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Abstract

This paper exploits the problem of fitting special
forms of annuli that correspond to 4-connected digi-
tal circles to a given set of points in 2D images in the
presence of noise by maximizing the number of inliers,
namely the consensus set. We prove that the optimal so-
lutions can be described by solutions with three points
on the annulus boundary. These solutions correspond
to vertices of the preimage of the annulus in the param-
eter space thus allowing us to build the preimage and to
enumerate all the optimal solutions.

1. Introduction

There are many facets to pattern recognition. They
include the problem of effectively recognizing primi-
tives such as lines, circles or planes in the case of man-
made objects, in a noisy environment. This problem
can be formulated as a fitting problem of noisy data
to a given primitive and an optimal solution recognizes
the primitive. We can find many different methods for
this problem in image analysis as well as in the more
general setting of function or surface fitting/dimension
reduction [4, 5, 6, 7]. These methods have reason-
ably low computational time complexity in exchange
for approximate/sub-optimal solutions.

Besides reducing time complexity, enumerating all
the optimal solutions is an important aspect in recogniz-
ing primitives. Having a way of finding all the optimal
solutions gives a way to choose among those optimal
solutions if need be and more importantly, provides a
way to evaluate more efficient (in term of time com-

plexity) methods that propose sub-optimal solutions. In
this paper, we exploit the problem of finding (all) the
optimal solutions in fitting a circle to 2D noisy data.

We have shown in a previous paper that most, if not
all, types of commonly used digital circles can be de-
scribed analytically as an annulus [2]. These analytical
descriptions are based on morphological type digitiza-
tion schemes. In this paper we use Adjacency 0-Flakes
as structuring elements [3]. This defines 4-connected
circles. The method described in this paper works ex-
actly in the same way for various other types of circles
such as 8-connected circles, disks, etc. The problem to
solve is finding the parameters of all the primitive an-
nuli that contain the most inliers (reciprocally the least
outliers). Our aim here is the search for optimal solu-
tions and possibly the whole multidimensional set of the
optimal solutions. We prove that if an optimal solution
exists then there exists another optimal solution with a
limited number of points (three for a circle) that lie on
the boundary of the annulus. Once this is established,
firstly it gives a direct method to compute all the opti-
mal solutions with points on the boundary. Secondly, it
is easy to see that those solutions represent characteris-
tic points of the optimal solution region in the parame-
ter space. Indeed, when an optimal solution has a point
on its boundary, a small change in the parameters will
make it an outlier.

2 Digitization using adjacency flakes

After a short recall on notations and basic defini-
tions, we are going to present the digitization scheme
we are considering in this paper.

Let {e1, . . . , en} denote the canonical basis of the
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n-dimensional Euclidean vector space. Let Zn be the
subset of Rn that consists of all the integer coordinate
points. A digital (resp. Euclidean) point is an element
of Zn (resp. Rn). We denote by xi the i-th coordinate
of a point or a vector x, that is its coordinate associated
to ei. A digital (resp. Euclidean) object is a set of digi-
tal (resp. Euclidean) points. For all k ∈ {0, . . . , n− 1},
two digital points v and w are said to be k-adjacent or
k-neighbors, if for all i ∈ {1, . . . , n}, |vi−wi| ≤ 1 and∑n

j=1 |vj − wj | ≤ n − k. In the 2-dimensional plane,
the 0- and 1-neighborhood notations correspond respec-
tively to the classical 8- and 4-neighborhood notations.

2.1 Digitization

The digitization scheme we are considering in this
paper is an Adjacency Flake Digitization [3]. It is based
on a morphological based digitization scheme with a
structuring element called an Adjacency Flake. We are
going, in this paper, to consider the 2D 0-adjacency
flake (or simply 0-Flake) mostly but the reasoning goes
as well for a 2D 1-adjacency flake structuring element
and other structuring elements that define most, if not
all, classical digital circle types [2]. Let us define these
digitization schemes.

Let ⊕ be the Minkowski addition, known as dilation,
such that A ⊕ B = ∪b∈B{a + b : a ∈ A}. The dila-
tion of a Euclidean primitive by a structuring element
defines an offset zone. All the digital points in the off-
set zone form the digital object. The offset zone can, in
many cases, be analytically characterized which allows
a global analytical description of the digital primitive.

