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Abstract

We propose an appearance-based head pose estimation
method that can be automatically adapted to individual
scenes. Appearance-based estimation methods usually re-
quire a ground-truth dataset taken from a scene which is
similar to test video sequences. However, it is almost im-
possible to acquire many manually-labeled head images for
each scene. To address the problem, we introduce a new ap-
proach for aggregating ground truth head pose labels auto-
matically by inferring head pose labels from walking direc-
tion. Experimental results demonstrate that our proposed
method achieves better accuracy in head pose estimation
than the conventional approach using a scene-independent
generic dataset.

1. Introduction
Head pose can be an important factor in inferring the fo-

cus of attention of humans, and thus can be used in a wide
range of applications. For this reason, techniques for es-
timating head pose have been considered an important re-
search task for decades.

Although various image-based approaches have been
proposed for estimating head pose (see [15] for a recent sur-
vey), one of the major remaining technical challenges is to
deal with low resolution images. In some application sce-
narios like visual surveillance, it is often the case that head
regions in input images are quite small. Small images con-
tain limited information, thus it is still a challenging task to
achieve accurate estimation results in such cases.

Recently it has become well known that the use of
appearance-based approaches is a promising way to es-
timate head poses from low resolution images. Com-
pared with model-based methods like active appearance
models [9, 14] which rely on geometric facial models,

appearance-based methods directly treat image features and
are known to work even with low resolution images.

Usually, appearance-based estimation is carried out by
learning a mapping function from the image space to the
pose space. There are many approaches to establish the
mapping and they use various techniques like classifica-
tion [18, 5, 16], regression [21, 20] and manifold embed-
ding [3, 23, 4]. For example, Robertson et al. [18] used
skin color as a descriptor and a binary tree algorithm to es-
tablish a head pose classifier. Benfold et al. [5] proposed a
descriptor which learns a model of skin color automatically
and used a randomized fern algorithm for head pose clas-
sification. Orozco et al. [16] proposed an image descriptor
which does not require explicit segmentation of skin and
hair pixels by using similarity distance maps with class-
mean appearance templates, and used the descriptor with
a multi-class SVM (support vector machine) for head pose
classification. Their work has been applied to surveillance
videos, and it is shown that head poses can be estimated
even from low-resolution head images.

However, current appearance-based methods suffer from
one important problem when they are used in realistic
scenarios. That is, a large number of training images
with ground truth labels, i.e., correct head orientations, are
needed. For instance, Orozco et al. [16] and Robertson et
al. [18, 19] used 100 images for each head pose class as
training data. To obtain ground truth labels, training data
need to be manually labeled or an intrusive device is needed
to record head pose directions. More importantly, head ap-
pearances can change significantly from scene to scene, and
according to camera properties even in the same scene. Ac-
cordingly, head pose estimators work best if trained with
data from the same camera and setting. However, it is pro-
hibitively expensive to collect ground truth data manually
every time a head pose estimation method is applied to dif-
ferent scenes.
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Figure 2. Proposed framework. Given an input video sequence, our method first track pedestrians in the video and obtain their head
images and direction they are walking. By using the walking directions as a cue to infer head pose directions, out method constructs an
appearance-based head pose estimator.
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Figure 1. Head pose definitions. Head poses are divided into 8
discrete classes.

To overcome the problem, we propose an appearance-
based head pose estimation method that automatically col-
lects training dataset from test scenes. Based on the ob-
servation that, most of the time, people turn their heads to-
wards where they are walking, our method aims to collect
head images of walking pedestrians as the training dataset.
Pedestrians in the input image sequence are tracked first
to achieve their head images and walking directions. Af-
ter rejecting outliers which are facing different directions,
their walking directions are used as ground truth labels of
their head orientations. In this way, our method does not
require a tedious and time-consuming task of collecting a
large amount of ground truth data.

