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ABSTRACT: This article presents a new method for fitting a digital line
or plane to a given set of points in a 2D or 3D image in the presence of
noise by maximizing the number of inliers, namely the consensus set.
By using a digital model instead of a continuous one, we show that we
can generate all possible consensus sets for model fitting. We present
a deterministic algorithm that efficiently searches the optimal solution
with time complexity O(Nd log N) for dimension d, where d 5 2,3, to-
gether with space complexity O(N) where N is the number of points.
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I. INTRODUCTION

Line fitting and plane fitting are essential tasks in the field of image

analysis and computer vision. For instance, these procedures are use-

ful for shape approximation (Sivignon et al., 2004; Bhowmick and

Bhaattacharya, 2007), image registration (Shum et al., 1995; Zitova

and Flusser, 2003), and image segmentation (Köster and Spann,

2000; Kenmochi et al., 2008), and considered as the problem of

parameter estimation (Hartley and Zisserman, 2003). There exist

several optimal methods for fitting such as least-square fitting, least-

absolute-value fitting, or least median of squares (LMS) (Boyd and

Vandenberghe, 2004; Press et al., 2007). In these methods, a continu-

ous line or plane model is used, defined respectively by

L ¼ fðx; yÞ 2 R2 : axþ yþ b ¼ 0g; ð1Þ
P ¼ fðx; y; zÞ 2 R2 : axþ byþ cþ z ¼ 0g; ð2Þ

where a,b,c [ R. The fitting is carried out through optimizing differ-

ent cost functions. For instance, least-squares minimizes the sum of

the geometric distances from all given points to the model. The

solution can be obtained analytically, however it is not robust to the

presence of outliers, namely points which do not fit the model.

Least-absolute values uses the vertical distances, instead of the

geometric distances, for its minimization. Some efficient iterative

algorithms have been proposed in the literature. However, if there

are outliers, the solution is known to be unstable. In contrast, LMS

minimizes the median of the vertical/geometric distances of all

given points to the model. Thus, the fitting is robust as long as

fewer than half of the given points are outliers (Rousseeuw, 1984).

In this article, we present a novel globally optimal method that,

given an arbitrary cloud of 2D or 3D points, finds the line or plane that

minimizes the number of outliers, or alternatively maximizing the

number of inliers, namely points which do fit the model, also called

the consensus set. The idea of using such consensus sets was proposed

for the RANdom SAmple Consensus (RANSAC) method (Fischler

and Bolles, 1981), which is one of the most widely used in the field of

computer vision. However RANSAC (and its variations) is inherently

probabilistic in its approach, and do not guarantee any optimality while

our method is both deterministic and optimal in the size of the consen-

sus set. To guarantee the optimality of consensus sets, we follow a dig-

ital geometry (DG) methodology (Klette and Rosenfeld, 2004) by

using a digital line and plane models (Reveillès, 1991; Klette and

Rosenfeld, 2004) instead of (1) and (2). This methodology is in fact

natural given the assumption that our inputs are digital images.

Besides, such a digital model allows us to distinguish between digitiza-

tion-induced noise and actual noise. Related work using digital line or

plane models can be found in works such as digital line or plane recog-

nition (Buzer, 2003; Gerard et al., 2005; Buzer, 2006), digital curve

polygonalization (Debled-Rennesson et al., 2006; Bhowmick and

Bhaattacharya, 2007), and digital surface polyhedrization (Sivignon

et al., 2004; Provot et al., 2006) with and without the presence of noise.Correspondence to: Rita Zrour; e-mail: zrour@sic.univ-poitiers.fr
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However, to the best of our knowledge, outliers, namely points which

do not fit the model, have never been studied in the field of DG.

This work is an extension of our previous papers on digital line

fitting (Zrour et al., 2009a) and digital plane fitting (Zrour et al.,

2009b). We can treat both the 2D and 3D problems by considering

them in the dual space of the dual transform (De Berg et al., 2008).

Indeed, we show that digital plane fitting in 3D can be treated with

a similar methodology to the one for digital line fitting in 2D

because it can be viewed as a 2D problem. We present an algorithm

that has a time complexity of O(Nd log N) for the dimension d 5
2,3, with N the number of points, and a space complexity O (N).

Note that the space complexity is not affected by the dimension.

We also point out that there are degenerate cases since our inputs

are only integers and all computations can be executed by using

rational numbers alone, and present how we can deal with them.

The rest of the article is as follows: in Section II, we expose the

framework of our digital model. In Section III, we prove the opti-

mality of our result. In Sections IV and V, we provide an algorithm

for the computation of the line fit in 2D and an extended algorithm

for the plane fit in 3D, respectively. Section VI provides a method

for extracting the parameters from the fit. Sections VII is devoted to

2D and 3D results and applications, respectively. Finally Section

VIII states some conclusions and perspectives.

