compute the entropy E'(I|Ls) of each image
patch I at leaf nodes Ls of every random forest Fs as
E(I|Ls) = =) p(c|Ls) x logyp(c|Ls). (5
The computed entropy E(I|Ls) is summed according to
the each forest Fs. Among the scale level S = (51, ..., S;)
of the forest Fs, the one S}, that contains the leaf node Lg,
of a random forest Fg, with minimum entropy is chosen as
S;, = argming, F(I|Ls, ). (6)
The scene-context scale of an image pixel is the instances of
a scale level S}, of image patches as shown in Fig. 5(a). At
scene-context scale S, the category distributions P(c|L)
are also available for local classification and consist in the
histogram of a bag-of-textons model. The histogram is,
therefore, used as input to a classifier to recognize object
categories.

3.2. Bag-of-textons model

To demonstrate the efficiency of the scene-context scale
for semantic segmentation, we adapt the bag-of-textons al-
gorithm. The goal is to segment an image into coherent re-
gions and simultaneously infer the class label of each region
(see Figure 7). We make the histogram of the localized bag-
of-textons model using category distributions at the scene-
context scale, illustrated in Fig. 5.
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Since the bag-of-textons models discard spatial layout,
we use a local grid window as shown in Fig. 5(b). The lo-
cal grid window consists of nine sub-grid such as Top-Left
(TL), Top-Center (TC), Top-Right (TR), Center-Left (CL),
Center-Center (CC), Center-Right (CR), Bottom-Left (BL),
Bottom-Center (BC), and Bottom-Right (BR). To learn lay-
out and context information automatically, we use class dis-
tributions with different scales in a local grid window.

The scene-context scale S}, is chosen by using the en-
tropy of class distribution and the class distributions consist
in a histogram computed from nine grid windows from top-
left (TL) to bottom-right (BR). .S; are first chosen covering
about (d x d) the pixel area. We concatenated histograms
consisting of the class distributions of a scene-context scale
among from S; to S;. Finally, the normalized histogram
with multi-scale grid windows is used as a feature vector
for object recognition.

Outside the image boundary, there is no contribution
to the response. We employ the joint boosting algorithm
[13] to select discriminative features of the bag-of-textons
model. Random feature selection and subsampling reduce
training time to generate several thousand weak learners.
The learned strong classifier is an additive model of the
form

H(e, i) = Z hin(c, %),

m=1

(7

summing the classification confidence of M weak classi-
fiers. This confidence value can be reinterpreted as a prob-
ability distribution using the soft-max transformation [6] to
give the energy for optimal labeling.
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Figure 6. Clustering and classification results using scene-context scale. Above : (a) Classification result with using scene-context scale
based on multi-scale texton forests. (b) Classification result without using scene-context scale based on single-scale semantic texton forests
[11] Below: Classification accuracies (percent) over the whole dataset, without-(b), and with-(a), the scene-context scale. Our new highly

efficient scene-context scale achieve a significant improvement on previous work (b).

4. Experimental Results

This section presents our experimental results for se-
mantic segmentation and object recognition using scene-
context scale. We show two experimental results using
scene-context scale: one is the result of clustering and lo-
cal classification in the multi-scale texton forests and the
other is the result of semantic segmentation with bag-of-
textons model. To assess the utility of the scene-context
scale, we compare the classification accuracy with that of
the state-of-art [11] based on single-scale semantic texton
forests without using of the scene-context scale. The state-
of-art is simulated on C# open source code obtained by Se-
mantic Texton Forests” site [5]. We use the same train/test
split for ours and the state-of-art in all experiments.

We evaluate our algorithm using challenging MSRC21
[9] segmentation dataset that includes a variety of objects
such as building, grass, tree, cow, sheep, sky, aeroplane, wa-
ter, face, car, bike, flower, sign, bird, book, chair, road, cat,
dog, body, boat. Note that the ground-truth labeling of the
21-class database contains pixels labeled as ’void’. These
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were included both to cope with pixels that do not belong to
any database class, and to allow for a rough and quick hand-
segmentation which does not align exactly with the object
boundaries. Void pixels are ignored for both training and
testing.

4.1. Clustering and local classification

To train the multi-scale texton forest, we prepared six
scale levels S = (S1,...,56) and separately trained the
multi-scale texton forests in the six scale levels. The size of
image patches has initial size (30 x 30) and expands their
size for split function f to (30k x 30k) at each scale level
Sk. A randomized decision forest Fs has following pa-
rameters : T =5 trees, maximum depth D = 10, 400k fea-
ture tests at each scale level Sy, 10 threshold tests per split,
and 0.25 of the data per tree, resulting in approximately 500
leaves per tree. Training the randomized decision forest on
the MSRC dataset took only 10 minutes at each scale level.