DA(S) = (S ⊕A) ∩ Z
n,

where DA(S) is the digitization of the Euclidean object
S , and A is a structuring element.

A simple way of defining a structuring element is to
consider unit balls for a given distance. The naive dig-
itization model is defined that way with the Manhattan
distance d1 = ||.||1. The supercover and the standard
model definitions are based on the Chebishev distance
d∞ = ||.||∞ (see Figure 1 (top)) [1]. These norms can
be regrouped in a set of norms called the k-adjacency
norms:

[.]k = max

{
||.||∞,

||x||1
n− k

}

See Figure 1 (bottom). These norms have been intro-
duced in [3] and used to define digital analytical circles
and spheres in [2]. The k-adjacency norms have been
named that way because, for two points v and w in Z

n,
v and w are k-neighbors iff [v − w]k ≤ 1.

A k-adjacency flake (or k-Flake) is a subset of the
k-adjacency norm ball defined as follows:

 

Figure 1. Difference between digitization
offsets with (top) the Chebishev half-unit
ball and (bottom) the F0 flake.

 

Figure 2. The k-Flakes in 2D (F0,F1) and 3D
(F0,F1,F2).

Definition 1. The k-adjacency flakes (or k-Flake) [2],
Fk, based on the k-adjacency norm [.]k unit ball (of
radius 1/2) is defined as a set of straight line segments
joining the vertices of the ball and crossing the center
of the ball.

The Figure 2 shows 2D- and 3D-Flakes.
The 0-Flake digitization of a hypersphere S =

S(c, r) of center c, radius r is analytically described by:

DF0
(S) =

⎧⎪⎪⎨
⎪⎪⎩
x ∈ Z

n :

−∑n
i=1 |xi − ci| − 1

2 ≤∑n
i=1 (xi − ci)

2 − r2

≤ ∑n
i=1 |xi − ci| − 1

2
for r ≥ √

n/2.

⎫⎪⎪⎬
⎪⎪⎭

The smallest possible 0-Flake hypersphere is of ra-
dius

√
n/2. With a flake structuring element, hyper-

sphere of smaller radii are not correctly defined. This
is one of the limitations of the flake model. It is how-
ever not a big constraint as it corresponds to a circle that
spans only a couple of voxels.
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Figure 3. 0-Flake digitization of a circle.

2.2 0-Flake digital circle

In this paper, we focus on the digitization of circles
using the flake model F0 [2]. The Figure 3 shows the
0-Flake offset (in grey) of a circle (in doted red). We
call border circles the 4 circles that form the border of
the annulus, i.e. the circles centered on (c1± 1

2 , c2± 1
2 ).

In Figure 3, we can see the four border circles C00, C01,
C10 and C11 (in blue). The border circles are noted Cij

where i and j encode the translation of the center of
the border circle from the center of the Euclidean circle
(c1, c2) we want to digitize. The generalization leads to
the border circle definition:

Definition 2. Let Cij be a border circle of the flake an-
nulus C(c1, c2) of radius R. The equation of Cij is:(
x−

(
c1 +

(−1)i

2

))2

+
(
y −

(
c2 +

(−1)j

2

))2

= R2.

3 Three point boundary theorem

We show now that for each flake annulus there exists
an equivalent flake annulus with three points on its ex-
ternal boundary (defining the preimage vertices for the
optimal solutions):

Theorem 1. Let S = {pi}i∈[1,m] be a set of points in
R

2 such that the maximal distance between two points
of the set is greater than the size of two pixels (if it is not
the case than the optimal circle is obviously the 0-Flake
circle of radius

√
2/2). Let C(c1, c2) of radius R be a 0-

Flake circle and thickness 1 such that ∀k ∈ [1,m], pk ∈
C. Then there exists another flake circle C ′(c′1, c

′
2) of

radius R′ also containing all the points and such that
three among them are on one of the border circles of C.

Let S be a set of m (m ≥ 3) points in R
2. Let C be

the 0-Flake annulus of center C(Cx, Cy), radius R and
width 1 such that C covers S. Our first assumption is
that no point of S is on the annulus boundary.

The theorem proof is given in three steps:

Proof:
1 A translation of C allows to reach the first point
P1. We just have to translate in direction of the
inlier that is closest to the boundary.