II. THE PROBLEM OF DIGITAL LINE AND PLANE FITTING

A line L and a plane P in the Euclidean space Rn, n5 2,3, are defined

by (1) and (2). In this article, we use digital models, instead of contin-

uous ones, for lines and planes in a discrete space Zd for d 5 2,3,

where Z is the set of all integers. We contend that using digital mod-

els is natural when our input data is a set of points in a digital space.

A digital line D(L) that is the digitization of L is defined by the

set of discrete points satisfying two inequalities:

DðLÞ ¼ fðx; yÞ 2 Z2 : 0 � axþ yþ b � wg ð3Þ

where w is a given constant value. Geometrically, D(L) is a set of

discrete points lying between two parallel lines ax 1 y 1 b 5 0 and

ax 1 y 1 b 5 w, and w specifies the vertical distance between them.

From the digital geometrical viewpoint (Reveillès, 1991; Klette and

Rosenfeld, 2004), w should not be less than 1 if we expect that D(L)
to be 8-connected for jaj � 1. In other words, 1 is the minimum dis-

tance to keep the connectivity of a digital line. We can also fix the

horizontal distance, instead of the vertical one, between the two par-

allel lines. In that case, we simply exchange x and y in (3).

A digital plane D(P) that is the digitization of P is defined by

DðPÞ ¼ fðx; y; zÞ 2 Z2 : 0 � axþ byþ zþ c � wg ð4Þ

and similar discussions on the value setting for w and its direction

choice among the x-, y-, and z-axis directions, namely, the permuta-

tion of x, y, and z in (4), are also valid for D(P).

Using the above digital line and plane models, our fitting prob-

lem is then described as follows: given a finite set of discrete points

such that

S ¼ fxi 2 Zd : i ¼ 1; 2; � � � ;Ng

we would like to find a digital line D(L) for d 5 2 (resp. a digital

plane D(P) for d 5 3) such that D(L) (resp. D(P)) contains the max-

imum number of points in S. Points xi [ S are called inliers if xi [ S
\ D(L) (resp. xi [ S\ D(P)); otherwise, they are called outliers.

III. DIGITAL MODELS AND THEIR CONSENSUS SETS

Our approach is focusing on inlier sets, also called consensus sets.

Since the size of S is finite and each element x [ S has finite

Figure 1. A digital line that has one critical point p1 and its rotated

digital line with a second critical point p2. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

Figure 2. A digital line that has no critical point and its translated

digital line with one critical point p1. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Figure 3. A digital plane with two critical points p1 and p2 on one of
its support planes and its rotated digital plane that also has a third

critical point p3. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

Figure 4. A digital plane with two critical points p1 and p2 on dis-
tinct support planes and its rotated digital plane that also a third criti-

cal point p3. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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coordinates, we easily notice that the number of different consensus

sets for the digital line or plane fitting of S is finite as well. Thus, if

we can find all different consensus sets C from a given S, we just

need to verify the size of each C and find the maximum one (ones if

there are several) as the optimal solution.

Then the following question comes up naturally: is it possible to

find all the consensus sets of S? If the answer is positive, how can

we do it? In this section, we will answer these questions. For the

followings, we give some notions related to digital lines and planes.

Two parallel lines (resp. planes) that are given by the equations in

(3) (resp. (4)) are called the support lines (resp. planes) of a digital

line (resp. plane). Discrete points that are on support lines (resp.

planes) are called critical points of a digital line (resp. plane).

A. Digital Lines and Their Consensus Sets. We first attack

the 2D case of digital line fitting.

Proposition 1 Let C be a consensus set of S for a digital line. It

is possible to find a new digital line whose consensus set is the

same as C such that it has at least two critical points.

Proof Let D be an initial digital line that contains all points of C
as its inliers. Then, the following three cases can be considered

when studying the critical points of D.

1. Suppose that D has more than one critical points, then the

proposition is already established in this case.

2. Suppose that D has one critical point S. In this case, we apply

a rotation to D around p1 until finding another point p2 in C
so that p2 becomes a critical point. The rotation is accom-

plished in such a way as to maintain the distance w between

the support lines, and so that the support line on which there

is not p1 is rotated around the point p1
0 that is the projection

of p1 on the line. Figure 1 shows an example of a rotated digi-

tal line. Note that we can rotate D either clockwise or

counterclockwise.

3. Suppose that D has no critical point. In this case, we first

apply a translation to D to find a first critical point p1. Note
that a translation can be made to any direction and the two

support lines shall maintain the distance w between them.

During such a translation, if more than one points are

detected as critical points, then the proof is complete. If just

one point p1 is detected, as illustrated in Figure 2, then a rota-

tion is made around p1 as mentioned in the previous case, in

order to obtain a second critical point p2.

From this proposition, we see that we can find a digital line D(L)
for any consensus set C of S such that it has at least two critical

points. This is intuitively understandable, because when we move a

digital line D(L) in the image plane, its consensus set C will change

when a critical point goes out from D(L), namely, becomes an out-

lier, due to the motion of the line. Indeed, such a digital line D(L)
can be constructed from a pair of points chosen from S such that

they become critical points of D(L). Consequently, we can find all

C from those D(L) constructed from pairs of points in S.

