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PAPER

Image Categorization Using Scene-Context Scale
Based on Random Forests

Yousun KANG†a), Hiroshi NAGAHASHI††, and Akihiro SUGIMOTO†††, Members

SUMMARY Scene-context plays an important role in scene analysis
and object recognition. Among various sources of scene-context, we fo-
cus on scene-context scale, which means the effective scale of local context
to classify an image pixel in a scene. This paper presents random forests
based image categorization using the scene-context scale. The proposed
method uses random forests, which are ensembles of randomized decision
trees. Since the random forests are extremely fast in both training and test-
ing, it is possible to perform classification, clustering and regression in real
time. We train multi-scale texton forests which efficiently provide both a
hierarchical clustering into semantic textons and local classification in var-
ious scale levels. The scene-context scale can be estimated by the entropy
of the leaf node in the multi-scale texton forests. For image categoriza-
tion, we combine the classified category distributions in each scale and the
estimated scene-context scale. We evaluate on the MSRC21 segmentation
dataset and find that the use of the scene-context scale improves image cate-
gorization performance. Our results have outperformed the state-of-the-art
in image categorization accuracy.
key words: scene-context scale, image categorization, randomized deci-
sion trees, random forests, multi-scale texton forests

1. Introduction

When people wish to find an image in large database such
as web albums, it is important to categorize an image not
only simply but as quickly and accurately as possible. As
more and more digital images are shared online by individ-
ual users, automatically categorizing an image has become
one of the most important tasks. Popular search engines
have begun to provide tags based on simple characteristics
of images, but they still have difficulty in automatically as-
signing a set of text labels to an image based on its visual
content.

Image categorization is to determine, for a given im-
age, the category to which the image belongs (e.g. dog im-
ages, beach images, indoor images). Image categorization
is one way in which we can perform image retrieval, and it
can be used to inform other tasks, such as semantic segmen-
tation or object detection. For example, an image retrieval
system will become easy to use if semantic categories and
keywords for an image are provided. Furthermore, image

Manuscript received December 8, 2010.
Manuscript revised April 28, 2011.
†The authors is with the Department of Applied Computer Sci-

ence, Tokyo Polytechnic University, Atsugi-shi, 243–0297 Japan.
††The author is with the Imaging Science and Engineering Lab-

oratory, Tokyo Institute of Technology, Yokohama-shi, 226–8503
Japan.
†††The author is with National Institute of Informatics, Tokyo,

101–8430 Japan.
a) E-mail: yskang@cs.t-kougei.ac.jp

DOI: 10.1587/transinf.E94.D.1809

Fig. 1 The example images with different scene-context scale. The
scene-context scales of an object (faces or car) strongly differs in each im-
age.

categorization can enhance the understanding of visual con-
tent for easy browsing in the website.

Prior categorization frameworks have tackled the prob-
lems of extracting features as image cues [1], or combining
features [2] to improve the performance. Recently not a few
results have shown that the dense sampling of visual words
and their combinations with image cues can improve cate-
gorization performance significantly [3]. They were devel-
oped in such a way that visual words are integrated into the
bag-of-words model for learning of each category. In this
paper, we propose a new framework for image categoriza-
tion that exploits new context information, namely scene-
context scale, and incorporate it into the classified category
distributions.

Computer vision approaches have demonstrated that
the use of context improves recognition performance [4]–
[8]. While the term context is frequently used in the lit-
erature as one of important keywords, it is difficult to give
its clear definition. There are many sources of context, and
thus numerous psychophysical studies that have presented
new theories on context for human object recognition [9]–
[11]. As a result, a specific agreement has been achieved in
the community that scene-context plays an important role in
scene categorization and object recognition.

When the scene-context is used on a per-pixel level, we
can capture the local context where image pixels within a re-
gion of interest carry useful information. Some image pix-
els/patches have ambiguous features at a very local scale,
because the color and texture of the local level are insuf-
ficient to identify the pixel-class. The more the region of
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Fig. 2 (a) Image patches. The random subset of the training data is composed of image patches
sampled from input image. (b) A region of interest. An image patch p includes raw image pixels within
a (d × d) window. (c) Node branching. The split nodes n of decision trees tT is branched into left or
right node by computing simple functions f and threshold κ with feature vector v.

interest increases, the more it includes the neighborhoods
of pixels. Therefore, increasing the size of a region of in-
terest is one of the common methods to include valid local
context [12].