2. Scene-Specific Adaptation for Appearance-
Based Head Pose Estimation

The appearance-based head pose estimation is a task to
determine head pose p from feature vector h of head im-
ages. In the case of classification, p is defined as a discrete

direction in image space as illustrated in Figure 1. Given
a set of training samples, the mapping p = f(h) from a
feature vector to a head pose can be learned through var-
ious classification algorithms. The mapping function can
be used to estimate an unknown head pose p∗ from a new
feature vector h∗ in test scenes. As discussed above, an
important problem that was largely ignored in the previous
studies on head pose estimation from low resolution images
is how to obtain appropriate training samples. Since we as-
sume the underlying mapping function f(h) is identical in
both training and test scenes, classification accuracy highly
depends on how similar these training and test scenes are.
In other words, if lighting conditions and camera positions
are significantly different between the scenes where train-
ing and test images are taken, mappings between pose and
appearance would also become different. However, it is not
always possible to collect training samples for every test
case.

Our basic idea is to use walking direction as a cue to
acquire training samples with automatically assigned labels
of their head poses. Figure 2 shows a basic framework of
our method. Given an input video sequence, we first track
pedestrians in the video and obtain their head images and
directions they are walking in. As these pedestrians are
most likely to turn their head to their walking directions,
the walking directions can be assumed to indicate the head
poses of the images.

However, this idea cannot be applied in a straightforward
manner. Since people can move their heads freely even
while they are walking, it is obvious that our basic assump-
tion does not always hold and the training labels contain a
certain amount of noise. Head pose estimation algorithms
are not always robust to such outliers, and thus it is ideal to
reject them prior to the learning stage. Furthermore, walk-
ing directions are unevenly distributed in most of the scenes,
and this can result in a biased estimation result with larger
error.
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To address this problem, we introduce a strategy to re-
ject unreliable data from the tracking results. Each track-
ing trajectory is first divided into straight line segments in
which each pedestrian walks in a straight line. Unreliable
line segments are rejected and then one representative im-
age per line segment is constructed and used as the training
data. Oversampling is then applied to handle the imbal-
anced dataset. Details of the proposed strategies are de-
scribed in the following sections.

2.1. Pedestrian Tracking

We used the Benfold et al.’s method [6] to track pedes-
trians in input videos. The method combines a head detec-
tor and velocity estimation with feature tracking. With this
method, not only are the head of people in the video prop-
erly tracked but method also yields good results on center-
ing the head, which is in most cases vital to appearance-
based head pose estimation. Here the pedestrian tracking
method is briefly explained for reader’s benefit. For more
details, readers are referred to [6].

The tracking method is based on a Kalman Filter [12]
with two types of measurements. The head location from
the head detector based on a histogram of oriented gradients
(HOG) [17] and head movement velocity by combining the
velocities of multiple tracked corner features [22, 13]. For
every tracked frame, the head image h, the head location
u = (x, y), and the size of covariance matrix for each lo-
cation measurement c = (c(x), c(y)) that can be used as an
error measurement is then collected for analysis.

The pedestrian tracking algorithm is applied to the whole
input sequence and a trajectory, i.e., a set of head im-
ages {h1, . . . ,hN}, head locations {u1, . . . ,uN} with er-
ror measurements {c1, . . . , cN}, is acquired for each pedes-
trian. N denotes the length of the trajectory and it varies for
each trajectory.

2.2. Walking Direction Estimation

As discussed above, our method first divides the tra-
jectories into straight line segments. More specifically,
each trajectory is divided into M segments {S1, . . . , SM}
by polyline simplification using the Douglas-Peucker algo-
rithm [10]. Douglas-Peucker constructs a minimal set of
lines so that the orthogonal distance from each point to the
nearest line is less than a threshold. The algorithm starts
by taking a set of points {u1, . . . ,uN}, then constructs a
line from point u1 to uN . The algorithm then finds a point
un with maximum orthogonal distance from the line. If the
distance is more than a threshold, the algorithm divides the
point set to {u1, . . . ,un} and {un, . . . ,uN} and repeats
the above process on these two sets recursively. The algo-
rithm stops when the maximum distance becomes less than
the threshold.