2 A radius reduction while keeping P1 on the bound-
ary allows to reach a second point P2. By con-
tinuously reducing the radius, the offset zone de-
creases. Either we obtain a second point on the
boundary or we obtain a radius of

√
2/2.

3 For the third point, the continuous transformation
of the flake circle that leads to it, is a little trickier.
Once you have two points on the border circles, in
order to keep them on the border circles, the center
of the flake circle has only one degree of freedom
left. The possible center positions correspond to
a straight line L. The radius of course varies also
when moving the center along L.
When the center moves to infinity on either side of
the straight line L, the radius itself becomes infi-
nite. The boundary of the flake circle becomes two
straight parallel lines. One of them is the straight
line P − 1 − P2 and the other one is parallel to
P1 − P2 and one or the other side depending on
which side of L the center is. Now, two config-
urations can appear. The first is that the distance
between P1 and P2 is greater or equal to

√
2. In

this case, the center can move along the whole line
L and it is easy to see that a third point will at some
time be reached. The worst case being that all the
points are aligned with P1 and P2 in which case we
have an infinite radius. If the distance between P1

and P2 is smaller than
√
2 then there is a segment

on the line P1 − P2 where the center can not be
located because we would have a negative radius.
However, before this, when continuously moving
the center towards the points P1 and P2, the radius
becomes

√
2/2. If we have no third point on the

boundary at that time, we have our optimal radius
flake circle.

The following theorem states that we can build a fi-
nite number of digital 0-Flake circles with 3 points on
its boundary.

Theorem 2. There are 64 0-Flake circles that have 3
given non-aligned points on its border circles.

Proof. A flake annulus represents the surface formed
by 4 border circles (Figure 3); this means that given
three points P1, P2 and P3, we must locate them on one
or many of the fours circles. There exists 43 = 64 dif-
ferent possibilities for the three points. Every configu-
ration among the 64 defines one unique flake circle.

3776



(a)

 

(b)

Figure 4. a) Fitting of 2D noisy 0-Flake circles. b) Preimage.

4 Finding the optimal fitting flake annuli

Let us consider a set S of m points in R
2 (or Zn). Let

us now propose a fitting method that finds the 0-Flake
circles that maximizes the number of inliers. The prin-
ciple of the fitting algorithm, based on Theorem 1 and
Theorem 2, is rather straightforward. For every three
points of the set of points S, we compute all the pos-
sible flake annuli and count the number of inliers. The
optimal annuli are the ones that enclose the maximum
number of inliers. The output is a set V of parameter
values (cop1 , cop2 , Rop) corresponding to the fitted flake
annuli that give the optimal consensus sets. The time
complexity of the algorithm is thus O(m4) for m points
in S.

4.1 Experiments

We used Mathematica for implementing our method.
We applied our method for 2D noisy flake annuli as
shown in Figure 4. In this example we have 14 optimal
consensus sets with three points on the annuli border.
This proves that our method is capable of detecting mu-
tiple optimal consensus sets. As we can see from Theo-
rems 1 and 2, each of these 14 solutions corresponds to
a vertex of the preimage (optimal solution region in the
parameter space) of the optimal consensus set. This al-
lows to construct the region containing all the possible
optimal solutions in the parameter space (Figure 4.b).

5 Conclusion and perspectives

In this paper we have presented a new method for
fitting flake annuli to a set of points with a width of 1.
Our approach guarantees optimal results. To the best of
our knowledge, this is the first work that yields all the
consensus sets for flake circles.

One of the future work concerns fitting of 3D flake
annuli. For the 3D fitting the same algorithm is used
however 4 points are needed instead of three in order to

define the flake annulus. Our proposed method allows
to construct the preimage of the optimal solutions. We
are now considering alternative methods of constructing
this polytope with a smaller time complexity. The opti-
mal solution polytope in the parameter space is in some
sense the kernel of the solutions to the fitting problem.
Considering solutions that are not optimal but almost
optimal leads to other polytopes. Each of these poly-
topes encompassing the others as the constraints are re-
laxed. This should allow us a new insight into the solu-
tion spaces for noisy fitting problems. A last perspective
is of course fitting of other type of curves such as conics
for instance.
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