B. Digital Planes and Their Consensus Sets. Similarly to

digital lines, we have the following proposition for digital planes.

Proposition 2 Let C be a consensus set of S for a digital plane.

It is possible to find a new digital plane whose consensus set is the

same as C such that it has at least three critical points.

Proof Let D be an initial digital plane that contains all points in

C as its inliers. Then, the following four cases can be considered

when observing the critical points of D.

1. Suppose that D has more than two critical points, then the

proposition is correct in this case.

2. Suppose that D has two critical points p1 and p2, which may be

located on one side or either side of the two parallel support

planes of D. First, we take the projections p1
0 (resp. p20) of p1

(resp. p2) on the other support plane where p1 (resp. p2) does
not exist in the z-axis direction. We then apply a rotation to D
in such a way as to maintain the distance w between the support

planes until finding another point p3 in C so that p3 becomes a

critical point. To achieve this to the support plane where p1 and
p2 exist, we apply a rotation around the line going through p1
and p2, as illustrated in Figure 3. To the other support plane,

we apply a rotation around the line going through p1
0 and p2

0, as
illustrated in Figure 3. In the case of Figure 4, similarly, to the

support plane where p1 (resp. p2 exists, we apply a rotation

around the line going through p1 and p2
0 (resp. p10 and p2). Note

that we can rotate D either clockwise or counterclockwise.

3. Suppose that D has one critical point p1. In this case, we also

consider the projection of p1, p1
0. We then apply a rotation to

each support plane until finding another point p2 in C so that

p2 becomes a critical point, as illustrated in Figure 5. The

support plane where p1 (resp. p1
0) exists is rotated around any

line going through p1 (resp. p1
0) on the support plane. If just

one point p2 is found as a second critical point after the rota-

tion, then another rotation is made, as mentioned in the previ-

ous case, in order to obtain a third critical point p3.
4. Suppose that D has no critical point. In this case, we first apply

a translation to D to find a first critical point p1. Note that a

translation can be made in any direction while the two support

planes maintain a constant distance w between them. During

such a translation, if more than two points are found as critical

points, then the proof is complete. If just one point p1 is found,
as illustrated in Figure 6, then we follow the previous case.

Figure 5. A digital plane with one critical point p1 and its rotated dig-

ital plane that also has a second critical point p2. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 6. A digital plane with no critical point and its translated

digital plane that has one critical point p1.
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From this proposition, similarly to the 2D case, we see that we

can find a digital plane D(P) for any consensus set C of S such that

it has at least three critical points. Consequently, we can find all C
from D(P) constructed from all possible triplets of points in S.

IV. DIGITAL LINE FITTING ALGORITHM

We first describe the digital line fitting problem in the dual space of

the duality transform (De Berg et al., 2008), because our algorithm

works in the dual space. We then present an algorithm to exhibit the

optimal consensus set (or sets if the solution is not unique) that

maximizes the number of inliers of a fitted digital line from a given

set S of 2D discrete points, step by step. We also describe special

treatments for degenerate cases; it should be noted that digital

images likely present many degenerate cases that must be processed

separately.

A. Digital Line Fitting in the Dual Space. Our algorithm is

inspired by the algorithm of LMS (Souvaine and Steele, 1987)

working in the dual space of the following duality transform

(De Berg et al., 2008): let p 5 (xp,yp) be a 2D point in the primal

space (x, y) then the dual of p is the line:

L0p ¼ fða; bÞ : xpaþ bþ yp ¼ 0g

in the dual space (a, b). Likewise, the dual of a nonvertical line ax
1 y 1 b 5 0 in the primal space is the point (a, b) in the dual

space.

Now, let us consider the dual-space interpretation of a digital

line in the primal space, defined by (3). A digital line is regarded as

a set of parallel lines whose slopes are -a, and whose y-intercepts
are between -b and w-b. It corresponds, in the dual space, to a verti-

cal line segment of length w which is the distance between two par-

allel lines of the digital line, as illustrated in Figure 7. Because

points in S in the primal space are represented by lines in the dual

space, the problem of finding the optimal consensus set in the pri-

mal space is equivalent to searching the best position of the vertical

Figure 7. A digital line of width w in the primal space (left) corresponds to a vertical line segment of length w in the dual space (right). [Color fig-

ure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 8. Digital lines on which a point p is a critical point in the primal space (left), and those corresponding vertical line segments of length w
in the dual space (right). In the dual space, a set of all such digital lines forms two strips, each of which is bounded by two lines Lp

0 and Lp
i for i 5

1,2. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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line segment of length w such that it intersects with as many lines

as possible in the dual space, as illustrated in Figure 7.

B. Strips Made from a Critical Point. Obviously, we cannot

search everywhere in the dual space to find the best line segment.

