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We propose a robust method for registering overlapping range images of a Lambertian object under a
rough estimate of illumination. Because reflectance properties are invariant to changes in illumination,
the albedo is promising to range image registration of Lambertian objects lacking in discriminative geo-
metric features under variable illumination. We use adaptive regions in our method to model the local
distribution of albedo, which enables us to stably extract the reliable attributes of each point against

Iéeyw"r,ds" illumination estimates. We use a level-set method to grow robust and adaptive regions to define these
Rgnigsirg?igie attributes. A similarity metric between two attributes is also defined to match points in the overlapping
Albge do area. Moreover, remaining mismatches are efficiently removed using the rigidity constraint of surfaces.

Our experiments using synthetic and real data demonstrate the robustness and effectiveness of our
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proposed method.
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1. Introduction

The 3D modeling process of real objects has attracted increased
interest during the past decade for applications in augmented real-
ity, cinema, computer games, or medicine. Because it is labour
intensive to create a detailed 3D model of a real object using var-
ious modeling software, automating the whole modeling process
has attracted considerable interest in recent years. This process
can be divided into five steps: (1) data acquisition, (2) reconstruc-
tion of 3D images, (3) 3D registration, (4) merging, and (5) inverse
rendering.

Recent acquisition devices, like modern laser range scanners,
can retrieve both the 3D shape and color image of an object from
a fixed viewpoint; the acquired 3D image in this case is called a
range image (Fig. 1). Therefore the second step of the 3D modeling
process can be omitted for range images. However, as some parts
of an object are occluded from a fixed viewpoint, multiple view-
points are required to obtain the full 3D shape of the object. There-
fore, 3D images of partially overlapping parts of the object,
acquired from different viewpoints have to be aligned. This process
is called 3D registration. There are two categories for 3D registra-
tion. The first, called coarse registration, is to find rough alignment
between two 3D images, starting from sufficiently different poses
[1]. The second, called fine registration, is to find accurate align-
ment between two 3D images, starting from rough alignment.
We refer to range image registration when using range images [2].
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The most common approach to registering range images is to
find correspondences in points between two overlapping range
images and then accordingly estimate the transformation in align-
ing the two range images. Several methods for registering range
images can be found in the literature that use geometric features
for computing correspondences in points. However, we assume
that the range images to be registered have simple textured shapes
(like cylinders) and are thus devoid of salient geometric features.
Consequently, photometric features in addition to geometric fea-
tures are required to compute correspondences in points.

Reflectance properties as a photometric feature are promising
because of their independence of the pose of the object relative
to the sensor. Retrieving these properties has provided a major re-
search area in physics-based vision called reflectance from bright-
ness (with a known shape and illumination). Cerman et al. [3]
recently proposed a method, which we call ICP using albedo (ICPA),
using the reflectance properties (which is the albedo for Lamber-
tian objects) of the object surface in the standard iterative closest
point (ICP) process. The illumination conditions have to be pre-
cisely known a priori so that the reflectance of the surface of an ob-
ject can be accurately retrieved from its shape and brightness.
Consequently, the direct use of albedo values as a matching con-
straint, as achieved by ICPA, requires global illumination to be
accurately estimated, which is difficult to attain in practice under
real illumination conditions.

We introduce a region-based approach to using reflectance
attributes, namely the albedo, for robust fine registration of Lam-
bertian objects under rough estimates of illumination. Because
retrieving the albedo on the surface of a Lambertian object is sen-
sitive to estimates of illumination, the albedo of a point cannot be
directly used under rough estimates of illumination. We thus
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Fig. 1. Examples of range images with color images used in this paper. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

employ the local distribution of albedo for registration. Our pro-
posed method uses adaptive regions to model the local distribution
of albedo on the object surface, which leads to robust extraction of
attributes against illumination estimates. These regions are grown
using a level-set method, allowing us to exclude outliers and then
to define more reliable attributes. We define a robust metric, using
the principal component analysis (PCA) of each region to find cor-
respondences in points. This is a stable and powerful metric to
maximize the number of correct matches, even under rough esti-
mates of illumination. Moreover, we reject remaining mismatches

by enforcing the rigidity constraint on surfaces and then estimate
transformation using the weighted least squares (WLS) method.
Our method has advantages with rough estimates of illumination
and with large amounts of noise. These advantages allow us to
use simple models of illumination to register range images. Our
experiments using synthetic and real data demonstrate that our
method is robust. We assume in this paper that the surfaces’
textures present sufficient saliency to constrain the matching of
two overlapping range images. We do not consider uniform nor
‘salt and pepper’ textures, nor repetitive patterns. We also assume
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that the objects do not present self-occlusions, shadows nor
interreflections.

2. Related work

During the past few decades, many approaches to registering
range images have been discussed. The most well-known approach
to fine registration is the iterative closest point (ICP) [4,5]. This
method iterates two steps: it matches each point of the first range
image with its closest point on the other range image, and esti-
mates the transformation between the two range images using
the correspondences in the matched points. The ICP converges
monotonically to a local minimum and therefore requires rough
alignment. Many discriminative geometric features have been pro-
posed [6-10] to achieve robust and accurate alignment. Other ap-
proaches based on graduated assignment such as the ICP Markov
Chain (ICPMC) [11] use maximization of entropy to define a prob-
abilistic model for correspondences between points. However,
even though such methods can deal with complex 3D shapes, they
do not work well for simple textured shapes (like cylinders), which
are devoid of salient geometric features.

To overcome the problem with shapes devoid of salient geomet-
ric features, many approaches using photometric features have
also been discussed. Godin et al. [12] proposed using the dense
attributes of range image elements as matching constraints. Weik
[13] proposed using texture intensity gradients and intensity dif-
ferences. Johnson and Kang [14] proposed dealing with textured
3D shapes by using color. Okatani and Sugimoto [15] proposed
using chromaticity for registration. Brusco et al. [16] proposed
incorporating texture information in the concept of spin-images.
Pulli et al. [17] proposed new mismatch error to improve registra-
tion using both color and geometric information. However, be-
cause the color or chromaticity of a Lambertian surface depends
on the pose of the object and illumination conditions, these meth-
ods perform poorly when the change in pose significantly affects
the appearance of the object.

However, the albedo is a photometric property that is unaf-
fected by the pose of the object, the illumination conditions, or
the viewpoint, and is thus useful for matching. Cerman et al. [3]
proposed using the albedo difference to match points to register
range images. However, this point-based approach is sensitive to
data noise and requires detailed knowledge on illumination condi-
tions. Therefore it cannot be applied in practice to real data.

In other approaches, Lowe [18] proposed a scale-invariant fea-
ture descriptor called the scale-invariant feature transform (SIFT)
that makes use of differences in Gaussian functions to define the
features for key point. Some variations of SIFT have been proposed
to speed up the algorithm while maintaining the same accuracy.
For example, Bay et al. [19] proposed a descriptor called
speeded-up robust features (SURF) that makes use of an integral
image to speed up computation and comparison. Tola et al. [20]
also proposed a local descriptor that can be quickly computed
and even be used in poor quality images. However, as these tech-
niques did not directly use available 3D information but used 2D
information projected from 3D, they were sensitive to texture
deformation caused by projection. In fact, the same texture cap-
tured from different viewpoints produces differently deformed
2D textures, which makes the use of these techniques problematic.
Moreover, these approaches focused more on computational effi-
ciency than on accuracy.

