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Abstract—Texton is a representative dense visual word and
it has proven its effectiveness in categorizing materials as well
as generic object classes. Despite its success and popularity, no
prior work has tackled the problem of its scale optimization for
a given image data and associated object category. We propose
scale-optimized textons to learn the best scale for each object
in a scene, and incorporate them into image categorization
and segmentation. Our textonization process produces a scale-
optimized codebook of visual words. We approach the scale-
optimization problem of textons by using the scene-context
scale in each image, which is the effective scale of local
context to classify an image pixel in a scene. We perform
the textonization process using the randomized decision forest
which is a powerful tool with high computational efficiency
in vision applications. Our experiments using MSRC and
VOC 2007 segmentation dataset show that our scale-optimized
textons improve the performance of image categorization and
segmentation.

Keywords-scale-optimized textons; image categorization; im-
age segmentation; visual words;

I. INTRODUCTION

For a given large dataset in the web-site such as photo

sharing, automatically categorizing images becomes more

and more important in image retrieval systems. Current

search engines offer meta-tags based on simple character-

istics of images. If a set of text labels to an image based

on its visual content is automatically provided, however, an

image retrieval system will drastically become easy to use.

Image categorization is one way in which we can perform

image retrieval, and can be helpful in semantic segmentation

and object recognition tasks. In addition, it can enhance

understanding of visual content for easy browsing in the

web-site.

Recently image categorization frameworks have shown

that the dense sampling of visual words [14] and their com-

binations with image cues can improve their performance

significantly [15]. Textons [9] are promising representative

dense visual words. Though early texton studies were limited

to their exclusive focus on artificial texture patterns instead

of natural images [24], recent studies have proven the

effectiveness of texton in categorizing materials [20], various

scenes [1], and generic object classes [22]. With employing

the bag-of-features model [5], the framework using textons

as visual words has become popular and has demonstrated

its success in recent years [23]. Textons, unlike sparse image

features such as SIFT [13] or HOG [6], can be utilized in

both object segmentation and recognition thanks to their high

density [16].

The major drawback of the bag-of-features model is

that it discards the scale and the spatial layout of visual

words, which causes a crucial problem for segmentation and

recognition. Accordingly, when texton is used as a visual

word, how to incorporate the scale and the spatial layout is

a big issue.

Many works have been presented to overcome the prob-

lem for the spatial layout [11], [21]. To learn the model of

object classes with incorporating texture, layout, and context

information, Shotton et al. proposed TextonBoost algorithm

[17] using a boosted combination of texton features. In

addition, the texture-layout filter is employed to capture tex-

tural context between texture and spatial layout. After years,

Shotton et al. [16] proposed the semantic texton forests,

and the texture-layout filter is utilized in the segmentation

module. By using texture-layout filters, they significantly

improved the accuracy of segmentation and recognition.

On the other hand, little attention has been paid to

discarded scale information for a given image data and the

associated object category. In a large dataset, there are many

different scales in object present in an image. Even though

objects fall in the same category such as ’cow’ or ’car’, they

have quite different scales in a scene. Scale information of

an object can be a significant cue for recognizing the object

in a scene. Nevertheless, no prior work has been reported to

incorporate scale information into textons.

To deal with scale information, we propose scale-

optimized textons for image categorization and segmen-

tation. By extracting scale-optimized textons in the tex-

tonization process, more discriminative textons including

scale information can be utilized in textural context. We

approach the scale-optimization problem of textons by using

the scene-context scale in each image pixel, i.e., the effective

scale of local context to classify an image pixel in a scene

[10]. Our textonization process is carried out using random

forests [3], which have been shown to be computationally

highly efficient, to generate semantic textons. We extend the

random forests into multi-scale texton forests to generate

different textons in scale, and then, using the scene-context
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Figure 1. Dilatation of a region of interest according to scale space k and multi-scale texton forest. Various sizes of image patches are used for
node split function in the multi-scale texton forests (left). The multi-scale texton forest consists of several semantic texton forests [16] with various scale
levels and each semantic texton forest consists of randomized decision trees with same scale level (right).

scale, we find the scale-optimized texton, i.e., the texton

with the best scale in each image pixel. Accordingly, our

textonization process includes semantic and scale informa-

tion of texture for local textural context. To assess our

framework, we compare the accuracy of categorization and

segmentation with that of the state-of-the-art [16] using

MSRC and VOC 2007 segmentation datasets, showing that

our method achieves more accurate categorization and seg-

mentation.