From Proposition 1, we know that, for any consensus set, there

exists a digital line that features at least two critical points. There-

fore, we first take one point p [ S, and consider it to be the first criti-
cal point of such a fitted digital line. Because p corresponds to a

line Lp
0 in the dual space, all digital lines for which p is a critical

point correspond to the set of all the vertical line segments of length

w having one of its endpoints on Lp
0 in the dual space, as shown in

Figure 8. The set of such digital lines, therefore, forms two strips in

the dual space; one of them is bounded by Lp
0 and Lp

1, and another is

bounded by Lp
0 and Lp

2, where

L1p ¼ fða; bÞ : xpaþ bþ yp þ w ¼ 0g; ð5Þ

L2p ¼ fða; bÞ : xpaþ bþ yp � w ¼ 0g; ð6Þ

as illustrated in Figure 8. For simplification, we focus on the strip

bounded by Lp
0 and Lp

1, because the following discussion is also

valid for another strip bounded by Lp
0 and Lp

2.

C. Digital Lines with Critical Point Pairs. According to Prop-

osition 1, we choose a point q [ S\{p} to be the second critical point

of a fitted digital line such that xq = xp; the case of xq 5 xp will be
discussed later. Any point q in the primal space is represented by

the line Lq
0 in the dual space, as shown in Figure 9. We see in this

figure that Lq
0 intersects each of the strip boundaries, Lp

0 and Lp
1, if it

is not parallel to Lp
0; the parallel case occurs when xq 5 xp, and it

will be dealt with separately as a degenerate case in Section F. The

intersections between Lq
0 and Lp

i, rp
i 5 (aq

i, bq
i), for i 5 0, 1, are cal-

culated. Geometrically, the vertical line segment in the strip, one of

whose endpoints is one of the intersections rq
i, in the dual space

corresponds to a digital line with the two critical points p and q in

the primal space. This shows that the digital lines corresponding to

the vertical line segments between the two intersections rq
0 and rq

1

in the strip always contain q as an inlier.

D. Finding the Largest Consensus Set in a Strip. To know

the number of inliers within the digital lines with a critical point p,
we check the intersections rq

0 and rq
1 of Lq

0 for all q [ S\{p} with

the strip boundaries, Lp
0 and Lp

1. We use two values fq
i for i 5 0, 1,

Figure 9. Three points p, q, r in the primal space (left), and the corresponding lines Lp
0, Lq

0, and Lr
0 in the dual space, with their intersections rq

i,
rr

i for i 5 0,1 (right).

Figure 10. Algorithm 1: digital line fitting.
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which is set to be 1 if Lq
0 enters the strip from Lp

i, and 21 if Lq
0

leaves the strip from Lp
i.

Once the intersections rq
i 5 (aq

i, bq
i) and the associated value

fq
i for i 5 0, 1 are calculated for all q [ S\{p}, we sort all the

triples (aq
i, bq

i, fq
i) in increasing order by using aq

i as keys. As for

determining the location of the maximum number of inliers, a

function F(a) is used; after initially setting F(a) 5 1 for every

a, since we already know that p is an inlier, then the value fq
i is

added to F(a) for a � aq
i in the above sorted order. By looking

for the maximum value of F(a), we obtain the parameter set

(a, b) corresponding to the maximum optimal consensus set for

a critical point p. In this section, we consider that all Lq
0, enter

or leave a strip at different a. The degenerate cases such that

many lines Lq
0 enter or leave a strip at the same a will be

described in Section F.

E. Algorithm. We now present Algorithm 1 in Figure 10. Input is

a set S of discrete points and a distance value w of our digital line

model. Output is a set V of parameter values (aC, bC) corresponding
to the fitted digital lines of that give the optimal consensus sets. In

the algorithm, we consider another strip bounded by Lp
0 and Lp

2 as

well, as seen in Steps 4, 9, and 21. We remark that, because bq
i is

not used for the sorting step and can be calculated from aq
i, we do

not have to store it for each intersection. Simply for a candidate of

the optimal consensus set, we calculate it as shown in Steps 21 and

22. Note that, depending on the strip, we calculate different bC

because of the translation difference w between the two strips. We

also remark that Algorithm 1 provides us with the set of parameter

pair values (aC, bC) of all the fitted digital lines of (3) that give the

optimal consensus sets.

The time complexity of the algorithm is O(N2 log N), because
we have N points in S and each p [ S needs the complexity O(N log

N), for sorting at most 2N 2 2 different values aq
i for q [ S, q = p,

and i 5 0,1. The space complexity is O(N) because for each sorting

we have at most 2N 2 2 different pairs (ak, fk).
Because all inputs can be given as integers or rational numbers,

all computations in Algorithm 1 can be made by using only rational

numbers. This guarantees that all results obtained by Algorithm 1

contain no numerical error. However, degenerate cases may occur,

which are discussed in the followings.