In contrast to previous work, the method we propose can han-
dle changes in photometric appearance even under rough esti-
mates of illumination. It is robust to data noise and can thus be
easily applied to real data. Moreover, it makes use of the albedo
distribution as well as normals and 3D point positions, which leads
to accurate and robust results.

3. Proposed method

Our proposed method uses the local distribution of albedo on
the surface to define discriminative attributes that are robust to
data noise. We define a similarity metric to efficiently match points
in the overlapping part of two range images and use the rigidity
constraint of surfaces to refine matching. The transformation
aligning two range images is then computed using the WLS
approach.

3.1. Overview of proposed method

The registration process is iteratively carried out by succes-
sively estimating rigid transformation, until a convergence
criterion is satisfied or a maximum of iterations is completed.
Matches are obtained by evaluating the similarities between attri-
butes of points. These attributes are defined by adaptive regions
representing the local distribution of albedo on the surfaces of
objects. That is, each region represents the shape of the texture
patterns around a point. The region grows inside homogeneous
areas and stops at the border of pattern boundaries. The transfor-
mation is then estimated by minimizing the distances between
matching points. Fig. 2 has a flowchart of our proposed approach.

Range image 1 Range image 1

Attribute definition

Estimating albedo

Computing speed map

Growing adaptive regions

Matching

Computing similarity score

‘

Defining list of matches

Eliminating incorrect matches

Estimating transformation

Registered range
image 1

Registered range
image 2

Fig. 2. The flowchart of our proposed method.
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3.1.1. Generation of adaptive region

Because point-based matching methods are sensitive to data
noise, we propose using information from a local distribution of al-
bedo. We define attributes, viz., a region, for each point of two
range images that represent the local distribution of albedo around
the point. The region is adaptively defined using a level-set ap-
proach and transformed into their local coordinate system defined
by the principal axis.

3.1.2. Evaluation of similarities using the albedo

We define a similarity metric to match points based on their
attributes to estimate correspondences in points between two
range images. This similarity metric represents the photometric
similarities of attributes weighted by their geometric similarity.
We define a list of possible matches for each point based on simi-
larity scores and then dynamically create a list of matches.

3.1.3. Elimination of incorrect matches

We eliminate possibly incorrect matches by using the rigidity
constraint of the surfaces. That is, the distance between two points
on the surface does not depend on the pose of the object. Conse-
quently, the distance between two points in one range image
and their two corresponding points in the other range image
should be the same. If not, the rigidity constraint is violated. We
test the rigidity constraint for a match with all other matches
and if the number of violations exceeds a tolerance threshold,
the match is eliminated.

3.1.4. Estimation of rigid transformation

The matching list that is obtained is used as the input of a WLS
algorithm to compute the current rigid transformation aligning
two range images.

This framework allows simple textured range images to be ro-
bustly and accurately registered even with large amounts of data
noise and rough estimates of illumination. We explain our method
in more detail in what follows.

3.2. Generation of adaptive region

We define a region for each point of the two range images to ob-
tain reliable attributes for each to find correspondences between
points. The main idea here is to obtain a reliable representation
of the local distribution of albedo. Therefore, these regions should
be adaptively defined depending on the local distribution of albedo
around the point of interest. Level-set methods, which are widely
used for segmentation, appear to effectively model complex shapes
in textured images and are robust to data noise. Therefore, we
adaptively grow regions using a level-set method.

3.2.1. Level-set method

A region is defined by a contour that we define with a level-set
method (fast marching algorithm [21]). A contour is defined as the
zero level-set of a higher dimensional function called the level-set
function, (X, t) (see Fig. 3). The level-set function is then evolved
under the control of a differential equation. The evolving contour
can be obtained at any time by extracting the zero level-set
(€)= (X (X, 1) = O}.

We use a simple form of the level-set equation:

Gy =—P@)lvyl, 1)

where P is a propagation (expansion) term. This propagation term of
the level-set function is next defined in terms of a speed image. In
our approach, the propagation of the contour is defined using the
gradient of the albedo such that the propagation term is high in uni-
form areas and low close to pattern boundaries. We define the zero

Zero Set Y(X,t)=0

Fig. 3. Concept of zero set in a level-set.

level-set as the contour propagated at a certain time T (for example,
T=0.25s).

3.2.1.1. Speed image. A speed image represents how fast a contour
can propagate for every point of the range image. This speed
should depends on the homogeneity of the albedo for every point
compared with their local neighborhood. The speed image in the
proposed method is computed from the gradient magnitude image
of albedo that is obtained by applying the Gradient Magnitude fil-
ter to the albedo image.! Mapping should be done in such a way that
the propagation speed of the front is very low with high albedo gra-
dients while it speeds up in low gradient areas. This arrangement
makes the contour propagate until it reaches the edges of albedo
patterns and it then slows down in front of these edges.

We employ the Sigmoid function, S, to compute the speed im-
age since it provides numerous control parameters that can be cus-
tomized to shape an accurate speed image. In fact, it has a
mechanism for focusing attention on a particular set of values
and progressively attenuating the values outside that range.

1

SI) =———,
e ®

(2)

where [ is the gradient magnitude image of albedo, o defines the
width of the gradient intensity range, and p defines the gradient
intensity around which the range is centered (see Fig. 4). As sug-
gested by Ibanez et al. [21], « and g are found as follows. For the
gradient magnitude image, let us denote the minimum value along
the contour of the albedo patterns as K1. We denote the average va-
lue of the gradient magnitude in the homogeneous regions of the al-
bedo image as K2. Then, § is X452 while « is £ZK1, Fig. 5 shows a
concrete example of the albedo, gradient and speed images ob-
tained using a synthetic data.

3.2.2. Generation of regions

For each point p, we define a time image T,. For each pixel x of
T,, Ty(x) represents the time required for the level-set function to
propagate from p to x. Starting from point p, a region is grown by
using the four-neighborhood and by adding points into the region,
such that T, on these points is less than a threshold (e.g., 0.2 sec)
(see Fig. 6). The maximum size of the region is enforced, which al-
lows us to discriminate points in excessively homogeneous areas.

This region grows in homogeneous areas and stops in front of
the contour of albedo patterns. Consequently, while the size of

1 We remark that in the case of general shape models, points may not be aligned in a
grid manner and the Gradient Magnitude Filter cannot be directly applied. However, it is
still possible to compute the gradient magnitude image as far as the neighborhood
relationship between points is provided. In fact, we can compute the gradient
magnitude of a point as the sum of the differences in albedo between the point and
its adjacent points. The obtained gradient magnitude image represents the local
homogeneity of albedo and can thus be effectively mapped to the speed image.
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Fig. 5. Example of albedo, gradient and speed images obtained using synthetic data.
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Fig. 4. Effects of various parameters in Sigmoid function.
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Fig. 6. Adaptively defined region using four-neighbourhood.
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the region increases, the homogeneity of the region is preserved.
Moreover, the growth of the region is adapted to the distribution
of albedo and to data noise in the neighborhood of each point.