Figure 3 shows an example of polyline simplification. It

Figure 3. Example of polyline simplification result. Curved line
shows tracking result and straight lines show simplification result.

can be seen that the pedestrian in this image is not walk-
ing straightly, and thus treating all images as one direction
will definitely be erroneous. With the polyline simplifica-
tion algorithm, the trajectory is divided into 4 line segments
in which the pedestrian walks straight. In the figure, the
curved line shows the raw tracking result and straight lines
show line segments obtained using the polyline simplifica-
tion algorithm.

Next, the walking direction of each line segment is esti-
mated. Since polyline simplification only considers the start
and the end point of each segment, using polyline simplifi-
cation to estimate the pose direction may yield an inaccu-
rate result. Therefore, a line fitting method which considers
all points in the segment is employed to analyze and esti-
mate the pose direction for each segment. Given a set of T
tracked head locations in the segment, a line which mini-
mizes a sum of residuals is computed and the direction of
the line p is assigned to the segment as the walking direc-
tion.

2.3. Outlier Segment Rejection

After the polyline simplification and the line fitting,
walking directions can be estimated accurately for pedes-
trians and can be used as their head orientations. However,
as discussed above, walking directions do not always corre-
spond to head orientations and line segments are not always
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suitable for training samples and a scheme for rejecting out-
lier segments is necessary.

In this work, we apply four rules to reject segments: 1)
with a high number of erroneous points, 2) in which a per-
son walks short distances or walks slowly, 3) with large line
fitting errors, and 4) with high image variance. The details
of each rule are as follows.

Segments with a high number of erroneous points
Let us denote the T head locations in the segment as
{u1, . . . ,uT }. Segments with many erroneous points, i.e.,
points that are regarded to be false positives of the tracking
algorithm, are rejected because of low reliability. Specifi-
cally, a point ut is judged as erroneous if the error measure-
ment of the tracker is significantly large compared to head
sizes:

c
(x)
t

sx(ut)
> α and

c
(y)
t

sy(ut)
> α. (1)

where ct = (c
(x)
t , c

(y)
t ) is the error measurement of the

corresponding frame and α is a constant value. sx(u) and
sy(u) are position-dependent head width and height defined
as:

sx(ut) = Axt +Byt + C and sy(ut) = Rsx(ut), (2)

which assumes that heads are fixed size and moving on a
plane under a perspective projection. The parameters A, B,
C and R are manually set. Using this measure, reject seg-
ments if the number of erroneous segment points is larger
than a predefined threshold τe.

Segments with short distance or slow movement Short
segments are better to be rejected since they do not have
enough information for the line fitting. Similarly, segments
with slow walking speed are rejected since the pedestrians
are likely to be doing something else, e.g., talking with each
other and not facing straight. Specifically, reject segment if

|uT − u1|
s̄

≤ τn or
|uT − u1|
T · s̄

≤ τv (3)

where τn and τv are predefined thresholds. s̄ =∑T
t=1

√
sx(ut)2 + sy(ut)2/T is the average head size fac-

tor of the segment and introduced to make the measurement
scale-invariant.

Segments with large line fitting error If the line fitting
error is large, it is natural to assume that the person is mov-
ing in a curve or the tracker failed to track the head. There-
fore, reject segments if

T∑
t=1

|yt − g(xt)|√
m2 + 1 · |uT − u1|

≥ τl, (4)

where τl is a threshold and the left side of the equation is
a scale-independent line fitting error of the estimated line
y = g(x) = mx+ c.

Segments with high image variance Segments with high
image variance imply unstable head images due to, e.g., fre-
quent changes of head orientations. Specifically, we calcu-
late the variance of resized I-dimensional head image vec-
tors {ĥ}. Segments are considered to have high variance
if ∑T

t=1 |ĥt − h̄|2

T · I
≥ τvar, (5)

where ĥt denotes the t-th resized image, and h̄ is a mean
image calculated from all resized images ĥ in the segment.