Figure 11. A digital plane in the primal space (left) corresponds to a vertical line segment of length w in the dual space (right).

Figure 12. All the digital planes with two critical points p and q in the primal space (left) correspond to a set of vertical line segments of length

w having one of its endpoints on the intersection line of the two planes Pp and Pq (right). [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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F. Degenerate Cases. In this section, we deal with degenerate

cases, which are not considered in Algorithm 1. They are summar-

ized as follows:

-Suppose that p and q such that xq 5 xp; Lq
0 is parallel to Lp

0. If

Lq
0 is between Lp

0 and Lp
1 (resp. Lp

2), then we set the initial value

of the function F(a) to 2 when l 5 1 (resp. l 5 2) because q is

an inlier for any a. Otherwise, we set it to 1, as described in

Algorithm 1, because q is an outlier for any a.
-When many lines Lq enter or leave a strip at the same moment

a, all the positive values fq
i of that moment must be added to

the function F(a) at once (Step 17 in Algorithm 1), and the

value F(a) is compared with the current maximum value Max
(Step 18 in Algorithm 1). Note that all the negative valued fq

i of

the same moment a must be added after the comparison to the

function F(a). Indeed such a point q must be considered as an

inlier until that moment.

Obviously, those modifications affect neither the time nor space

complexity of the algorithm.

V. DIGITAL PLANE FITTING ALGORITHM

The algorithm is based on a similar idea to the one for 2D digital

line fitting, presented in the previous section. The key idea for the

extension to 3D digital plane fitting is treating the 3D problem as a

2D problem. In this section, we show how to reduce the dimension

from three to two, and obtain an algorithm providing a O(N3 log N)
time and O(N) space complexity.

A. Digital Plane Fitting in the Dual Space. A point p 5 (x, y,
z) in the primal space associates to a nonvertical plane

Pp ¼ fða; b; cÞ : xaþ ybþ cþ z ¼ 0g ð7Þ

in the dual space. Conversely, a nonvertical plane in the primal

space associates to a point in the dual space. Similarly to a digital

line, a digital plane defined by (4) is regarded as a set of nonvertical

parallel planes whose normal vectors are (a, b, 1) and whose z-inter-
cepts are between 2c and w 2 c, and it forms a vertical line

segment of length w in the dual space as illustrated in Figure 11.

The problem of finding the optimal consensus set for digital plane

fitting in the primal space is then equivalent to searching the posi-

tion of the vertical line segment of length w such that it intersects

with the maximum number of planes in the dual space.

We now need a search procedure for an optimal segment.

Thanks to Proposition 2, we know that, for any consensus set, there

Figure 13. Four points p, q, r and s in the primal space (left), and their interpretations in the cross-section Qpq of the dual space (right). Qpq is

made as the plane that contains the intersection line Lpq
0 of Pp and Pq and the parallel direction to the c-axis, as illustrated in Figure 12. In Qpq, all

the digital planes having p, and q as critical points are represented by the strips each of which is bounded by Lpq
0 and either of its parallel lines

Lpq
1 and Lpq

2 . The other points r and s in the primal space are represented by the two lines Lr and Ls in Qpq.

Figure 14. Algorithm 2: digital plane fitting.
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exists a digital plane featuring at least three critical points, among

which at least two are on one of the support planes. Thus, taking

two different points p , q from S in the primal space, we first con-

sider all the digital planes on which both p and q are critical points

on the same support plane. In the dual space, digital planes having

two critical points p , q forms two strips, which will be described in

Section B. We then explain how digital planes with two critical

points p, q appear in the strips when they have a third critical point

r so that the sub-problem becomes the same as the 2D sub-problem.

B. Strips Made from a Critical Point Pair. Let p 5 (xp, yp, zp)
and q 5 (xq, yq, zq). In the dual space, they represent two planes Pp

and Pq, defined by (7). They intersect in a line Lpq
0 if p and q are

chosen such that (xp 2 xq)
2 1 (yp 2 yq)

2 = 0; otherwise, Pp and Pq

are parallel, and no intersection line can be found. The intersection

line Lpq
0 is represented by the following equation:

L0pq ¼ fv ¼ ða; b; cÞ : v ¼ uþ td; t 2 Rg;
where

d ¼ ðxp; yp; 1Þ ^ ðxq; yq; 1Þ
¼ ðyp � yq; xq � xp; xpyq � xqypÞ;

and u 5 (ua, ub, uc); u is a chosen point on Lpq
0 . For example, if xpyq

= xqyp, by fixing uc 5 0, ua and ub are automatically found since u
is on both Pp and Pq.