We use the standard train/test splits, and the hand-labeled
ground truth to train the classifiers. Clustering and local
classification performance is measured as both the category
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Figure 7. Semantic segmentation results on MSRC21 datasets. Above: (a) The result images of clustering and local classification using
scene-context scale with noisy local classification. (b) The result image of semantic segmentation using bag-of-textons model. Below:
Segmentation accuracies (percent) over the whole dataset. (a) Our clustering and classification results. (b) Our semantic segmentation

results using bag-of-textons model. (c) The state-of-art results [11].

average accuracy (the average proportion of pixels correct
in each category) and the global accuracy (total proportion
of pixels correct). Fig. 6 shows the results of the cluster-
ing and local classification based on randomized decision
forest. We estimate the scene-context scale per image pixel
using multi-scale texton forests as shown in the third row of
Fig. 6. Since each image pixel has the category distribution
at the scene-context scale, we can infer the most likely cate-
gory ¢; = argmax,, P(c;|L) of leaf nodes L = (ly,...,I7)
for each pixel ¢ as shown in Fig. 6(a). On the other hand,
Fig. 6(b) shows the results of the state-of-art [11] without
using scene-context scale based on single-scale semantic
texton forests. The single-scale semantic texton forests used
the same parameter of the multi-scale texton forests with the
first scale level Fg,.

As shown in Fig. 6, a pixel level classification based
on the local distributions P(c|L) gives poor, but still good
performance. The global classification accuracy without
scene-context scale gives 50.2% and the result with us-
ing scene-context scale based on multi-scale texton forests
gives 53.0%. In particular, significant improvement can be
observed most of the classes except some classes: tree, wa-
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ter, car, bicycle, sign and road. It should seem that they
have not influence on scene-context scale. Across the whole
MSRC21 dataset, using the scene-context scale achieved a
class average performance of 48.3%, which is better than
the 38.4% of (b) as shown in the table of Fig. 6. There-
fore, we can see that the proposed scene-context scale can
be powerful and effective context information for category
classification and clustering.

4.2. Semantic segmentation

To train the proposed bag-of-textons model, we select
5000 training samples of each category equally on a ran-
dom subset. The training error decreases nonlinearly as
the number of iterations increases, thus, the experiment was
performed with 6000 iterations for week learner of the bag-
of-textons model. Since random feature selection improves
training time, we have a 10% random feature selection pro-
portion.

Fig. 7(a) shows the results of the clustering and local
classification in Section 4.1. After that, the classifier of
the bag-of-textons model allows us to semantic segmenta-
tion on an image pixel with semantic-context. The semantic



segmentation results on test images show in Fig. 7(b). As
can be seen, the proposed segmentation algorithm greatly
improves the accuracy in the local classification process,
specially the classes with the result of noisy clustering in
Section 4.1 such as water, car, bicycle, sign and road show
good performance in this process.

Note that we do not use a Markov or conditional ran-
dom field which could clean up the segmentations to pre-
cisely follow image edges. We obtained the segmentation
results global 65.2%, class average 59.8% using the bag-of-
textons model with scene-context scale. We compared the
proposed method with state-of-art using random forest and
TextonBoost [12] for semantic segmentation in the table of
Fig. 7. In fact, the results of state-of-art is better than 58.6%
in their paper [1 1], since they augmented the training data
with image copies that are artificially transformed geomet-
rically and photometrically. However, in our experiments,
we do not use any geometric transformations, and affine
photometric transformations such as rotation, scaling, and
left-right flipping. In addition, they separately run the cat-
egorization and segmentation algorithms and multiply the
distributions with image-level prior (ILP) to emphasize the
likely categories and discourage unlikely categories using
the results of image categorization. However, we exclude
the ILP of image categorization results for all experiments.
Therefore, across the whole dataset with same experimen-
tal condition, the proposed method by using scene-context
scale achieved a class average performance of 59.8%, which
is better than the 58.6% of the state-of-art.

5. Conclusion

This paper presented a new framework for semantic seg-
mentation and object recognition using the scene-context
scale based on multi-scale texton forest. We have (i) intro-
duced the concept of scene-context scale in object recogni-
tion, (ii) described the randomize decision forests and ex-
panded it to multi-scale texton forest, and (iii) estimated
the scene-context scale and combined with bag-of-textons
model for semantic segmentation. In experiments, we con-
firmed that the proposed method using the scene-context
scale gives better results than any other methods without
using scene-context scale.

In future work, we can improve accuracy per-category
distribution by using geometric transformations and affine
photometric transformations on training/test dataset. In ad-
dition, the ILP of image categorization result is also utilize
as region priors for object recognition.
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