We then transform each region into their local coordinate sys-
tem so that the comparison between two regions becomes inde-
pendent of the pose of the object. That is, we transform a region
into the coordinate system defined by the normalized principal
axis computed for this region. Given point x and its region R(x),
the PCA is carried out to obtain the eigenvalues and eigenvectors
of the covariance matrix of R(x). The three eigenvectors are then
normalized to define a new basis B=(eq, €3, e3) where e; corre-
sponds to the normalized eigenvector with the greatest eigenvalue
and ez corresponds to the eigenvector with the smallest eigen-
value. R(x) is then transformed to the new basis B to obtain the fi-
nal attribute of x. We remark that the transformation is done
independently of the color of points inside the region.

As a result, a reliable region is adaptively generated depending
on each point. The local distribution of albedo of 3D points inside
this region defines an attribute for each point. The attributes ob-
tained in this way enhance robustness in evaluating similarity to
find correspondences. Figs. 7 and 8 show a concrete example of
the different steps in the region growing process. Fig. 7 shows
the initial state. Two corresponding points in two overlapping
range images are regarded as seed points for the growth of the re-
gions, and a maximum size of the regions is enforced. Fig. 8 shows
the regions at different time. Namely after the first, the third, the
sixth and the tenth iteration of the region growing process. As ex-
pected, we observed that the regions of two corresponding points
grow in a similar way.

3.3. Restrictions on search area

Poor estimates of the albedo are obtained with rough estimates
of illumination. These will particularly be far less useful around the
border of the range images. Consequently, we do not take into con-
sideration points near the borders of the range images to reduce
their influence. We denote the restricted area of the range image,
P, as C(P).

Moreover, we dynamically control a search area (area where a
possible match for p will be searched), Q(p), for each point p € P

(a) Range image 1

in the other range image Q, whose center is the projection of p
on Q (i.e., the point of Q closest to p in the sense of the Euclidean
distance). Q(p) is defined such that the closer to convergence reg-
istration becomes, the smaller Q(p) becomes. This control en-
hances the stability and accuracy of registration. Q(p) is defined
independently of C(Q).

Points in large homogeneous areas are not discriminative en-
ough to be used in registration. Such points are detected using
the size of their regions. Indeed, the regions of such points are close
to the maximum given beforehand. Therefore we do not take into
account points whose regions are larger than 95% of the maximum
size of regions.

3.4. Evaluation of similarities using the albedo

We define a similarity metric between two points using their
attribute to find correspondences across two range images.

Letting p be a point in C(P) and q be a point in Q(p), we de-
note the regions corresponding to p and g by R(p) and R(q),
respectively. For each point m € R(p), we define its corresponding
point n(m), € R(q) (Fig. 9). The corresponding point n(m), is de-
fined by

arg min (HT pm) —WHJ (3)

xeR(q

For each pair (m,n(m)g), we define a weight w4 such as

Ong =0 if HT(ﬁ) —qn(m),|| > thresh,
2
e (4)
Omg =1 if “T(ﬁ) —qn(m),|| < thresh,
2

where thresh is a distance threshold (e.g., 0.4 mm if the resolution of
range images is 0.5 mm). We can similarly define the corresponding
point and weight for each point in R(q).

The similarity function between two points p and q is then
defined as the weighted sum of the differences of the albedo of
corresponding pairs:

=——-_' TPy

(b) Range image 2.

Initial seed points in two range images (in red).

(c) Range image 1.
Maximum size of the regions (in vivid green).

= Ay |

o L

(d) Range image 2.

Fig. 7. Initial state for the growth of the regions of two matched points in two range images.
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(c) Range image 1.

(d) Range image 2.

The regions at the third iteration (in red).

(e) Range image 1.

(f) Range image 2.

The regions at the sixth iteration (in red).

(g) Range image 1.

(h) Range image 2.

The regions at the tenth iteration (in red).

Fig. 8. The growth of the regions at different time.

size(R(p)) + size(R(q))

2
<ZmeR(p) WO(m.gq) + ZmeR(q) w(m-,l-"))

x { Y Omg

L(p,q) =

]

alb(m) fMJ)

meR(p) 2
-, 2
+ > Oy |alb(m) —alb(n(m),) } 5)
meR(q) 2

—

where size(R(+)) is the number of points in R(-) and alb(m) is the al-
bedo vector of point m, computed using the Lambertian model of
reflectance for each color channel:

b c(m)

alb(m) = : (6)
norm(m) "M norm(m)

7 . . . .
where norm(m) is the normal of the surface at point m, M is the illu-
mination matrix and c(m) is the RGB vector of point m.

e ©00
N NN N J
o000 00O o0 ® én(m)
000000 o000
o000 0O [ ] 'Y N
..p.*.).—):. ceoeceee
o0 00O0OOSS o000 0O0OOS
0000000 ® © o000
 E N N NN NN N J ® o000
o000 o000 L N

Region of point p Region of point g

Fig. 9. Searching for corresponding point of m.
If p and q are matches and two regions R(p) and R(q) represent

the same part of the object viewed from different viewpoints, then
m e R(p) and n(m), € R(q) are two sampled points with small
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distance (the distance between the two points is smaller than the
resolution of the range images) viewed from different viewpoints.
Thus, their albedo is likely to be similar. Therefore, the function, L,
becomes small for points p and g. In contrast, L increases for points
with different regions. As we can see, support by corresponding
points inside the region define the similarity between two points
of interest. This leads to similarity being robustly and stably
evaluated.

Note that if >, pp®@me OF X perq@mp IS less than
0.6 x size(R(p)), resp. 0.6 x size(R(q)), then the pair, (p, q), is not
considered to be a possible match. This is because if (p, q) is a cor-
rect match, we can expect that there will be a sufficient number of
matches between R(p) and R(q). Moreover, considering computa-
tional time, if the bounding boxes of R(p) and R(q) differ (up to
the resolution of the range images), then the pair, (p, q), is not con-
sidered to be a possible match.

3.5. Matching

We dynamically create a matching list based on similarity
scores computed as explained above. We search for a set of
matches such that each point has at most one corresponding point
and that the sum of the scores between all matches is minimized.

We compute a list of possible matches for each point sorted in
the ascending order of similarity scores. Taking into consideration
computational time, we enforce a maximum tolerance threshold
for possible matches. The matching list is then iteratively and
dynamically constructed. The match with the lowest similarity
score at each iteration is chosen and added to the matching list.
The two matching points are then removed from all the lists of pos-
sible matches and these lists are updated accordingly (resorted).
We iterate this process until no more possible matches remain to
obtain the final matching list.

At the end of this step, we have a reliable and consistent list of
matches that does not contain any isolated points. Indeed, the re-
gion grown from an isolated point is empty and this point will not
be a candidate for any match.

3.6. Elimination of incorrect matches

The list of matches that is obtained cannot be always directly
used as input in the step to estimate transformation. This is be-
cause large amounts of noise or repetitive patterns in the albedo
distribution may cause incorrect matches. We therefore remove
such incorrect matches to enhance the robustness of estimating
transformation further. To evaluate the accuracy of matches, we
use the rigidity constraint of surfaces. This is because the rigidity
constraint does not depend on the intensity or normals and it is
therefore robust against data noise.