Once Lpq
0 is found, then, all the digital planes on which both p

and q are critical points on the same support plane in the primal

space correspond to the set of all the vertical line segments of

length w having one of its endpoints on Lpq
0 in the dual space, as

shown in Figure 12. We see in the figure that the set of such

digital planes, therefore, forms two strips in the plane Qpq that con-

tains Lpq
0 and the direction parallel to the c-axis. Taking the d-axis

in Qpq as the orthogonal one to the c-axis, such Qpq is illustrated in

Figures 12 and 13. Each strip on Qpq illustrated in Figure 13 is

bounded by two parallel lines, Lpq
0 and Lpq

i for i 5 1, 2, which are

represented by:

L1pq ¼ fv ¼ ða; b; cÞ : v ¼ uþ eþ td; t 2 Rg;
L2pq ¼ fv ¼ ða; b; cÞ : v ¼ u� eþ td; t 2 Rg;

where e 5 (0,0,w). Note that they correspond to Lp
0 and Lp

2 of (5)

and (6) for the 2D case.

C. Digital Planes with Critical Point Triplets. Hereafter, we

focus on one of the strips in Qpq, because the following discussion

is valid for both strips. Let us consider the strip bounded by Lpq
0 and

Lpq
1, as illustrated in Figure 13. According to Proposition 2, we

choose a point r [ S\{p, q} to be the third critical point of a fitted

digital plane such that r is not collinear with p and q; the collinear

case will be handled separately as a degenerate case in Section F.

Any point r in the primal space is represented by the line Lr in Qpq

in the dual space, which is the intersection between Pr and Qpq, as

shown in Figure 13. We see in this figure that Lr intersects each of

the strip boundaries, Lpq
0 and Lpq

1 , if it is not parallel to Lpq
0 ; the par-

allel case will be also dealt with separately as a degenerate case in

Section F. The intersections between Lr and Lpq
i , rr

i 5 (ar
i, br

i, cr
i) for

i 5 0, 1, are calculated from Lpq
i and Pr. Geometrically, the vertical

line segment in the strip, one of whose endpoints is one of the inter-

sections rr
i, in the dual space corresponds to a digital plane with

three critical points p, q and r in the primal space. This indicates

that the digital planes corresponding to the vertical line segments

between the two intersections rr
0 and rr

1 in the strip always contain

r as an inlier. This structure is already seen for the 2D case.

D. Finding the Largest Consensus Set in a Strip. Similarly

to digital line fitting, to know the number of inliers within the

digital planes with two critical points p and q, we check the

intersections rr
0 and rr

1 of Lr for all r [ S\{p, q} with the strip

boundaries, Lpq
0 and Lpq

1. We use the similar function fr
i for r [

S\{p, q}, i 5 0,1, and sort the quadruples (ar
i, br

i, cr
i, fr

i), instead

of the triples for the 2D case, in increasing order by using either

ar
i or br

i as keys; if Qpq is not perpendicular to the a-axis, we

use ar
i; otherwise, we use br

i. As for determining the location of

the maximum number of inliers, we also use the similar function

F(a) (resp. F(b) depending on the key selection) after initially

setting F(a) 5 2 for every a. We obtain the parameter set

(a,b,c) corresponding to the maximum optimal consensus set for

a pair of critical points p and q. The degenerate cases such that

many lines Lr enter or leave a strip at the same intersection will

be treated in the same manner as the 2D case.

E. Algorithm. We now present Algorithm 2 in Figure 14, which is

easily obtained by modifying Algorithm 1. Input is a set S of dis-

crete points and a distance value w of our digital plane model. Out-

put is a set V of parameter values (aC, bC, cC) corresponding to the

fitted digital planes that represent the optimal consensus sets. In the

Figure 15. The optimal consensus set (87 red points) obtained by
our method for digital line fitting to a noisy image of digitized lines

containing 1800 points. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]

Figure 16. A consensus set (34 red points) obtained by RANSAC
for line fitting after 37,587 iterations to the same image of Figure 15.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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algorithm, we consider another strip bounded by Lpq
0 and Lpq

2 in

Steps 5, 10, and 22. We remark that, because cr
i is not used for the

sorting step and can be calculated from ar
i and br

i, we do not have to

store it for each intersection.

In Steps 11 and 15, we only show the case where ak is used as

keys for sorting. However, if Qpq is perpendicular to the a-axis, all
ak has the same value. In such a case, as mentioned above, we use

bk as keys instead of ak. The time complexity of the algorithm is

O(N3 log N), because we have N points in S and each pair of p and

q in S needs the complexity O(N log N) for sorting at most 2N 2 4

different values ar
i for r [ S\{p, q} and i 5 0,1. The space complex-

ity is O(N) because for each sorting we have at most 2N 2 4 differ-

ent triples (ak, bk, fk).
All computations in Algorithm 2 can be also performed using

only rational numbers since all inputs can be given as integers or

rational numbers. This causes the following degenerate cases.

Figure 18. A polygonal contour image with noise (left), and its result after six iterations of applying our method: the optimal consensus set

obtained after each iteration is in red, blue, yellow, pink, cyan, and green, respectively (right). [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 17. An original image (left), and its optimal consensus set, in red color, of digital line fitting (right). [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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F. Degenerate Cases. We consider the following three degener-

ate cases, where the second and third ones were already discussed

for the 2D case in the previous section.