2.4. Selecting Representative Images

With the rules above, most outlier segments are rejected
and the remaining segments contain correct data. One rep-
resentative image per segment is then selected and used as
training data. Since only one orientation is assigned to each
segment, most of the images in the accepted segments are
redundant. Moreover, it is beneficial to use only one im-
age per a segment in order to reduce computational cost of
training classifiers.

In this work, we propose and examine three different se-
lection methods. Basically, we select the image which is
most similar to the mean image of the segment. For each
segment, the Mahalanobis distance from the mean image is
calculated for every resized image ĥt in the segment and the
image with lowest distance is selected. This enables us to
select the most representative image without suffering from
effects that can be seen in the mean image, e.g., blur or dis-
tortion. However, it is not always the case that blur and dis-
tortion cause poor estimation results. We also found simply
using the mean or median image as the representative image
can be an option in some cases. Further discussion will be
given in Section 3.

2.5. Handling Imbalanced Data by Oversampling

By applying these processes to all of the successfully
tracked pedestrians, a scene-specific dataset is acquired.
Figure 4 shows an example of a distribution of walking di-
rections in the sequence 1 (See section 3 for more details).
In this sequence, the majority of the pedestrians walk in
down-left (class 2) and up-right (class 6) directions. Imbal-
anced data causes low accuracy of head pose estimation for
directions with few training samples. In order to handle this
problem, oversampling is used with our classifiers. Over-
sampling technique is proved to be beneficial in reducing
the effect of imbalanced data for classification task [24, 2].
The oversampling technique resamples data from classes
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Figure 4. Head pose frequency captured from the video sequence
1. The horizontal axis indicates tracked walking directions and
the vertical axis indicates numbers of samples obtained from the
video sequence. Each class number is defined in same way as in
Figure 1.

with small amounts of data until every class has an equal
number of data. By using oversampling, the accuracy of the
classifiers is significantly improved.

3. Experimental Results

In this section, we present experimental results to
demonstrate the effectiveness of our method. As men-
tioned before, it is hard to collect ground truth data man-
ually for every scene, thus we show that training data from
our method which automatically generates scene-specific
training data performs better than using available data from
other scenes. In order to demonstrate that our method is not
limited to one classifier, a multi-class SVM classifier and
a Random Trees classifier are also tested. The effective-
ness of the head image selection method is also compared
to other alternatives. The effect of imbalanced data and the
effectiveness of oversampling method are also shown.

3.1. Experiment Settings

We conducted experiments using 3 video sequences with
different length, which were recorded using different cam-
eras in different scenes. Example frames in the video are
shown in Figure 5. The scene images are input video frames
with pedestrian tracking results overlaid. Examples of ob-
tained head images are also shown with its estimated walk-
ing direction shown on their right part of the image.

The resolution of sequence 1 was 1920×1080 pixels and
recorded at 30 fps for approximately 7 hours. Sequence 2
was 1120 × 780 pixels and recorded at 30 fps for approxi-
mately 10 minutes. Sequence 3 was 1280× 720 pixels and
recorded at 30 fps for approximately 10 minutes. As a result

Table 1. Settings of scene-dependent parameters.
Sequence 1 2 3

A 0 0 0.008
B 0.014 0.04 0.04
C 36.4 8 33
R 1.1 1.1 1.1
τn 3.0 0.5 0.5
τv 0.03 0.03 0.01
τvar 0.0035 0.0055 0.0035

Sequence 2 Sequence 3

Sequence 1

Figure 5. Example frames in the test video sequences. The input
video frames are overlaid with pedestrian tracking results . Exam-
ples of obtained head images are also shown, the right part of each
image presents its estimated walking direction.

of pedestrian tracking, direction estimation and image se-
lection, 5930 head images were captured from sequence 1,
1265 head images were captured from sequence 2, and 564
head images were captured from sequence 3. At the same
time, test images (320 for sequence 1, 314 for sequence
2 and 227 for sequence 3) with manually-labeled ground-
truth head poses were acquired from the same sequence and
estimation accuracy was evaluated using these test images.
To construct a generic dataset, 1477 samples were taken
from Gaze Direction Dataset [1], which has been used in
[6]. The set is divided by head pose into 8 classes and each
class contains 100 ∼ 200 images. Figure 6 shows examples
of head images included in the generic dataset.

