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Abstract

Characteristics of the human visual field are well known to be dif-
ferent in central (fovea) and peripheral areas. Existing compu-
tational models of visual saliency, however, do not take into ac-
count this biological evidence. The existing models compute vi-
sual saliency uniformly over the retina and, thus, have difficulty
in accurately predicting the next gaze (fixation) point. This paper
proposes to incorporate human visual field characteristics into vi-
sual saliency, and presents a computational model for producing
such a saliency map. Our model integrates image features obtained
by bottom-up computation in such a way that weights for the inte-
gration depend on the distance from the current gaze point where
the weights are optimally learned using actual saccade data. The
experimental results using a large number of fixation/saccade data
with wide viewing angles demonstrate the advantage of our saliency
map, showing that it can accurately predict the point where one
looks next.

Keywords: saliency, eye movements, visual fields, fovea vision,
peripheral vision, learning

1 Introduction

For many applications including human-computer interaction and
multimedia systems, understanding where humans look in a scene
is essential. Human eye movement is believed to be driven not only
by top-down cues that depend on one’s intention and purpose of
actions but also by bottom-up cues that depend on visual stimuli
coming from the surrounding environment.

To predict eye movement, many studies on bottom-up approaches
have investigated what kinds of visual stimuli attract human
gaze/visual attention. The most popular hypothesis is that humans
look at a salient region whose low-level image features are sig-
nificantly different from those in other regions. Itti et al. [1998]
proposed a model for computing how likely each point in an im-
age attracts gaze/visual attention, i.e., a saliency map. Their origi-
nal model first extracts low-level image features such as intensity,
color, and orientation from a given image. These low-level features
are then converted to feature maps by using center-surround filter-
ing with different spatial scales, and a saliency map is computed by
integrating feature maps.

Extensions from the seminal work by Itti et al. [1998]
have been intensively studied through the decade. Alter-
natives to center-surround mechanisms such as information
maximization [Bruce and Tsotsos 2006] and graph representa-
tion [Harel et al. 2007] were proposed. Itti et al. [2003] extended

the model to be applicable to a video by incorporating low-level
dynamic features such as motions and flickers. Cerf et al. [2008]
proposed combining face detection with a saliency map computed
from low-level features. However, the mechanism of the bottom-up
visual attention has not yet fully understood, and the fixation pre-
diction accuracy of these models is not necessarily high. In this
work, we focus on one of the important factors to be considered,
i.e., characteristics of the human eyes.

Biological studies show that the density of a photoreceptor de-
creases the further away from the fovea it gets [Curcio et al. 1990].
Therefore, the spatial resolution of a perceived image is highest in
the fovea while it is lower in the peripheral visual fields. Groll and
Hirsch [1987] reported that the field of view of the fovea with the
highest spatial sensitivity corresponds to four degrees. Virsu and
Rovamo [1979], on the other hand, measured the contrast sensi-
tivity for discriminating the direction of movent or orientation of
sinusoidal gratings both in central and peripheral vision. Their re-
sult indicates that the cut-off frequencies of all tasks decrease and
the location peaks of the contrast sensitivity functions shift towards
lower spatial frequancies as going away from the fovea. Boynton et
al. [1964] reported that differences exist in the hue measurements,
in which the absolute color-naming procedure is utilized, depend-
ing on the region of the field of view.

Most of existing saliency map models do not take into account
the differences between a fovea and a peripheral visual fields
and handle the entire visual field uniformly, with few exceptions.
Parkhurst et al. [2002] proposed a model that assigns lower saliency
values as the distance from the current fixation point becomes
larger. In Vincent et al.’s model [2007], input images are converted
to retinal images, and feature maps are computed from retinal im-
ages. However, feature dependency of the visual field characteris-
tics is not fully explored in these relatively simple models.

In contrast, we propose a novel computational model of a saliency
map based on the characteristics of the human visual field. In the
proposed model, feature maps are integrated with varying weights
determined based on the distance from the current fixation point
according to the visual field characteristics. Since it is not al-
ways easy to assign the optimal weights according to the visual
field characteristics, we tackle this problem using a data-driven ap-
proach following prior works [Kienzle et al. 2007; Judd et al. 2009;
Zhao and Koch 2011]. Optimal set of weights for image features
are learned by using a large set of actual saccade data. This leads
to a more accurate saliency map model to predict the next fixation
location, and it has a great potential to applications like attentive
user interfaces and navigation systems.

The main contribution of this work is two-fold: (1) We propose a
novel computational model for a saliency map that incorporates the
characteristics of the human visual field. (2) We make our own eye
movment dataset, in which the actual fixation data by 15 subjects
are included, available online for further studies.
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Figure 1: Flow of the proposed framework. F feature maps are divided into C concentric regions around the current fixation point. Then,
these maps are integrated into a final saliency map with different weights for each region of each map.

Figure 2: Samples of the images included in our dataset.