For two corresponding pairs, (p,q) and (p/,q’), in the range
images P and Q, we consider point pairs (p, p’) and (g, q'), which
represent the same points viewed from different viewpoints.
Assuming that surfaces are rigid, we can see that distances

Hﬁ’ , and HE’ , should not differ too much. That is, we define
d by representing the difference between Hﬁ’ , and Hﬁ’ )
o B )

If (p, q) and (p’, q¢') are correct matches, then d should be smaller
than a threshold, Tdist (e.g., 1.0 mm, for a resolution of 0.55 mm).
This gives us the rigidity constraint (see Fig. 10).

Each pair in the list of matches is evaluated with all the other
pairs in the list. If the number of pairs that violates the rigidity con-
straint exceeds a certain percentage, Perc (e.g., 50%), of the pairs,

. pairs satisfying rigidity constraint
— pairs violating rigidity constraint

Fig. 10. Principle of rigidity constraint.

then the current pair is considered to be an incorrect match and
is removed from the list.

Assuming that the majority of the obtained pairs are correct
matches, this method efficiently removes incorrect matches from
the list of pairs obtained in Section 3.4. To handle cases where
the majority of matches are incorrect, we dynamically update the
parameters, Tdist and Perc, in such a way that the elimination step
is tolerant to mismatches at the beginning of registration, and
stringent against mismatches at the end of registration. This is be-
cause, at the beginning of registration, we may have a large num-
ber of mismatches and only a rough estimate of the transformation
is sufficient. In contrast, as registration becomes more accurate,
there are less mismatches and we aim at eliminating as many mis-
matches as possible to refine the estimation of transformation.

Our proposed approach is simpler than RANSAC in implementa-
tion. In fact, the RANdom SAmple Consensus (RANSAC) algorithm
iterates the following three steps until the probability of finding
the correct transformation becomes sufficiently large. (1) Three
matches are randomly chosen among all matches in the list. (2)
The rigid transformation aligning the three matches is estimated.
(3) All the other matched points in one range image are trans-
formed to the other range image using the estimated transforma-
tion and the consistency of matched points with the list is
evaluated. The transformation that is the most consistent with
the list of corresponding points is identified as the solution, and
matches inconsistent with the solution are identified as outliers.
On the other hand, our proposed technique to eliminate incorrect
matches requires only to verify the validity of the rigidity con-
straint for each pair of matches. We remark that our technique
needs O(n?) operations to remove incorrect matches.

3.7. Estimation of rigid transformation

We use the WLS method [22] to estimate transformation as
accurately as possible. It weights each pair with the Euclidean dis-
tance between two corresponding points during the least squares
minimization. These weights represent the feasibility of the corre-
spondence of paired points. Minimization is iterated while updat-
ing the weight of each pair. The resulting transformation obtained
with this method is more accurate than that with the standard
least squares method.

4. Computational complexity analysis

Our proposed algorithm has its input of two range images with
N points and outputs the rigid transformation aligning the two
range images. Here we briefly give analysis on the computational
complexity to our proposed algorithm. We refer to Fig. 2 for the



D. Thomas, A. Sugimoto/Computer Vision and Image Understanding 115 (2011) 649-667 657

different steps of our method and give the computational complex-
ity for each of these steps.

The first part of our proposed method (Attribute definition)
takes O(N) operations. We first estimate the albedo of each point
of the two range images using Eq. (6), which takes O(N) operations.
In order to compute the speed images, gradient images and sig-
moid images are computed, which is also done in O(N) operations.
Let Cst denote a given maximum number of points for a region.
Growing the region of a point takes O(Cst) operations (because
we do not compute the propagation time outside the maximum re-
gion). Therefore, computing the region for each point of the two
range images takes O(NCst) operations. Because Cst is fixed during
the process, the computational complexity of the Attribute defini-
tion is finally O(N).

The second part of our method (Matching) takes O(N°log(N))
operations. For a point p, the corresponding point is searched in
Q(p), where Q(-) is defined in Section 3.3. Let w be the size of
Q(-). For one possible match, the similarity score is computed in
O(Cst?) operations. Thus computing all similarity scores takes
O(NewCst?) = O(Nw) operations (Cst is constant). The following loop
is then executed until no possible match exists: (1) The list of pos-
sible matches is sorted (O(Nwlog(Nw)) operations). (2) The best
match is taken and the two corresponding points are removed
from the list (O(Nw) operations). (3) Go to (1) with O((N — 2)w)
possible matches. The computational complexity of this loop is
O(Ziﬁ”iw log(i(u)). We observe that

i=N/2 i=N/2
> iwlog(iw) < No <log < 11 i> + Nlog(co))
i=0

i=0

gNw@%wﬁ+ng@)<Mwmgmm. (8)

As a consequence, the loop is executed in O(N’w log(Nw)) opera-
tions. Even though in practice o is monotonically decreasing at
each iteration, « remains constant dominated by N in the worst
case. Thus w = O(N) and the computational complexity of the loop
becomes O(N°log(N?)) = O(Nlog(N)). We then eliminate incorrect
matches with O(N?) operations. Thus the computational complexity
of the “Matching part” is finally O(Nlog(N)).

The computational complexity of the Weighted Least Square
algorithm is O(N?) and thus the total computational com-
plexity of our proposed algorithm is: O(N) + O(N®log(N)) + O(N?) =
O(N3log(N)).

In this paper, we focus on accuracy of the transformation esti-
mation and leave reducing the computational cost for future work.
However, some ideas are available to reduce the computational
cost of our algorithm in implementation. The computation of each
point’s attribute or similarity score is done independently and thus
our method can be highly parallelized. Theoretically, with an infi-
nite number of processors, the computational complexity of the
“Attribute definition” part could go from O(N) to O(1) if parallel-
ized. With modern graphic cards, a large number of processors
available would drastically improve the computational time of
our technique. It would also be interesting to use a random algo-
rithm to select possible matches, as proposed in [12] for example.
This would decrease the number of possible matches and thus
speed up the algorithm.

5. Experiments

We evaluated our method using synthetic and real data and
compared it with ICPA and ICP using both chromaticity and geo-
metric features (which we call ICP-CG). This comparative study is
thus useful for determining the effectiveness of different methods
of registering overlapping range images of Lambertian surfaces de-

void of salient geometric features. We selected these two methods
for two main reasons:

e ICPA is, to the best of our knowledge, the most recent method
that uses the albedo for registering overlapping range images.
Because the albedo is invariant to changes in object poses under
fixed illumination and fixed viewpoints, it is useful for comput-
ing correspondences in points between overlapping range
images.

ICP-CG?is the standard algorithm for registering overlapping
range images. Because chromaticity is tolerant to some extent
against changes in illumination, using chromaticity in addition
to geometric features improves the accuracy of registration.

Because the objects used in our experiments were simple in
shape (like cylinders), registration using only geometric character-
istics did not work well. Consequently, standard root mean square
(RMS) point-to-point Euclidean error was not relevant for evaluat-
ing the registration results in our case. This paper discusses our
evaluation of the registration results by comparing the transforma-
tion we obtained with the ground truth transformation.