In the experiments, the parameters were empirically set
as follows; α = 1.0, τl = 0.8, τe = 0.4, and other scene-
dependent parameters were set as summarized in Table 1.
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Figure 6. Example images in the generic dataset.

3.2. Head Pose Estimation Test

For the head pose estimation method, we conducted two
classification tests. The first classification test uses a lin-
ear SVM as classifier from the Liblinear library [11] and
the second test uses a Random Trees classifier [8] from the
OpenCV library [7]. All of the head images were converted
to gray scale, normalized and resized to 20×22 pixels. Fea-
ture vector was defined as a 440-dimensional raster-scanned
and normalized image vector in the following experiments.
To evaluate the effectiveness of the proposed method, we
compared two results: Generic result based on the generic
dataset and Proposed result based on our method.

Classification accuracy comparison between our pro-
posed method and the generic dataset is summarized in Fig-
ure 7. The accuracy is calculated from the average accuracy
of each class. Standard deviations are indicated as error
bars.

As can be seen, the accuracy of classification using the
generic dataset is significantly lower. In contrast, our pro-
posed method achieved higher accuracy than the generic re-
sult. The result also shows that the accuracy improved a lot
for sequence 1 which utilizes 7 hours video. It is also shown
that even for only 10 minutes of video as in sequences 2
and 3, the accuracy is significantly improved over using the
generic dataset. Standard deviations also become smaller in
the proposed result.

We also compared our representative image selection
method with 2 other selection methods. For the first alter-
native, we calculate the mean image from images in each
segment and use it as the representative image. For the sec-
ond alternative, we calculate the median image. Each pixel
in the median image is constructed from the median pixel
intensity at its location over all images in the segment.

Classification accuracy for each image selection method
is summarized in Figure 8. It can be seen that the Ma-
halanobis image selection method performs comparatively
well to other methods. However, it should be also noted
that the other two methods also show better results than the
generic results in Figure 7. It indicates that our proposed
idea has robustness to the image selection method.

Figure 9 shows confusion matrices of the classifiers. We
compared confusion matrices of classifiers applied to test
data from scene 1. The Generic result uses generic dataset
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(a) SVM classifier
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Figure 7. Accuracy of the head pose classification for SVM clas-
sifier and Random Trees classifier. Generic result is based on the
generic dataset, Proposed result is based on our proposed method.
The accuracy is based on normalized average of 8 classification
classes. Standard deviations are indicated as error bars.

as training data for the classifiers, the Imbalanced result
uses data obtained from our method without oversampling
data to train the classifiers, and the Proposed result uses
data obtained from our method applied with oversampling
to train the classifiers. The effects of imbalanced data can
be seen in Figure 9(b) 9(e). As the majority of pedestrians
in the sequence walked in the direction as shown in Figure
4, the results are biased towards class 2 and 6. The improve-
ment using oversampling can clearly be seen in Figure 9(c)
and 9(f).

4. Conclusions
In this paper, we proposed a method of appearance-based

head pose estimation which can be automatically adapted to
test scenes. The key idea behind the proposed framework is
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1 2 3 4 5 6 7 8