The contribution of this work is the incorporation of scale

information into textons as textural context of the object to

make them more discriminative. To the best of our knowl-

edge, this is the first work that incorporates scale context into

the textonization process. Our scale-optimized textons can be

combined with texture-layout filters to improve segmentation

accuracy further.

II. SCALE-OPTIMIZED TEXTONIZATION

Scale-optimized textons can be obtained by using the

scene-context scale in each image pixel. In this section,

we explain our textonization process and how to optimize

textons to include the best scale using multi-scale texton

forests.

A. Multi-scale Texton Forests

We perform textonization process using randomized deci-

sion trees to formulate multi-scale texton forests. We employ

the semantic texton forests proposed by Shotton et al. [16]

and generate different scale levels to obtain multi-scale

texton forests.

The multi-scale texton forests F consist of several

semantic texton forests with various scale levels F =
{F1,F2, ...,Fs} as shown in Fig. 1, where the scale level

is k = (1, 2, 3, ..., s). Each semantic texton forest is a

combination of randomized decision trees, each of which

has a different set of image patches for its nodes. Split node

functions for a randomize decision tree compute the values

of raw pixels within an image patch p. By increasing the size

of image patches for split node functions, we can expand

a semantic texton forest to multi-scale texton forests with

different scales.

In the first scale level k = 1, an image patch p1 covers

whole pixels within a (d× d) size on which the split node

functions for the first semantic texton forest F1 act. In the

next scale level k = 2, the increased image patch p2 covers

the pixels within a (2d×2d) size excluding the former image

patch p1. Therefore, the size of image patch pk is increased

to (kd × kd) pixels excluding the image patch p(k−1) that

is for the former scale level (k − 1) as shown in Fig. 1.

The combinations of raw pixels within image patches pk
for split node functions are generated randomly, and we also

increase the number of the candidates quadratically with

respect to the scale level k.

Randomized decision forests have been utilized in clas-

sifiers [2], [12] or clustering with the fast and powerful

performance. Semantic texton forests [16] are used for both

clustering and local classification. To textonize an image,

an image patch pk are passed down the multi-scale texton

forest according to their scale level. We can obtain the class

distributions Pk(c|Lk) by averaging the local distributions

over the leaf nodes Lk = (l1, l2, ..., lT ) at scale k as

Pk(c|Lk) =
1

T

T∑

t=1

Pk(c|lt), (1)

where c is a category label of a pixel and T is the number

of randomized decision trees in Fk. Then, there are several

class distributions in multi-scale texton forests as

P (c|L) = {(P1(c|L1), P2(c|L2), ..., Ps(c|Ls))}. (2)
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Figure 2. The scene context scale (left) and the histogram for the bag-of-features model (right). Left : In the scene-context scale image, darker
pixels correspond to smaller scale, so black pixels represent the first scale level k = 1 and white pixels represent the largest scale level k = s. The most
likely category image can be obtain by computing the class distributions of scale-optimized textons. Right : For image categorization and segmentation,
we make a histogram using scale-optimized textons. The dimension of a histogram is the number of grid window times number of category times whole
scale levels.

B. Scene-Context Scale

Scene-context plays an important role in segmentation and

recognition. When the scene-context is used on a per-pixel

level, we can capture the local context in which image pixels

carry semantic information within a region of interest. Some

image pixels, however, have ambiguous features at a very

local scale, because the color and texture of the local level do

not have capability of identifying the pixel class. Therefore,

every image pixel have its available range to search local

context in a scene.

The effective region size for local context is called as the

scene-context scale [10]. Given object presence and location

in a scene, its scale is related to this range and it can be a

strong cue for recognizing the objects in the scene. We can

estimate the scene-context per each image pixel and use the

scene-context scale to find the textons with best scale using

multi-scale texton forests.

The scene-context scale of each image pixel is obtained by

computing the entropies of an image patch in the leaf nodes

of each randomized decision forest. The confidence of each

semantic texton forest is thus computed by the entropies of

the class distribution over the leaf nodes in Fk and we regard

the confidence as the criterion to find the scene-context scale.

Since an object has different scales depending on a scene,

and scale of background/foreground appearing together in

a scene may be independent of the object, we estimate the

scene-context scale per each pixel.