We use an angular measure of errors for rotation like Barron
et al. [23] and the Euclidean error for translation. Let (Rg, T,) be
the ground truth transformation and (R, T.) be the estimated
transformation with Ry, R, rotations and Ty, T, translations. A rota-
tion, R = cos (%) + iisin (%), is represented using quaternions, where
o is the angle of rotation and ii is the unit vector representing rota-
tion axis. Let res be the resolution and d the depth of range images,
we define err, which is the error of the obtained transformation as:

_0d+ T~ T
= res

err (10)

where @ is the angle between the normalized ground truth rotation
III’%H' and the normalized estimated rotation, H’;—iu. The err represents
the error in terms of neighboring points. It is thus an objective and
informative criterion to evaluate the accuracy of the different meth-
ods of registration. All results from these experiments have been
presented with the estimated albedo image. We compute the reso-
lution res of a range image as the average of the 2D distances be-
tween adjacent points projected onto the 2D grid induced by the
laser scanner (the depth is not considered). Note that the resolution

is not computed based on neighboring relationship in the 3D space.

5.1. Definition of parameters

ICPA and ICP-CG require three parameters: max_it (the maxi-
mum iterations for registration), conv_thresh (the threshold for
convergence), and percentage (the percentage of matches to be
eliminated).

Our proposed method requires five parameters: max_it, con-
v_thresh, and thresh (the threshold to grow the regions), max_size
(the maximum size of a region), and tol_thresh (the threshold for
tolerance to similarity). The two thresholds, Tdist and Perc, are

2 The ICP-CG algorithm is an ICP algorithm that uses Euclidean distance and
chromaticity similarity to find corresponding points. At iteration k, the current
transformation Trans aligning the two range images is estimated. For each point p of
the range image P, the projection q of point Trans(p) on the range image Q is found
and then the closest point to p in the sense of chromaticity distance is found in the
region Q(p) as the corresponding point of p, where Q(p) is defined in Section 3.3. If
or(x), og(x) and ap(x) are the red, green and blue channels for the chromaticity of a
point x, then the chromaticity distance dchrom(p, q), between two points p and q is:

dehrom = \/(0x(p) — 00(9))* + (06(p) — 06(4))” + (8(P) — T(q))’. 9)

The obtained list of corresponding pairs is then sorted and only a certain percentage
(70% in the experiments) of the pairs with the best score is kept.
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Description of synthetic data.

Nb_Points  Resolution  Expected_rot (angle; axis)  Expected_trans

30,650 0.01 mm (18.00; 0.01, 0.99, —0.03) (-0.02,0.00, —0.01)

(a) First image. (b) Second image.

Fig. 11. Input synthetic data.

(a) Superimposed input (b) Registration results with
images. albedo image.

Error (in resolution)

Fig. 13.

Fig. 12. Results obtained with our proposed method in ideal case.
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Results for various different illuminations (red: our method, blue: ICPA).

dynamically defined for the elimination step depending on the
current state of registration. At the beginning of registration,
Tdist = 8 x "resolution of the image” and Perc=70%, and at the
end of registration, Tdist=2 x "resolution of the image” and
Perc =30%. The tolerance tol_thresh was set to 0.01 for synthetic
data and to 0.5 for real data. We remark that the restricted search
area in Section 3.3 was equally applied to our method, ICPA and
ICP-CG.

5.2. Evaluation with synthetic data

We conducted experiments with synthetic data to test the
robustness of the proposed method against data noise and changes
in illumination. The synthetic data were obtained with 3D modeler
software (3D Studio Max) (see Table 1). The exact albedo image
and the exact illumination, modeled with a direction and a color
vector, were known. The illumination represents a single distant
light-source point. Assuming the object to be Lambertian, we ren-
dered the brightness at the surface using the Lambertian reflection
model. That is, given the albedo p and normal norm at a surface
point, and light-source direction I and light-source brightness L,
the brightness, I, at this point is computed as: [ = pL norm-I. We
estimated the albedo using an approximation of the exact
illumination to test the robustness of our proposed method (see
Figs. 11 and 12).

We manually established a rough pre-alignment of the two
range images before applying our method, which allowed us to

Error (in resolution)

e
o 05 1 15 2 25 3 35 4 45 5 55 6 65 7 75 B &5 9 95
Variance in noise (in percentage)

Fig. 14. Results for noise in intensities with our method.
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Fig. 15. Results for noise in normals with our method.
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simulate the case where the input data were captured from two
viewpoints rotationally differentiated by 18.00 degrees around
the axis (0.01, 0.99, —0.03). We used the same sets of parameters
for all synthetic experiments: max_it=10; conv_thresh=0.02 -
radian; for ICPA, percentage =30%; for the proposed method,
thresh = 0.05 s, max_size = 0.1 mm and tol_thres = 0.1.

To verify the effects against estimated illumination, we ran-
domly rotated the direction vector of exact illumination. That is,
let the angle between the perturbed direction vector and the
ground truth direction vector of illumination be (0, ¢), in which ¢
is a uniform random number from 0 degree to 360 degrees. We

~F

5

(a) Intensity image. (b) Albedo image.

(e) Intensity image. (f) Albedo image.

(i) Intensity image. (j) Albedo image.

evaluated our method with different values of 0, and therefore dif-
ferent estimates of illumination. The value of 0 was changed from 0
to 13 degrees by 0.7 degrees. For all values of 0, we applied our
method 30 times under the same initial conditions.

Fig. 13 plots the quantitative evaluation of registration results
in terms of averages and variances in error in results obtained with
different estimates of illumination. The results obtained with ICPA
have also been shown for comparison. Since ICP-CG failed in regis-
tration because of geometrical symmetries in the shape of the
object, we did not carry out comparative experiments with ICP-
CG. As expected, we find that our method is in average more

(c) Our method. (d) ICPA.

(g) Our method.

(k) Our method. (1) ICPA.

Fig. 16. Examples of registration results obtained with different types of noise. From top to bottom: results with 17 degrees of noise added to illumination, those with 10% of
noise added to intensities, and results obtained with 6 degrees of noise added to normals.
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Fig. 17. Experimental set up to capture range images.

accurate and more stable than ICPA in estimating transformation
on average. The results obtained with ICPA became inaccurate
and unstable as soon as the estimated illumination differed slightly
from being exact (for 0 greater than 4.2 degrees). The results with
ICPA were largely unsatisfactory when the estimates of illumina-
tion were not close to being exact. In contrast, our proposed ap-
proach gained satisfactory results for 0 up to 12 degrees. Note
that, in addition to small errors, the variance was also small, which
proves the robustness and reliability of our proposed approach

against noise in illumination. Therefore, we can conclude that it
is more robust to changes in illumination than ICPA. Moreover,
for exact estimates of illumination, our proposed method achieves
registration that is as accurate as that with ICPA.

Fig. 14 plots quantitative results of registration obtained with
our proposed method under various noise in intensities where
the ground truth illumination was used. We applied Gaussian
noise with a variance o of several percent to the average of the im-
age intensities. The value ¢ was changed from 0% to 10% by 0.5%.
For each different noise intensity, we applied our method 30 times
under the same initial conditions. We observe that even with noise
with a variance of 9.5%, the largest errors are under the resolution
of the range sensor.