-If three points p, q and r are colinear in the primal space, their

associated planes Pp, Pq and Pr have a line intersection in the

dual space. Therefore, for any digital plane having p and q as

its critical points also has r as its another critical point. Thus,
the function F(a) initially set to 2 for the inclusion of p and q
as inliers will be automatically increased by 1 because of the

inclusion of r.
-Suppose that p, q and r are not colinear, but there is no inter-

section between Lpq
0 and Lr in Qpq; Lr is parallel to Lpq

0 . We

treat it in the same manner as the first degenerate case of digital

line fitting; if Lr is between Lpq
0 and Lpq

1 (resp. Lpq
2 ), then we set

the initial value of F(a) to 3 when l 5 1 (resp. l 5 2); other-

wise, we set it to 2.

-When many lines Lr enter or leave a strip at the same moment

a, we apply the same procedure as the second degenerate case

of digital line fitting.

Those modifications affect neither the time nor space complex-

ity of the algorithm.

VI. FEASIBLE DIGITAL LINE AND PLANE PARAMETERS

Once we obtained an optimal consensus set C for digital line or

plane fitting to a given point set S, we need the parameters of digital

lines and planes fitted to C for many applications. In general, the

continuous line and plane model such as (1) and (2) are used for

estimating them, for example, by applying the least squared method

(Hartley and Zisserman, 2003) to C. However, we must be careful

because this may change inliers. In such a case, a new C should be

recalculated from a new estimated line or plane, so that the iterative

procedure may be necessary for renewing C with consecutive re-

estimated line or plane parameters.

In our case, however, since we use the digital model such as (3)

and (4) instead of (1) and (2), we do not need such an estimation

procedure, and we need not worry that parameter values obtained

Figure 19. Planar surface segmentation of a 3D discrete point

cloud: the number of points is 12,859, and they are segmented into

13 planar surfaces whose points are in different colors, except for

those colored in light green that are detected as edge points. [Color
figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 20. Fitted planes of segmented planar surface in Figure 19.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 21. The fitted plane with its optimal consensus set for the
blue segmented surface points in Figure 20: inliers are colored blue

while outliers are colored pink. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]

Table I. The number of points for each segmented surface in Figure 20 and

the size of its optimal consensus set

Number of Points Opt. Consensus Set Size

Blue 1770 1401

Yellow 1578 1195

Pink 1523 935

Pale blue 1191 922

Orange 699 693

Green 573 573

Brown 545 544

Turquoise 536 512

Olive 440 405

Purple 248 245

Violet 232 206

Moss green 223 223

Cream 101 97
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by C may produce a different C. We can obtain all feasible solu-

tions for the parameters of digital lines (resp. planes) fitted to an

obtained optimal C by simply looking for all feasible solutions

(a, b) (resp. (a, b, c)) that satisfy the inequalities of (3) (resp. (4))

for all (x, y) [ C (resp. (x, y, z) [ C).
Such feasible solutions of digital lines and planes are called prei-

mages. It is known that preimages of digital lines have interesting

properties. For instance, a preimage of a digital line forms a convex

polygon in the dual space that has at most four vertices (Dorst and

Smeulders, 1984). However for digital planes, the structure of their

preimages are more complex than that of digital lines (Gerard et al.,

2008); we even do not know the maximum number of vertices or

facets of a convex polyhedron that constitutes a preimage of a

digital plane.

VII. EXPERIMENTS

This section presents the 2D and 3D experiments. We cannot avoid

using colors in the figures shown in this section, which can be seen

correctly at the on-line version of the article.

A. 2D Noisy Image of Digitized Lines. We first tested our

method with an image of size 102 3 102 originally made from two

digital lines defined by a set of points (x, y) [ Z2 satisfying either

0 � 1
2
xþ yþ 50 � w or 0 � � 4

5
xþ yþ 50 � w, w 5 0.999. We

then randomly added and removed 2000 points as noise for the

image, and finally obtained 1800 points. Our method is applied to

fit a digital line to these points. The optimal consensus set is found

using our method, as shown in Figure 15; it has 87 inliers. From

those 87 inliers, we also calculated a set of feasible parameters of

fitted digital lines; it is given as the convex polygon in the parame-

ter space (a, b) of (3) whose vertices are (21/99, 24751/99),

(0,249), (0, 248), (1/99,24852/99).

We compared our result with that of RANSAC. For comparison,

the tolerance of RANSAC is set to 0.5; this value specifies the

maximum distance of inliers from a fitted line. In this experiment,

we use the continuous line model of ax 1 by 1 c 5 0 as in conven-

tional RANSAC methods, and the vertical or horizontal distance as

well as our method. Figure 16 shows the RANSAC results after

37,587 iterations. The number of inliers is 34, and the parameters of

the line are: a 5 20.131175, b 5 0.149704, c 5 20.989991. It

should be noted that with our method all the feasibility parameters

can be exactly computed from the inliers, while RANSAC finds

only one parameter set. Moreover, the 34 inliers obtained by RAN-

SAC are far from the optimal result of our digital line. In fact, this

is due to the fact that RANSAC is based on a random sampling,

which provides no guarantee of optimality. However, the computa-

tion time is relatively rapid, thanks to its probabilistic strategy.