The size of a region of interest depends on an object
in a scene. Given object presence and location, its scale or
the relative size in a scene can be a significant cue for rec-
ognizing the object in the scene. We refer to this scale as
the scene-context scale. We focus in this work on the scene-
context scale that is present in a scene, but rarely used as
context to improve the recognition performance. Various
scene-context scales of images are illustrated in Fig. 1. The
size of an object (face or car) strongly differs in each image.
When the object is recognized in a scene, the scene-context
scale should be considered to improve the recognition per-
formance.

There are several possible sources to estimate the
scene-context scale in an image. If the actual scale of ob-
jects within an image is provided, or the absolute distance
between the observer and a scene can be measured, we may
easily estimate the scene-context scale in each image. Tor-
ralba and Oliva inferred the scene scale and estimate the ab-
solute depth in the image [13]. Saxena et al. presented an
algorithm for predicting depth from a single still image [14].
They dealt with the scale problem in a scene, however, they
did not use scale information as a cue to recognize the ob-
ject in a scene. We motivate the scale of an object in a scene
to be performed as an important cue for categorization and
segmentation.

On the other hand, textons have been proven effec-
tive in categorizing materials [15] as well as generic object
classes [16]. The term texton means a compact representa-
tion for the range of different appearances of an object. The
collection of textons are clustered to produce a codebook of
visual words in bag-of-textons model. Recently, textoniza-
tion process is performed using random forests to generate
semantic textons. Random forests are powerful tools with
high computational efficiency in vision applications [17].

In this paper, we estimate the scene-context scale us-
ing multiple random forests. We propose multi-scale tex-
ton forests, which can generate different textons according
to scale space. For categorization and segmentation, Shot-

ton et al. [18] proposed semantic texton forests as efficient
texton codebooks without using of scene-context scale. We
investigate how scene-context scale combines with multi-
scale texton forests to show the accuracy improvement of
categorization.

To assess the utility of multi-scale texton forests and
the scene-context scale, we compare the clustering and clas-
sification accuracy and the categorization accuracy with that
of the state-of-the-art [18]. The results show that our method
achieves better classification and categorization accuracy
than those of the state-of-the-art that is without using of
scene-context scale.

This paper is organized as follows: Sect. 2 explains the
multi-scale texton forests in detail. Section 3 describes how
to combine the scene-context scale into the image catego-
rization module. Section 4 shows experimental results on
performance and our conclusions are presented in the final
section.

2. Scale Extension Based on Random Forests

The textons facilitates dense representation for visual words
in bag-of-word model. When the textonization process is
performed on randomized decision forests, there are many
advantages in the framework. Firstly, the texton codebooks
are available without computing expensive filter-banks or
descriptors. There is no need to be time-consuming cluster-
ing method and nearest-neighbor assignment using k-means.
Secondly, using the learned randomized decision forests, we
can simultaneously exploit both hierarchical clustering and
classification with category distribution. In this section, we
explain how to generate semantic textons according to vari-
ous scale-level using randomized decision forests.

The randomized decision forest, which is simply called
random forest, is a machine learning technique which can
be used to categorize individual pixels of an image [19]. We
perform textonization process using random forests to for-
mulate multi-scale texton forests. We employ the semantic
texton forest proposed by Shotton et al. [18] and extend its
concept to obtain multi-scale texton forests.

Each data for each node of random forest indicates an
image patch p as shown in Fig. 2 (a). The image patch p has
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Fig. 3 Multi-scale texton forest. The multi-scale texton forest consists of several random forests with
various scale space and each random forest consists of many decision trees with same scale level.

the size of (d×d) image pixels as shown in Fig. 2 (b). At each
node, a simple test is performed as shown in Fig. 2 (c), and
the result of that test is used to determine which child node
to choose in a decision tree. In a decision tree, the recursive
node branching continues to the maximum depth or until
no further information gain is possible [21]. We employed
a depth-first manner, which recursively splits nodes until a
maximum depth is reached.

To formulate multi-scale texton forests, we employ the
method to expand scale level of random forests that is to be
increased in size of image patches p for split functions. Each
random forest has its own scale level and its scale level can
be expanded by increasing the region of interest in multi-
scale texton forests. The effective region size for local con-
text can be chosen among the multi-scale texton forests with
different scale.

Multi-scale texton forests are random forests created
in different scale space for textonization of an image. The
multi-scale texton forests consist of several random forests
FS with various scale space S = (S 1, . . . , S τ). As shown in
Fig. 3, a random forest FS is a combination of T decision
trees at each scale space S k, where k is the level of scale
(k = 1, . . . , τ). The nodes in the trees efficiently provide
a hierarchical clustering into semantic textons with scale-
contextual features.