We also conducted intensive experiments under noise added to
normals (Fig. 15). We randomly perturbed each normal vectors.
That is, let the angle between the direction of a perturbed normal
and a ground truth normal be («, ¢), in which ¢ is a uniform ran-
dom number from 0 degree to 360 degrees. We evaluated our
method with different values of «, and therefore different pertur-
bations in the normals. The value « was changed from 0 to 10 de-
grees by 0.6 degrees. For each different intensity of noise, we
applied our method 30 times under the same initial conditions.
We observe that even with noise of angle 10 degrees, the largest
errors are of the same order as the resolution of the range sensor.
We find that our method is stable against both geometric and pho-
tometric noise from these results.

(a) First image.

(b) Second image.

(c) Superimposed.

Fig. 18. Range images captured from different viewpoints.

(a) Albedo first image. (b) Albedo second image.

(c) Gradient image.

(d) Speed image.

Fig. 19. Estimate of albedo, gradient, and speed images.



D. Thomas, A. Sugimoto/Computer Vision and Image Understanding 115 (2011) 649-667 661

(a) Ground Truth. (b) Our method.

(c) ICPA.

(d) ICP-CG. (e) SURFE.

Fig. 20. Results obtained with data can using different methods.

(a) Our method.

(b) ICPA.

(c) ICP-CG.

(d) SURFE.

Fig. 21. Zoom in on the square part in Fig. 20.

Table 2
Description of data can used for experiment.

Table 4
Description of data can2.

Nb_Points  Resolution  Expected_rot (angle; axis)  Expected_trans

Nb_Points  Resolution  Expected_rot (angle; axis)  Expected_trans

35,000 0.55 mm (17.83; 0.00, —0.94, —0.34) (—8.05,0.41, —1.47)

94,000 0.3 mm (17.52; 0.00, —0.94, -0.34)  (-9.16,0.55, —1.38)

Fig. 16 has some particular examples of results obtained under
different types of noise with our proposed method and with ICPA.
The first example corresponds to noise of 17 degrees added to illu-
mination, where we obtained error of 0.49 with our method and
error of 24.39 with ICPA. The second example corresponds to noise
of 10% added to intensity, where we obtained error of 0.62 with our
method and error of 2.43 with ICPA. The last example corresponds
to noise of 6 degrees added to normals, and we obtained error of
0.62 with our method and error of 5.30 with ICPA. The quantitative
results confirm the improvements in accuracy with our proposed
method than with ICPA.

5.3. Evaluation with real data

We conducted experiments using real objects to test the
effectiveness of the proposed method. In addition to ICPA and
ICP-CG, we also compared the proposed method with SURF.
SURF is a fast and robust well-known detector and descriptor
that is often used for matching points between overlapping
images. SURF uses only 2D gray images and is most effective
for images with large amount of distinctive patterns. Using
approximations of Hessian matrices allows fast detection of
distinctive points at multiple scales. Note that we used the

Table 3
Quantitative evaluation of registration, using data can.
NbMPts Final_rot (angle; axis) Final_trans
Proposed method 2400 (17.83; —0.01, —0.94, —0.34) (—8.00,0.38, —1.52)
ICPA 25,000 (8.47; —0.02, —0.96, —0.28) (-5.11, -1.12, -0.95)
ICP-CG 24,000 (4.01; —0.06, —0.98, —0.21) (-2.92,-1.01, -0.57)
SURF 222 (15.33; 0.02, —0.94, —0.35) (-6.65,0.16, —1.04)
Proposed method ICPA ICP-CG SURF

Error 0.22 10.66 16.53 3.91
Time 3.0 mn 5.2 mn 5.4 mn 0.0 mn
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source code for SURF without modifications that was provided at
http://www.vision.ee.ethz.ch/~surf/.

We employed a Konica Minolta Vivid 910 range scanner, which
captures the 3D shapes and textures of objects. A mechanical sys-
tem was used to rotate objects (see Fig. 17). The data can obtained
using this equipment are presented in Fig. 18. Because the position
and orientation of the range scanner are unknown, it is difficult to
obtain the ground truth from the experimental setup. Accordingly,
we manually computed the ground truth transformation for all
data to evaluate the registration results. That is, we chose about
10 corresponding points in two range images and computed the
transformation that minimized the distance between all corre-
sponding points. We employed the ground truth obtained in this
way to evaluate errors using Eq. (10).

The proposed method starts with an estimate of the geometric
transformation and with a rough estimate of global illumination
conditions to estimate the albedo. The initial estimate of registra-
tion is obtained by just superimposing the two captured range
images. Global illumination is manually estimated roughly by
rotating the direction vector of illumination and changing its
brightness, which corresponds to spot light. We used the same sets
of parameters for all experiments: max_it=10; conv_thresh=
0.002 radian; for ICP-CG and ICPA, percentage = 30%; for the pro-
posed method, thresh = 0.2 s, max_size = 5.5 mm and tol_thres = 0.5.
This means that we do not need extra tuning for the parameters
depending on objects.

We obtained two range images of a rotationally symmetric can
that has a height of about 10cm and a diameter of about 5 cm
(Fig. 18). Fig. 19 has the gradient image and the speed image com-
puted from the estimate of albedo. We compared the results

(a) Image 1. (b) Image 2.

(c) Superimposed.

obtained with ICPA, ICP-CG, and SURF (Figs. 20 and 21) to
demonstrate how effective our method is. Note that the same ini-
tial estimate was used for the four methods. The details on data are
listed in Table 2 and the quantitative results are listed in Table 3.
Nb_Points is the number of points in the range image in these ta-
bles, Res is the resolution of the range image, NbMPts represents
the number of matched points at the end of the registration,
Final_rot is the estimated rotation after registration, Final_trans is
the estimated translation after registration, Error is the error
between the estimated transformation and the ground truth trans-
formation, and Time is the processing time of the registration. Note
that for our method, ICPA and ICP-CG, we had 10 iterations to con-
verge, and we observe that the improvement in the estimations of
transformations became small after 3 iterations.

Because of the lack of geometric features, ICP-CG failed in regis-
tering the two range images. In addition, the registration result ob-
tained with ICPA is also not satisfactory. The result obtained with
SURF is more accurate than those with ICPA and ICP-CG because
of the robustness and discriminative power of the SURF descriptor.
However, we observed an error of about four times the resolution
of the range images. This comes from the distorted texture patterns
due to 2D projection. In contrast, we can see significant improve-
ments in the registration obtained with the proposed method. It
is remarkable that 15% of matched pairs were eliminated as incor-
rect matches in our method and the accuracy obtained was about
0.2 times the resolution of the range images. The error obtained is
below the accuracy of the range sensor; it is not possible to obtain
better accuracy to register these data. When the search area (see
Section 3.3) was not dynamically restricted by €(-), the results ob-
tained were less accurate for all ICP variants. Indeed, the errors

(d) Albedo 1. (e) Albedo 2.

Fig. 22. Range images captured from different viewpoints with zoom in, and albedo estimations.

(a) Ground Truth.

(b) Our method.

(c) ICPA.

(d) ICP-CG.

(e) SURF.

Fig. 23. Results obtained with data can2 using different methods.
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Fig. 24. Error versus computational time for each iteration during registration
using data can (PM stands for proposed method).

here were 6.74, 12.83, and 19.96 times the resolution of the range
images, with the proposed method, ICPA and ICP-CG respectively.