The scale level of the semantic textons forest with mini-

mum entropy of the class distribution is chosen as the scene-

context scale at each image pixel i. We compute the entropy

Ek(i) of image pixel i from the class distribution Pk(c|Lk)
in Fk as

Ek(i) = −Pk(c|Lk)× logPk(c|Lk). (3)

Among the all scale levels k = (1, 2, 3, ..., s), the best level

k∗ is chosen with minimum entropy as

k∗ = argmink(Fk{Ek(i)}). (4)

The scene-context scale of an image pixel i is the instance

k∗ of the most likely scale among the whole scale levels.

C. Scale-Optimized Texton
Given an image pixel i, the image patches p centered at

the pixel i are classified by descending each randomized

decision tree. A randomized decision tree provides both a

hierarchical tree structure such as a path from the root to a

leaf and the node class distributions at the leaf. From training

data, the class distributions can be estimated by averaging

the local distributions in a randomized decision trees.
A scale-optimized texton can be generated by computing

the scene-context scale of each image pixel from multi-scale

texton forests. Among multi-scale texton forests, a semantic

texton forest Fk∗ is selected in the textonization process.

The semantic texton forest Fk∗ has the instance k∗ of the

most likely scene-context scale. We can define the texton

generated by the semantic texton forest Fk∗ as our scale-

optimized texton.
Our scale-optimized textonization process exploits the

class distributions Pk∗(c|Lk∗) in the semantic texton for-

est Fk∗ with the scene-context scale k∗. These scale and

textural information are utilized in the statistics of scale-

optimized textons. By classifying a histogram consisting of

the statistics of scale-optimized textons, we can obtain a

good performance for pixel-level classification. In addition,

we can improve the estimation of class distributions from

training data, even the training data do not perform any

geometrical transformation in scale and orientation.

III. CATEGORIZATION AND SEGMENTATION

The scale-optimized textons are utilized in the bag-of-

features model for image categorization and semantic seg-
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Figure 3. Clustering and classification results using scale-optimized textons. Above : (a) Classification results with using scale-optimized textons.
(b) Classification results without using scale-optimized textons [16]. Below: Classification accuracies (percent) over the whole dataset, without-(b), and
with-(a), the scale-optimized textons. Our new highly efficient scale-optimized textons achieve a significantly improvement on previous work (b) in class
average.

mentation. Once a scale-optimized texton is determined, we

can calculate the class distributions of each image pixel

using the scale-optimized texton. We make a histogram

which consists of the class distributions computed across

the whole image for image categorization. The histogram

contains the scale and textural context by using both the

most likely category ci∗ = argmaxciPk∗(ci|Lk∗), and the

most likely scene-context scale k∗ = argmink(Fk{Ek(i)}).
However, since the bag-of-features model discards spatial

layout, we use a simple grid window to learn the layout

of scale and textural context automatically as shown in the

middle of Fig. 2. The grid window consists of nine sub-

grids such as Top-Left (TL), Top-Center (TC), Top-Right

(TR), Center-Left (CL), Center-Center (CC), Center-Right

(CR), Bottom-Left (BL), Bottom-Center (BC), and Bottom-

Right (BR) as shown in the right of Fig. 2. We concatenated

the histograms from TL to BR, and the histogram is used

as input to a classifier to recognize object categories.

We adopt the non-linear support vector machine (SVM)

to classify each category. Multi-class classification is per-

formed with LibSVM [4] trained using the one-versus-all

rule: a classifier is learned to separate each class from the

rest, and a test image is assigned the label of the classifier

with the highest response.

When a histogram is created over a region of interest

for each pixel, it can be utilized in pixel-wise semantic

segmentation. To obtain more accurate segmentation perfor-

mance, it is possible to combine with the texture layout file

instead of our simple grid window. However, since the class

distributions are extracted from scale-optimized textons, the

results of the first clustering and classification guarantee a

good performance. We show the performance of clustering

and classification in Section IV-A.

IV. EXPERIMENTAL RESULTS

This section presents our experimental results for im-

age categorization and segmentation using scale-optimized

textons. We evaluated our algorithm using MSRC [18]

and challenging VOC 2007 [7] segmentation datasets that

include a variety of objects such as building, cow, sheep,

water, face, cat, road, sky, and so on.

In MSRC dataset, there are 256 images for training, 257

images for test, and remaining 59 images for validation. In

VOC 2007 segmentation dataset, there are 209 images for

training, 210 images for test, and remaining 213 images for
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Figure 4. Image categorization ((a),(b), and (c)) and segmentation ((d) and (e)) results on MSRC dataset. Categorization and segmentation accuracies
(percent) over the whole dataset. The proposed scale-optimized texton achieves a significant improvement of image categorization on previous work.

validation. We used the standard training/validation data for

training and used test data for our test.