The split nodes in multi-scale texton forests use split
functions of image pixels within a region of interest. Each
random forest FSk has a different set of pixel combinations
within a region of interest as shown in Fig. 2 (b). We can
increase the scale level k of a random forest by dilatation of
a region of interest.

At the first scale space S 1, the region of interest RS 1

covers whole pixels within a (d × d) image patch, on which
the split functions in FS 1 act. In next scale space S 2, the
region of interest RS 2 deals with the pixels within the dif-
ference of (dk × dk) image patch from the region RS 1 of a
previous scale space S 1. Therefore, the region of interest
RS k increases within a (dk×dk)− (d(k−1)×d(k−1)) image
patch as illustrated in Fig. 4. The number of possible com-

Fig. 4 Dilatation of a region of interest according to scale space S k. Var-
ious sizes of a region of interest are used for node split function in the
multi-scale texton forests.

binations of selecting two pixels inside a region of interest
also increases quadratically with respect to the scale level k.

To textonize an image according to scale space, image
patches centered at each pixel with various sizes are passed
down the multi-scale texton forests. Each random forest
consists of many leaf nodes L = (l1, . . . , lT ) and we can com-
pute the averaged class distribution in the leaf node. The
class distribution is FS{p(c|L)}, where c is a category. The
textons generated by each random forest can be extracted in
different scales from other forests. By pooling the statistics
of semantic textons and class distributions over an image
region, the bag of textons presents a powerful feature for
image categorization.
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Fig. 5 (a) The histogram of the bag of textons. The histogram contains both leaf nodes and split
nodes. The depth of the nodes shows in histogram of each random forest. (b) The scene-context scale
of an image pixel can be estimated by computing the minimum entropy of each image patch p. Darker
pixels correspond to smaller scale, so white pixels represent the largest scale S τ.

3. Image Categorization Using Scene-Context Scale

In this section, we explain how to estimate the scene-context
scale of each image pixel using multi-scale texton forests.
To obtain classified category distributions, we adopt the
pyramid match kernel and non-linear support vector ma-
chine (SVM) in each scale. Finally, we combine the esti-
mated scene-context scale and classified category distribu-
tions in the end of this section.

3.1 Scene-Context Scale and Its Estimation

Scene-context scale is the effective scale of local context to
classify an image pixel in a scene. Since the scale of objects
strongly differs in each input image, the use of the scene-
context scale improves image categorization performance.

The scene-context scale of each image pixel is obtained
by computing the entropies of an image patch in the leaf
nodes of each random forest. Since the objects in various
size and background/foreground appear together in the im-
age, we should compute scene-context scale per pixel. The
confidence of each random forest is computed as the en-
tropies of the class label distribution in leaf nodes. We re-
gard the confidence as the criterion of an optimal scale level
to be chosen. At each image pixel, therefore, one scale level
with minimum entropy is chosen as the scene-context scale
among the multi-scale texton forests.

At first, we compute the entropy E(p|L) of each image
patch p at leaf nodes L of a random forest as

E(p|L) = −P(c|L) × log P(c|L). (1)

The entropy E(p|L) can be computed in each random forest
FSk with scale level k = (1, . . . , τ) and we note the entropy
of a random forest as FSk {E(p|L)}. Among the whole scale
space S = (S 1, . . . , S τ), only one scale space S i is chosen

that contains the leaf nodes of a random forest FS i with min-
imum entropy as

S ∗i = arg minS i
(FSi {E(p|L)}). (2)

The scene-context scale of an image pixel is the instance
S ∗i of the best scale space of image patches as shown in
Fig. 5 (b). Now, we can estimate the scene-context scale in
an image as the proportion of the instances of scale space S ∗k
of image pixels. This gives the distribution of scale space
P(S) in input image as

P(S) =
∑

p

S ∗i . (3)

We can also determine the Scale-Level Prior [18] that is the
most likely scale space S ∗S LP in whole image like as

S ∗S LP = arg maxiS
∗
i . (4)

3.2 Integration of Scene-Context Scale into Classifier for
Categorization

We use a bag of textons model [22] computed across the
whole image for image categorization. The bag of textons
model can construct the histogram of semantic textons and
calculate the node prior distributions over the whole image,
even discarding spatial layout. A histogram consists of the
nodes of each random forest, containing both leaf nodes and
split nodes as shown in the left histogram of Fig. 5 (a). Be-
cause the hierarchical clusters are better than the leaf node
clusters alone, we use both of leaf and split nodes for con-
structing histograms. The histogram of each random forest
is used as an input of a classifier for recognizing object cat-
egories.