We captured two range images of the same object under the
same situation using a lens with a different focal length to check
the effect of the resolution of range images in our proposed meth-
od. The new lens zoomed in on the object surface, which increased
the resolution of the range images. Description of the new data
can2 is listed in Table 4 and Fig. 4. Figs. 22 and 23 has qualitative
evaluation of registration and Table 5 lists quantitative evaluation
of registration. We observe that the results obtained with our pro-
posed method are almost the same even for range images with dif-
ferent resolutions. This can be understood by the fact that we use
neighborhood relationship to grow regions, which is independent
to the resolution. Remark that for these data, we changed the
parameter max_size to 3.0 mm only to reduce the computational
time.

Figs. 27-29 show the results obtained with the different objects
called hand, box, and candy. Table 6 lists the description of data

before registration. Note that hand has a height of about 20 cm
and a width of about 10 cm, box has a height of about 10 cm and
a width of about 20 cm, and candy has a height of about 10 cm
and a

width of about 15 cm. Figs. 25 and 26 show initial estimates of
registration and global illumination. Figs. 27-29 compare the re-
sults obtained with our method, ICPA, ICP-CG, and SURF. The quan-
titative results for these experiments are listed in Table 7.
Identified incorrect matches were 35% for hand data, 7% for box
data and 10% for candy data. Note that for the data box, we slightly
changed the tolerance for outliers. That is, we set Tdist to be 4 x the
“resolution of the image” at the end of registration.

Table 8 has the average of computational time required for the
different steps of registration for our proposed method, ICPA and
ICP-CG. We used an Intel Core 2 Duo CPU 3 GHz and all real data
for the experiments. We do not show the time required for the reg-
istration using SURF. This is because when using SURF the registra-
tion is almost instantaneous compared with the other methods.
Remark that the computational time were long compared to stan-
dards for registration methods. This is because we aimed at esti-
mating the transformation aligning two range images as
accurately as possible without considering time consumption. In
this sense, we enforced ten iterations for the registration while in
general, with only three iterations the methods almost converged.
If a compromise between accuracy and processing time is
searched, relaxing the threshold value for convergence will reduce
the processing time while the registration accuracy decreases (we
expect that an acceptable compromise will be around three itera-
tions). In addition, we remark that the processing time of our pro-
posed method was shorter than that of ICPA and ICP-CG. This is
because in our proposed method, points without discriminative al-
bedo (points in a large uniform area for example) are not consid-
ered in the matching step. As a consequence, the number of
corresponding points obtained after matching was less with our
proposed method and thus the outlier elimination step required
less time.

We also show in Fig. 24 the computational time as well as er-
ror attained at each iteration during registration for our proposed
method, ICPA, and ICP-CG when using data can (we had similar
results for the other data). We observe that the error drastically
decreases after the first few iterations with our proposed meth-
od. A small error means that the estimated transformation is
close to the exact one. The initial estimate of transformation is

Table 5
Quantitative evaluation of registration, using data can2.
NbMPts Final_rot (angle; axis) Final_trans
Proposed method 838 (17.46; —0.02, —0.94, —0.34) (—9.06, —0.50, —1.44)
ICPA 44,000 (1.60; 0.35,0.46, —0.82) (-1.60, —-1.36, —0.30)
ICP-CG 44,000 (6.69; —0.01, 0.96, 0.29) (1.50, —0.15, —0.09)
SURF 330 (12.09; 05, —0.98, —0.19) (-5.71,-0.53, -1.41)
Proposed method ICPA ICP-CG SURF

Error 0.42 40.60 55.28 35.6
Time 16.13 mn 31.0 mn 29.6 mn 0.0 mn

Table 6

Description of data hand, box, and candy.

Nb_Points Resolution (mm) Expected_rot (angle; axis) Expected_trans
hand 50,000 0.55 (17.66; —0.02, —0.94, —0.34) (-7.32,6.64,-0,80)
box 100,000 0.55 (17.62; —0.02, —0.94, —0.34) (—4.96, —0.72, —2.06)

candy 50,000 0.55

(13.99; —0.02, —0.93, —0.36) (~11.70, 1.58, 2.82)
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far from the exact one and therefore the estimated transforma-
tion drastically changes during the first few iterations of registra-
tion with our proposed method. Consequently, the size of the
search area (Q), which decreases proportionally to the change
in the estimated transformation, also drastically decreases during
the first few iterations. Therefore, for each point of the two range
images, the search for the corresponding point is restricted to a
small area after the first few iterations, which decreases the com-
putational time during the subsequent iterations. In contrast, the
error decreases slowly with ICPA and ICP-CG during the itera-
tions of registration and therefore the size of Q also decreases
slowly. Consequently, the computational time for each iteration
of registration with ICPA and ICP-CG remains approximately con-
stant. This explains the reason why the computational time for
our proposed method decreases drastically with the first few
iteration, while in contrast, that for ICPA and ICP-CG remains

approximately constant. Finally, after ten iterations, the compu-
tational time of registration with our proposed method is far less
than that with ICPA and ICP-CG.

Methods using only geometric features are not sufficient be-
cause of the lack of discriminative geometric features. Moreover,
color information like chromaticity cannot be directly used be-
cause of changes in color due to illumination. In fact, neither ICPA
nor ICP-CG attained satisfactory results due to data noise and inac-
curate estimates of illumination. The SURF could not accurately
register the range images, either. This is because of distortions
due to 2D projection (e.g., as seen with data candy). In contrast,
our method succeeded in registering range images with an accu-
racy of around the resolution of the range images for all data.
Through all these experiments, our proposed method was the most
accurate and stable in terms of the accuracy of estimated
transformation.

(a) First image.

(b) Second image.

(c) Superimposed.

(d) First image.

(e) Second image.

(f) Superimposed.

(g) First image.

(h) Second image.

(i) Superimposed.

Fig. 25. Initial state for data hand (top), box (middle), and candy (bottom).
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(a) Albedo first image. (b) Albedo second image. (c) Albedo first image. (d) Albedo second image.

(e) Albedo first image. (f) Albedo second image.

Fig. 26. Estimated albedo for data hand, box, and candy.

(a) Ground truth.  (b) Our method. (c) ICPA. (d) ICP-CG. (e) SURF.

Fig. 27. Registration results obtained with data hand.

FEFEF

(a) Ground truth.  (b) Our method. (c) ICPA. (d) ICP-CG. (e) SURF.

Fig. 28. Registration results obtained with data box.
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(a) Ground truth.

(b) Our method.

(c) ICPA.

(d) ICP-CG. (e) SURF.

Fig. 29. Registration results obtained with data candy.

Table 7
Quantitative evaluation of registrations, using data hand, box, and candy.