A. Scale-Optimized Textonization

To access the efficiency of the proposed scale-optimized

textons, we compared the class classification accuracy with

that of conventional semantic texton forests method [16] that

is without using scale-optimized texton.

We separately trained the semantic texton forests in dif-

ferent scale levels. To train the multi-scale texton forest, we

prepared six scale levels k = (1, 2, 3, 4, 5, 6) and an initial

image patch size was (15×15). Therefore, the size of image

patches p for split function is (15k × 15k) at each scale

level k. Each semantic texton forest Fk had the following

parameters, T = 5 trees, maximum depth D = 10, 400×2k
feature and 10k threshold tests per split function, and 0.25

of the data per tree. Training a semantic texton forest took

approximately 30×2k minutes on MSRC dataset and 60×2k
minutes on VOC 2007 at each scale step.

Fig. 3 shows the several scene-context scale image on

the MSRC test dataset. Using the scene-context scale, we

can obtain scale-optimized textons, and infer the most likely

category for each pixel as shown in Fig. 3(a). On the other

hand, Fig. 3(b) shows the results of the state-of-the-art [16]

that is based on single-scale semantic texton forests. The

single-scale semantic texton forest used the same parameter

of the multi-scale texton forests with the first scale level F1.

Clustering and class classification performance is mea-

sured as both the class average accuracy (the average pro-

portion of pixels correct in each category) and the global

accuracy (total proportion of pixels correct) as shown in the

bottom table of Fig. 3. The global classification accuracy

without scale-optimized textons gives 50.2% while that with

using scale-optimized textons scale gives 53.0%. In particu-

lar, significant improvement can be observed in most of the

classes. For some classes such as tree or water, however, we

cannot see the improvement. This may come from the fact

that they have not influence on scale-optimized textons due

to their strong textural property. Across the whole MSRC

dataset, using the scale-optimized textons achieved a class

average performance of 48.3%, which advances 38.4% of

(b) as shown in the table of Fig. 3.

B. Categorization and Segmentation

As a result of image categorization, we obtained the

accuracy of MSRC as shown in the upper side of table

in Fig. 4. For non-linear SVM classifier, we compared

the class average using radial basis function (RBF) kernel

and pyramid match kernel (PMK) [8] to the state-of-the-

art [16]. We confirmed that the RBF kernel gives improved

results than the PMK. As can be seen, the proposed method

using the scale-optimized textons gives significantly better

results than the selected state-of-the-art and improved the

performance for all categories.

To demonstrate the power of the scale-optimized textons

as features for segmentation, we employed the joint boosting

algorithm [19] to select discriminative features of the bag-of-

features model. The semantic segmentation results on MSRC

test data are shown in the bottom side of Fig. 4. As can

be seen, the proposed segmentation algorithm improves the

accuracy in the local classification process, in particular the

classes with the result of noisy clustering such as water,

car, bicycle, sign and road, show good performance in this

process. We obtained the segmentation results with global

65.2%, class average 59.8% using the bag-of-features model

with scale-optimized textons.

We compared the proposed method with the state-of-the-

art in the table of Fig. 4. In fact, the results of the state-

of-the-art is better than 58.6% in their paper [16], since

they augmented the training data with image copies that are

artificially transformed geometrically and photometrically.

However, in our experiments, we do not use any geometric

transformations, and affine photometric transformations such

as rotation, scaling, and left-right flipping.

Fig. 5 shows the results of the our scale-optimized tex-

tonization using VOC 2007. As shown in the table of Fig. 5,

a pixel-level classification based on the class distributions

gives a good performance (13.7%) even they do not coop-

erate with any spatial-layout information.

V. CONCLUSION

This paper presented a method that incorporates scale

information into textons as local textural context of the

object to make them more discriminative. Differently from

existing methods, our method directly incorporates scale
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Figure 5. The result images of clustering and the class classification (above) on VOC 2007. The VOC 2007 contains 21 challenging categories
including background. The bottom table shows the accuracy of the clustering and the class classification and also image categorization (last row).

information into the textonization process. By extending the

random forests into multi-scale texton forests, our method

generates different textons in scale, and then, using the

scene-context scale, finds the scale-optimized texton, i.e.,

the texton with the best scale in each image pixel. Our

experiments showed that using our scale-optimized textons

improves the performance of image categorization and seg-

mentation. It is expected that our scale-optimized textons

are combined with texture-layout filters [18] to improve

segmentation accuracy further.
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