2 Learning Saliency Map with Visual Field

Characteristics

The purpose of our work is to explore a computational model of a
visual saliency map in which the characteristics of the human vi-
sual field are taken into account. Given the current fixation point,
our model computes a saliency map for better prediction of the next
fixation point. Figure 1 illustrates the flow of our model. Unlike
existing models that use spatially flat weights to integrate different
feature maps, we propose using varying feature weights according
to the current fixation point. A total of F feature maps are divided
into C concentric regions centered around the current fixation point.
By varying weight values to integrate these concentric regions into
the final saliency map, we optimize the model according to the vi-
sual field characteristics of humans using a dataset consists of actual
saccade data.

2.1 Dataset

The field of view of the human eye is approximately 200 de-
grees left to right and 120 degrees up and down [Henson 1993].
However, existing eye movement data sets were collected using
a relatively narrow field of view (at most 36 degrees in viewing
angle) [Judd et al. 2009; Cerf et al. 2009; Ramanathan et al. 2010;
Bruce and Tsotsos 2009]. Thus, they cannot be used for our pur-
pose because this viewing angles are too small to consider the char-
acteristics of the human visual field. Accordingly, we built our own
dataset of human eye movements with 57 degrees of horizontal
viewing angle, which is significantly wider than that of the exist-
ing datasets. All of the images and the gaze recording data will be
made available online for further studies1.

Figure 2 shows some sample images from our dataset. We collected
400 random images from Flickr Creative Commons. Gaze position
data for these images were acquired binocularly at 60 Hz using a
Tobii TX300 eye tracker [2011]. Fifteen test subjects participated in
the gaze data collection. They were asked to sit approximately 133
cm away from a 65-inch (143.5× 80.2 cm) display in a dark room
and look at images displayed on the full screen with a resolution
of 1366 × 768, and a chin rest was used to stabilize the subjects’

1http://www.hci.iis.u-tokyo.ac.jp/datasets/

heads. Each image was shown for four seconds in a randomized
order, and a white cross mark on a black background was shown
for two seconds at each interval.

To calibrate the position of the first saccade, test subjects were in-
structed to look at the cross mark at first and then at anywhere in an
image freely. As a dummy task to motivate the subjects, they were
also asked to evaluate with three levels how interesting the previous
image was by pressing a numerical keypad.

Fixations were obtained from gaze data based on their velocity.
When the velocity becomes higher than a predefined threshhold
(22 degrees/sec in our current setting), it is considered a saccadic
movement. Gaze data is divided into two fixations according to be-
fore and after each saccade, and the coordinates of each fixation
point are computed as the average between the coordinates of each
divided data. On average, five saccades were extracted from one
subject on one image.

2.2 Saliency Map Model

We employed graph-based visual saliency (GBVS) model
[Harel et al. 2007] as the baseline model of a bottom-up saliency
map. In this model, the input image is decomposed into sev-
eral types of visual feature images using simple linear filters as in
the basic saliency model [Itti et al. 2003]. Three basic features—
intensity, color, and orientation—are employed in GBVS. They
are first extracted at multiple scales (three scales in our study,
1/4, 1/8, 1/16) in a Gaussian pyramid from the original image. In
GBVS, feature maps are computed as equilibrium distributions in a
Markov chain. Pixels in the feature images are treated as nodes of a
graph, and transition probabilities between nodes are defined based
on their distance and dissimilarity. The equilibrium distribution in
this way represents uniqueness and saliency in each image location.
Feature maps are computed from each of 3× 3 feature images.

Following Cerf et al. [2008], we used a feature map based on face
detection. Facial locations are estimated using a face detector from
Face.com [2011], and facial feature maps are computed as a Gaus-
sian distribution with respect to the center of the detected face. We
defined the variance σf of the Gaussian distribution as the size of

each detected face: σf =
√

(w/2)2 + (h/2)2, where w and h are
the width and height of the detected face. Of the 400 images in our
dataset, faces were detected in 133, and only a few false positive
detections were included.

These feature maps are resized to a fixed resolution (228×128), and
we achieve F = 3×3+1 feature maps {s1, . . . , sF }. As described
above, the feature maps are then divided into C concentric regions
according to the current fixation location pcur. A mask map dc

corresponding to the c-th region is defined as

dc(p) =

{

1 if d′c−1 ≤ |p− pcur| < d′c,
0 otherwise,

(1)
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where dc(p) indicates the value of dc at p. In our current
implementation, maps are divided into six regions with d′c =
{5.3, 7.3, 9.0, 11.1, 14.3,∞} so that the number of saccade targets
becomes the same across regions.

Then the final saliency map s is computed as a weighted sum of
F × C maps as

s(w) =
∑

c

∑

f

wc,f (dc ◦ sf ), (2)

where ◦ denotes an element-wise Hadamard product, and wc,f in-
dicates the weight for the c-th region of the f -th feature. Here,
w = {wc,f} is the F × C dimensional weight vector.

2.3 Learning Optimal Weights

The weight vector w is learned using the actual human saccade
data. Constrained linear least squares regression is employed to
optimize the weights.

Given a ground-truth saccade from a current fixation pcur to the next
fixation pnext, the ideal saliency map may have a single peak around
pnext. The target map t that represents the ideal saliency map is
defined as

t(p) =

{

1 if |p− pnext| ≤ t′,
0 otherwise,

(3)

where t′ = 1 degree indicates a fixation area threshold that is de-
fined according to the central visual field of humans.