For a classifier for categorization, we use a non-linear
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support vector machine (SVM). The non-linear SVM de-
pends on a kernel function, which measures similarity be-
tween input images. Grauman et al. [23] proposed a pyra-
mid match kernel over unordered feature sets that allows
them to be used effectively and efficiently in kernel-based
learning methods. We employ the pyramid match kernel to
efficiently compute the approximation of global correspon-
dence between sets of features in two images. Therefore, the
first categorization process for each random forest we use is
very similar to those in [18], but our classifier is different
from that in [18] because ours involves scene-context scale
to include scale information of object in a scene.

We build a 1-vs-others SVM classifier, which gives
probability of every class per each image. The probability
can be computed per each random forest as PFS (c|I), where
I indicates the whole image. At scene-context scale S ∗i , the
category distributions FSi {p(c|I)} are also available for lo-
cal classification and consist in the histogram of a bag-of-
textons model.

For each test image, therefore, we estimate the scene-
context scale and we combine the output of SVM catego-
rization algorithm with it. The categorization performance
increases by multiplying the distributions of each category
P(c|FS) and of scene-context scale P(S) as

P′(c|FS) =
τ∑

k=1

P(c|FS k ) × P(S k). (5)

And the SLP is used to emphasize likely categories and dis-
courage unlikely categories, by multiplying the average dis-
tribution of the multi-scale texton forests and the distribu-
tions at SLP as

P′(c|FS) =

⎛⎜⎜⎜⎜⎜⎝
l
τ

τ∑

k=1

P(c|FS k )

⎞⎟⎟⎟⎟⎟⎠ × P(S S LP)α (6)

using parameter α to soften the prior.

4. Experimental Results

This section presents our experimental results for image
categorization using multi-scale texton forests. To assess
the utility of the scene-context scale and multi-scale tex-
ton forests in image categorization, we compare the classi-
fication accuracy with that of conventional semantic texton
forests method [18] without using the scene-context scale.

We evaluate our algorithm using challenging MSRC
(Microsoft Research Cambridge) segmentation dataset [25].
The MSRC database is composed of 591 photographs of the
21 objects. The dataset includes 21 object classes such as
building, grass, tree, cow, sheep, sky, airplane, water, face,
car, bicycle, flower, sign, bird, book, chair, road, cat, dog,
body, boat. Note that the ground-truth labeling of the 21-
class database contains pixels labeled as ‘void’. Void pixels
are ignored for both training and testing. We used the 45%
training and 10% validation data for training, and the hand-
labeled ground truth to train the classifiers. The remaining
45% images were used for test data.

Before presenting categorization accuracy, let us show
the clustering and classification results using the multi-scale
texton forests. The multi-scale texton forests provide both a
hierarchical clustering into semantic textons and local clas-
sification in various scale space. We separately train the
forests in different scale space.

To train the multi-scale texton forest, we prepared six
scale steps S = (S 1, . . . , S 6) and an initial image patch size
is (15 × 15). Therefore, the size of image patches for split
function is (15k × 15k) at each scale step S k. A random
forest FS has the following parameters: T = 5 trees, maxi-
mum depth D = 10, 500k feature tests and 10 threshold tests
per split, and 0.25 of the data per tree, resulting in approxi-
mately 500 leaves per tree. Training a semantic texton for-
est took approximately 30× 2k minutes on MSRC dataset at
each scale step k, however, testing an image took 0.1 second
per a semantic texton forest.

At test time, the most likely class in the averaged cat-
egory distribution gives the clustering and classification re-
sults for each pixel as shown in Fig. 6. Clustering and lo-
cal classification performance is measured as both the class
average accuracy (the average proportion of pixels correct
in each category) and the global accuracy (total proportion
of pixels correct). Figure 7 shows the results of the clus-
tering and local classification based on scene-context scale.
We estimate the scene-context scale per image pixel using
multi-scale texton forests as shown in the third row of Fig. 7.
Since each image pixel has the category distribution at the
scene-context scale, we can infer the most likely category
c∗i = arg maxci

P(ci|L) of leaf nodes L = (l1, . . . , lT ) for each
pixel i as shown in Fig. 7 (a). On the other hand, Fig. 7 (b)
shows the results of the state-of-the-art [18] without using
scene-context scale based on single-scale semantic texton
forests. The single-scale semantic texton forests used the
same parameter of the multi-scale texton forests with the
first scale level FS1 .