1 0.15 0.25 0.03 0.13 0.23 0.2 0.03 0

2 0.03 0.1 0.05 0.3 0.23 0.2 0.1 0

3 0.03 0.15 0.03 0.13 0.38 0.25 0.05 0

4 0 0.03 0 0.08 0.53 0.38 0 0

5 0 0 0 0 0.53 0.48 0 0

6 0 0 0 0 0.13 0.83 0.05 0

7 0 0.03 0.08 0.03 0.13 0.6 0.15 0

8 0.1 0.03 0.03 0.08 0.2 0.2 0.3 0.08

(a) SVM - Generic

1 2 3 4 5 6 7 8

1 0 0.8 0 0 0 0.13 0.08 0

2 0 0.95 0 0 0 0.05 0 0

3 0 0.6 0.18 0 0 0.23 0 0

4 0 0.08 0.05 0 0 0.88 0 0

5 0 0 0 0 0 1 0 0

6 0 0 0 0 0 0.93 0.08 0

7 0 0.1 0 0 0 0.43 0.48 0

8 0 0.13 0 0 0 0.15 0.73 0

(b) SVM - Imbalanced

1 2 3 4 5 6 7 8

1 0.58 0.08 0 0 0 0.03 0.03 0.3

2 0.23 0.65 0 0.03 0 0.03 0.03 0.05

3 0.03 0.23 0.43 0.18 0.03 0 0 0.13

4 0 0 0.05 0.7 0.13 0.08 0 0.05

5 0 0.05 0.03 0.2 0.38 0.3 0.05 0

6 0.03 0 0 0.08 0.05 0.5 0.33 0.03

7 0 0 0.03 0.03 0.03 0.15 0.65 0.13

8 0.08 0.05 0 0 0 0.03 0.4 0.45

(c) SVM - Proposed

1 2 3 4 5 6 7 8

1 0.25 0.5 0 0 0.1 0.13 0.03 0

2 0.1 0.28 0 0.2 0.33 0.1 0 0

3 0.03 0.2 0.03 0.33 0.4 0.03 0 0

4 0 0.05 0 0.05 0.9 0 0 0

5 0 0 0 0 0.85 0.15 0 0

6 0 0 0 0 0.35 0.58 0.08 0

7 0.13 0 0 0 0.1 0.43 0.35 0

8 0.25 0 0 0 0.05 0.15 0.55 0

(d) Random Trees - Generic

1 2 3 4 5 6 7 8

1 0 0.95 0 0 0 0 0.05 0

2 0 1 0 0 0 0 0 0

3 0 0.8 0.1 0 0 0.1 0 0

4 0 0.08 0.1 0 0 0.8 0.03 0

5 0 0 0 0 0 1 0 0

6 0 0 0 0 0 0.98 0.03 0

7 0 0.13 0 0 0 0.33 0.55 0

8 0 0.3 0 0 0 0.08 0.63 0

(e) Random Trees - Imbalanced

1 2 3 4 5 6 7 8

1 0.55 0.05 0.03 0 0 0 0 0.38

2 0.25 0.68 0 0.03 0 0 0 0.05

3 0.08 0.23 0.58 0.1 0.03 0 0 0

4 0 0 0.1 0.63 0.2 0.03 0 0.05

5 0 0.03 0.03 0.13 0.68 0.15 0 0

6 0 0.03 0 0.03 0.3 0.3 0.35 0

7 0.05 0.05 0 0 0.05 0.08 0.45 0.33

8 0.1 0.05 0 0 0 0 0.1 0.75

(f) Random Trees - Proposed

Figure 9. Confusion matrix of SVM classifier and Random Trees classifier using data from scene 1 with Mahalanobis distance as the image
selection method. Each class number is defined in same way as in Figure 1. Generic result is based on using generic dataset as training
data. Imbalanced result is based on scene-specific dataset without oversampling method. Proposed result is based on using the mean
image as selection method.

to use walking directions as a cue to infer head pose di-
rections in collecting a scene-specific training dataset. A
pedestrian tracker is first applied to the input video se-
quence, and a scene-specific dataset of head images labeled
with their walking directions is automatically acquired.

We applied our framework to SVM-based and Random
Tree-based classification tasks. The results of both experi-
ments show that our method estimates head pose more accu-
rately than directly using generic datasets on the test scenes.
In this sense, accuracy can be improved without the need to
manually collect a ground-truth dataset in real scenes. This
is a great advantage of our method compared to existing
methods when applied to practical scenarios.

Appearance-based head pose estimation from low-
resolution images is itself a difficult task, and there is a
much room for improvement in both feature description and
classification/regression techniques. We believe that inves-
tigating the estimation algorithm itself based on the pro-
posed idea is an important future task.
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