NbMPts Final_rot (angle; axis) Final_trans
Hand
Proposed method 2500 (17,84; —0.01, —0.93, —0.36) (-7.05, 6.66, —0.66)
ICPA 36,000 (17.68; —0.01, —0.93, —0.36) (-6.90, 6.61, 0.60)
ICP-CG 37,000 (17.46; —0.01, —0.94, —0.34) (—6.80, 6.64, —0.55)
SURF 189 (7.21; 0.26, —0.68, —0.68) (—4.53,6.55,2.63)
Proposed method ICPA ICP-CG SURF
Error 0.82 1.14 1.20 16.02
Time 4.5 mn 9.8 mn 9.7 mn 0.0 mn
Box
Proposed method 12,000 (17.75; —0.02, —0.94, —0.33) (—4.56, -1.11, -2.21)
ICPA 57,000 (17.64; —0.03, —0.92, —0.35) (-0.14, -1.62, -2.15)
ICP-CG 57,000 (17.67; —0.02, —0.94, —0.35) (-1.51,-1.17,-1.98)
SURF 210 (17.39; —0.00, —0.95, —0.30) (—4.25, -1.63, —2.70)
Proposed method ICPA ICP-CG SURF
Error 1.27 9.13 6.56 2.96
Time 12.0 mn 44.5 mn 41.1 mn 0.0 mn
Candy
Proposed method 2000 (13.72; -0.01, —0.94, —0.35) (-11.46,1.43,2.62)
ICPA 29,000 (9.94; -0.03, —0.92, —0.40) (-10.52,1.30, 2.54)
ICP-CG 30,000 (11.23; —0.01, —0.94, —0.34) (-10.72,1.18,2.33)
SURF 210 (6.83; —0.28,0.59, 0.75) (—5.84,2.45,1.78)
Proposed method ICPA ICP-CG SURF
Error 0.81 5.14 4.03 23.25
Time 4.5 mn 7.7 mn 7.4 mn 0.0 mn

Table 8

Average of time consumption of each step of our proposed method, ICPA, and ICP-CG, with the

percentage of time used for each step.

Attribute definition

Matching Outlier elimination

Proposed method 0.03 mn/0.2%
ICPA 0.00 mn/0.0%
ICP-CG 0.00 mn/0.0%

7.47 mn/94.8%
14.12 mn/72.0%
12.46 mn/72.0%

0.40 mn/5.0%
5.49 mn/28.0%
4.85 mn/28.0%

6. Conclusion

We introduced region-based registration of range images using
reflectance attributes obtained under rough estimates of illumina-
tion conditions. Our method stably extracts reliable attributes that
capture the local distribution of albedo on the object surface. These
attributes are defined by adaptively growing regions that are gen-
erated using a level-set method. Such attributes are used to evalu-
ate the similarity of points to robustly obtain correspondences in
points even under rough estimates of illumination conditions.
Our method also efficiently removes mismatches by using the
rigidity constraint of surfaces, which enhances the robustness of
the registration process. Our experiments using synthetic and real

data demonstrated improvements in the robustness and the accu-
racy of registration results under rough estimates of illumination.

Acknowledgment

This work was in part supported by JST, CREST.

References

[1] T. Masuda, Log-polar height maps for multiple range image registration,
Computer Vision and Image Understanding 113 (11) (2009) 1158-1169.

[2] J. Salvi, C. Matabosch, D. Fofi, J. Forest, A review of recent range image
registration methods with accuracy evaluation, Image and Vision Computing
25 (5) (2007) 578-596.



D. Thomas, A. Sugimoto/Computer Vision and Image Understanding 115 (2011) 649-667 667

[3] L. Cerman, A. Sugimoto, I. Shimizu, 3D shape registration with estimating
illumination and photometric properties of a convex object, in: Proc. of
CVWW’07, 2007, pp. 76-81.

[4] PJ. Besl, N.D. McKay, A method for registration of 3-D shapes, IEEE
Transactions on Pattern Analysis and Machine Intelligence 14 (2) (1992)
239-256.

[5] Z. Zhang, Iterative point matching for registration of free form curves and
surfaces, International Journal of Computer Vision 13 (1994) 119-152.

[6] V.-D. Nguyen, V. Nzomigni, C.V. Stewart, Fast and robust registration of 3D
surfaces using low curvature patches, in: Proc. of 3DIM’99, 1999, pp. 201-208.

[7] B.Jian, B.C. Vemuri, A robust algorithm for point set registration using mixture
of Gaussian, in: Proc. of ICCV’05, vol. 2, 2005, pp. 1246-1251.

[8] S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition using
shape contexts, IEEE Transactions on Pattern Analysis and Machine
Intelligence 24 (4) (2002) 509-522.

[9] A.E. Johnson, M. Hebert, Surface registration by matching oriented points, in:
Proc. of 3DIM'97, 1997, pp. 121-128.

[10] Z. Xie, S. Xu, X. Li, A high-accuracy method for fine registration of overlapping
point of clouds, Image and Vision Computing 28 (4) (2010) 563-570.

[11] Y. Liu, Automatic range image registration in the markov chain, IEEE
Transactions on Pattern Analysis and Machine Intelligence 32 (1) (2010) 12-
29.

[12] G. Godin, D. Laurendeau, R. Bergevin, A method for the registration of
attributed range images, in: Proc. of 3DIM’01, 2001, pp. 179-186.

[13] S. Weik, Registration of 3-D partial surface models using luminance and depth
information, in: Proc. of 3DIM’97, 1997, pp. 93-101.

[14] A.E.Johnson, S.B. Kang, Registration and integration of textured 3D data, Image
and vision computing 17 (2) (1999) 135-147.

[15] LS. Okatani, A. Sugimoto, Registration of range images that preserves local
surface structures and color, in: Proc. of 3DPVT’04, 2004, pp. 786-796.

[16] N.Brusco, M. Andreetto, A. Giorgi, G.M. Cortelazzo., 3D registration by textured
spin-images, in: Proc. of 3DIM’05, 2005, pp. 262-269.

[17] K. Pulli, S. Piiroinen, T. Duchamp, W. Stuetzle, Projective surface matching of
colored 3D scans, in: Proc. of 3DIM’05, 2005, pp. 531-538.

[18] D.G. Lowe, Object recognition from local scale-invariant features, in: Proc. of
ICCV’99, vol. 2, 1999, pp. 1150-1157.

[19] H. Bay, T. Tuytelaars, L.V. Gool, Surf: speeded up robust features, in: Proc. of
ECCV’06, 2006, pp. 404-417.

[20] E. Tola, V. Lepetit, P. Fua, Daisy: an efficient dense descriptor applied to wide
baseline stereo, IEEE Transactions on Pattern Analysis and Machine
Intelligence 32 (5) (2010) 815-830.

[21] L. Ibanez, W. Schroeder, L. Ng, J. Cates, The Insight Software Consortium, The
ITK Software Guide, second ed., Kitware, Inc, 2005.

[22] Y. Liu, H. Zhou, X. Su, M. Ni, R]. Lloyd., Transforming least squares to weighted
least squares for accurate range image registration, in: Proc. of 3DPVT06,
2006, pp. 232-239.

[23] J. Barron, D. Fleet, S. Beauchemin, Performance of optical flow techniques,
International Journal of Visual Computing 12 (1) (1992) 43-77.



	Robustly registering range images using local distribution of albedo
	Introduction
	Related work
	Proposed method
	Overview of proposed method
	Generation of adaptive region
	Evaluation of similarities using the albedo
	Elimination of incorrect matches
	Estimation of rigid transformation

	Generation of adaptive region
	Level-set method
	Speed image

	Generation of regions

	Restrictions on search area
	Evaluation of similarities using the albedo
	Matching
	Elimination of incorrect matches
	Estimation of rigid transformation

	Computational complexity analysis
	Experiments
	Definition of parameters
	Evaluation with synthetic data
	Evaluation with real data

	Conclusion
	Acknowledgment
	References