Figure 22. A cross section of a 3D image extracted from a polymer

foam observed in X-ray micro-tomography.

Figure 23. The 3D binary image obtained after homotopic thinning and surface decomposition applied on the image in Figure 22: the image is

cut into two parts for visualization. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Thus, in cases where there is a lot of noise, RANSAC should be

avoided, whereas the use of RANSAC may be justified when it is

sufficient to obtain an approximate solution for practical reasons,

B. 2D Real Image. We then tested our method with respect to a

real image, as shown in Figure 17 (left), whose size is 520 3 693.

Before applying our method, edge detection and mathematical mor-

phological filtering are done for this image; the number of points in

the image after this preprocessing is 5572 points. Our method is

then applied to fit a digital line to the set of points. Figure 17 (right)

shows the optimal consensus set, which includes 602 inliers, for

digital line fitting. The distance w was set to 1.

C. 2D Polygonal Contour Images. We also tested polygonali-

zation using our method. It is tested using an iterative procedure

by applying our method; after each iteration, we take the inliers

off and apply our method to the remaining points. Figure 18 (left)

shows the original polygonal contour image containing some

noise whose size is 497 3 456. Figure 18 (right) shows the result

after six iterations of applying our method for the polygonaliza-

tion. The consensus set obtained after each iteration is colored in

red, blue, yellow, pink, cyan, and green, respectively. The number

of all points is 1960, and the sizes of the consensus sets are 297,

264, 186, 180, 119, and 104, respectively. The distance w is set

to be 1.

D. 3D Real Images. For the 3D experiments, we applied our

proposed method to two example data, such as a 3D discrete point

cloud and a 3D binary digital image.

The first example is a 3D discrete point cloud in Figure 19,

which is obtained after a planar surface segmentation of a range

image of blocks (Kenmochi et al., 2008). The number of points in

the cloud is 12,859, and they are segmented into 13 planar surfaces,

which are illustrated in Figure 19 with points in different colors,

except for those colored in light green that are detected as edge

points. For each of these 13 sets, we fitted a digital plane. We see

the corresponding planes in Figure 20, and the number of points for

each segmented surface and the size of its optimal consensus set in

Table I. In Figure 21, we also see that the fitted plane for the blue

segmented surface points in Figure 19: inliers are colored blue

while outliers are in pink.

We also applied our method to a 3D image extracted from a

polymer foam observed in X-ray micro-tomography, on which

homotopic thinning and surface decomposition were applied

(Plougonven et al., 2006). Figure 22 shows a cross section of the

original image and Figure 23 shows a 3D binary image obtained af-

ter homotopic thinning and surface decomposition; the image is cut

into two parts for visualization. Among around 400 sets of points

forming surfaces in the entire image, we choose a part, as illustrated

in Figure 24, including 17 decomposed surfaces for digital plane

fitting. We show the fitted planes in Figure 25, and the number of

points and the optimal consensus set size for each segmented

surface in Table II. For both the examples, we set w 5 1.

Figure 24. Selected decomposed surfaces, which is a part of the 3D

binary image in Figure 23, for digital plane fitting. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 25. Fitted digital planes for decomposed surfaces shown in

Figure 24. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

Table II. The number of points and the optimal consensus set size for each

decomposed surface in Figure 25

Number of Points Opt. Consensus Set Size

541 269

512 233

439 208

427 196

427 200

405 208

377 159

335 206

333 169

309 141

308 168

258 76

220 104

200 90

198 61

163 98

104 71
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VIII. CONCLUSIONS

In this article, we have exposed a new method for line and plane fit-

ting on discrete data such as bitmap images using a DG approach.

The DG approach allows practitioners to separate effects due to

digitization on the one hand and noise on the other. Using our

approach, we have proposed an optimal fitting method from the

point of view of the maximal consensus set: we are guaranteed to fit

a digital line or plane with the least amount of outliers. The 3D

algorithm is based on the same idea as the 2D algorithm however

some extensions are done to adapt the algorithm to a 2D dual prob-

lem and to cope with the different degenerate cases. The 2D and 3D

algorithms has a complexity that are identical to parameter-less

traditional plane-fitting algorithms such as LMS regression

(Rousseeuw, 1984), but allows us to define a digital line or plane

exactly, in the presence of outliers. Future work will include

improving algorithmic complexities and more complete applica-

tions such as optimal polygonalization or polyhedrization by

choosing a good value for w automatically, and image registration

considering all feasible digital line and plane parameters.

ACKNOWLEDGMENTS

This work was accomplished while the first author was a post-doc
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