As shown in Fig. 8, a pixel level classification based
on the local distributions P(c|L) gives poor, but still good
performance. The global classification accuracy without
scene-context scale gives 50.2% and the result with using
scene-context scale based on multi-scale texton forests gives
53.0%. In particular, significant improvement can be ob-
served in most of the classes except some classes: tree, wa-
ter, car, bicycle, sign and road. It should seem that they
have not influence on scene-context scale. Across the whole
MSRC dataset, using the scene-context scale achieved a
class average performance of 48.3%, which is better than
the 38.4% of (b) as shown in the table of Fig. 8. There-
fore, we can see that the proposed scene-context scale can
be powerful and effective context information for category
classification and clustering.

In Fig. 9, we plot the class average accuracy against
the number of scene-context scale. The number of scene-
context scale corresponds to the number of semantic texton
forests according to scale step k. A noticeable improvement
is obtained until the scale step k is 5. From the Fig. 9, we
can see that class average increases with more scene-context
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Fig. 6 Clustering and classification results using the multi-scale texton forest. The multi-scale texton
forest can generate the different textons according to scale steps. (a) Input images. (b) Ground-truth
images. (c) - (h) Clustering results according to scale space S = (S 1, . . . , S 6). The results correspond to
each scale space such as S 1 = (c), S 2 = (d), S 3 = (e), S 4 = (f), S 5 = (g), and S 6 = (h).

Fig. 7 Clustering and classification results using scene-context scale. (a) Classification result with
using scene-context scale based on multi-scale texton forests. (b) Classification result without using
scene-context scale based on single-scale semantic texton forests [18]

scale.
The pixel level classification based on the local distri-

butions gives different results according to each scale step.
Figure 6 shows the clustering and classification results of
each random forestFSi with different scales. As can be seen,
each image has the best accuracy according to category in

some scene-context scale. Therefore, there is the scene-
context scale in not each image but each image patch. Using
the multi-scale texton forest, we find the scene-context scale
per image patch in a test image. By multiplying the distri-
butions of each category and the proportion of the scene-
context scale in the test image, we can finally improve the
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Fig. 8 Clustering and classification results on MSRC datasets. Classification accuracies (percent)
over the whole dataset, without the scene-context scale (b), and with the scene-context scale (a). Our
new highly efficient scene-context scale achieve a significant improvement on previous work (b).

Fig. 10 Image categorization results on MSRC datasets. Categorization accuracies (percent) over the
whole dataset. Scene-context scale achieves a improvement on previous work.

Fig. 9 Global accuracy vs number of scene-context scale.

learned per-category distribution.
We obtained the categorization accuracy as shown in

Fig. 10 (a) without using the scene-context scale, and (b),
(c) and (d) with using scene-context scale. (a) None in the
first row of the table used only one scale space, as the previ-
ous work [18]. (b) SLP in the second row of the table used
the Eq. (11) in Sect. 4. (c) Mean in the third row of the ta-
ble used the average of categorization accuracies over the
whole randomized decision forests in the multi-scale texton
forests. (d) Distribution in the forth row of the table used the
proportion of the scene-context scale in a test image as like
Eq. (10).

The proposed method (d) using the distribution of
scene-context scale gives better results than any other meth-
ods without using scene-context scale. Across the whole
challenging dataset, using the distribution of scene-context
scale achieved a class average performance of 74.9%, which
is better than all the 72.8% of (a), the 72.2 % of (b), and the
73.7 % of (c). The proposed method improves performance
for all but three classes. This is probably because the pro-
portion of the scene-context scale is inappropriate for the
objects in an image such as dog and bird, therefore poor at

categorizing the objects. In addition, the three classes also
have low performance in clustering and classification pro-
cess with low class average such as dog (22%), bird (6%),
and chair (14%). We should devote to estimate more ac-
curate scene-context scale and to generate more discrimi-
nate texton for various objects in future works. In particular,
significant improvement can be observed difficult classes:
grass and cat.

5. Conclusion

This paper presented a new framework for image categoriza-
tion using multi-scale texton forest and scene-context scale.
We have (i) introduced the concept of scene-context scale
in object recognition, (ii) expanded the random forests to
multi-scale texton forests, and (iii) achieved efficient cate-
gorizing by using a combination of scene-context scale and
multi-scale texton forest. In experiments, we confirmed that
the proposed method using the scene-context scale gives
better results than any other methods without using scene-
context scale. The multi-scale texton forest can be utilized
in semantic segmentation and object recognition by integrat-
ing scene-context scale with bag of textons method.

In future work, we improve accuracy per-category dis-
tribution by using geometric transformations and affine pho-
tometric transformations on training/test dataset. In addi-
tion, the results of image categorization are utilized as re-
gion priors for object recognition and semantic segmenta-
tion.
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