Then w is optimized by minimizing the error between s and t with
nonnegative constraints [Lawson and Hanson 1974]:

w = arg min
w

∑

i

∑

j

∥

∥s(i,j)(w)− t(i,j)
∥

∥

2
, (4)

subject to

w ≥ O,

where (i, j) denotes the j-th ground-truth saccade data in the i-th
image. For computational efficiency, Eq. (4) is solved with random
sampling. Positions to evaluate the error were randomly chosen
from each saccade data so that the number of chosen positions from
the region with t(p) = 0 becomes 20 times larger than that from
the region with t(p) = 1. If the distance to pnext is between 1
and 4 degrees, the position is ignored since they were considered
unreliable. The total number of chosen positions were 50,000 from
t(p) = 1.

3 Experimental Results

We evaluated the performance of our saliency map model by using
a set of 6,000 scan-path data collected for 400 visual stimuli by 15
subjects. The scanpath data were randomly divided in half into two
groups: one for training and the other for testing.

Unlike the existing models, our saliency map model takes into ac-
count the non-uniformity existing in human visual fields and de-
pends on a current fixation point. The performance of our proposed
model was evaluated by assessing the prediction accuracy of the
next fixation point given a current fixation point. A saliency map
is computed based on our model for a given current fixation point,
and the saliency value at the next fixation point is evaluated.

Our proposed model was compared with three other saliency mod-
els referred as the GBVS+Face model [Cerf et al. 2008], the GBVS

Figure 3: NSS performance of saliency models when the first K
saccades were used for training and testing. Error bars indicate
standard deviations. Our proposed model archived higher perfor-
mance than any of the other existing models.

model [Harel et al. 2007] and the undivided-learning model. The
undivided-learning model is computed by our proposed model with
C = 1. This is essentially the same as the learning-based saliency
map model introduced by Zhao and Koch [2011]. The key dif-
ference between our proposed model and the undivided-learning
model is that whether entire images are treated equally without be-
ing divided into multiple regions based on the current fixation point.
The GBVS+Face model and the GBVS model were used as a base-
line of performance evaluation in our experiments.

3.1 Results

Several performance metrics of saliency maps have been pro-
posed. In this work we employed normalized scan-path salience
(NSS) [Peters et al. 2005], which is known to be better suited to
scan-path evaluation. To compute NSS, salience maps are linearly
normalized to have zero mean and unit standard deviation. The nor-
malized salience values are then extracted from the ground-truth
fixation points, and NSS is computed as the mean of these val-
ues. Hence zero NSS value indicates no correspondence between
saliency maps and fixation points, and higher NSS values indicate
greater correspondence.

A comparison of avarage NSS values over 10 trials is shown in Fig-
ure 3. The bold line corresponds to the proposed learning model,
the thin line corresponds to the undivided learning model, the dotted
line corresponds to GBVS+Face model, and the dashed line corre-
sponds to the GBVS model. It is clear that our model achieved
higher performance than any of the existing models.

The weight values optimized in the training process are shown in
Figure 4. They are computed as the averages over 10 trials using
the first saccade data (K = 1). The right-most data corresponds
to the undivided-learning model, and the six others correspond to
each concentric region of the proposed model. F , C, I and O in-
dicate face, color, intensity, and orientation respectively, and the
subscript indicates the scale in an image pyramid where a larger
number means a lower scale.

On the whole, orientation and face were the two most dominant
features, and optimized weights were relatively larger for these two
features as the distance from the fovea becomes larger. This is con-
sistent with the results by Zhao and Koch [2011]. The weights of
the orientation map for higher scales became smaller in areas away
from the current fixation point. This means that the orientation fea-
tures of small details becomes less important in peripheral vision,
and agrees with the known characteristics of human visual fields.
While the weights for color and intensity maps become smaller
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Figure 4: Averages of optimized weights through 10 trials using the
first saccade data (K = 1). F , C, I and O indicate face, color, in-
tensity, and orientation respectively, and the subscript indicates the
scale in an image pyramid where a larger number means a lower
scale.

with larger distances, no strong dependence on image scales could
be observed on them. This is mainly because these features them-
selves do not have a strong dependence on image scales, and there
are no major differences between feature maps on different scales.
Large weights were assigned to the facial feature map regardless of
the distance, except the first and sixth region. A possible reason
for this is that faces are hardly recognized in the peripheral (sixth)
region and facial regions often have been already focused in the
foveal (first) region.

4 Conclusion

We proposed a novel model for computing a saliency map that in-
corporates human visual field characteristics. Unlike existing mod-
els that use a constant weight in integrating image features regard-
less of their spatial positions, our model uses different weights de-
pending on the distance from the current fixation point. The weights
are learned using actual saccade data. The experimental results in-
dicated that the gaze point estimation performance improved by us-
ing our model.

Our introduced weights are designed to change in distance from
the current fixation point. However, our visual field characteristics
differ from not only the distance from the fovea but also its direc-
tion. For example, the characteristics are not the same between the
horizontal and vertical directions. Therefore, weights that are more
closely adapted to real characteristics will be needed.
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