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Abstract. A discrete polynomial curve is defined as a set of points lying
between two polynomial curves. This paper deals with the problem of
fitting a discrete polynomial curve to given integer points in the pres-
ence of outliers. We formulate the problem as a discrete optimization
problem in which the number of points included in the discrete polyno-
mial curve, i.e., the number of inliers, is maximized. We then propose a
method that effectively achieves a solution guaranteeing local maximal-
ity by using a local search, called rock climging, with a seed obtained
by RANSAC. Experimental results demonstrate the effectiveness of our
proposed method.
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1 Introduction

Fitting geometric models such as lines or circles is an essential task in image
analysis and computer vision, and it is indeed used in feature detection and
many other procedures. Though several methods exist for model fitting, they use
continuous models even in a discrete environment. The method of least-squares
is most common for curve fitting. This method minimizes the sum of squared
residuals from all data, and the solution can be analytically computed. This
method is, however, fatally susceptible to the presence of outliers: just one outlier
can cause a great impact on estimation results. In order to enhance robustness,
minimizing the sum of other functions has been proposed. For example, the
method of least-absolute-values minimizes the sum of absolute residuals from
all data. The method of least median of squares [5] minimizes the median of
squared residuals, resulting in tolerating up to half the data being outliers. This
means, however, that it does not work in the presence of more outliers. On
the other hand, RANdom SAmple Consensus (RANSAC) [2] is commonly used
in computer vision. This method maximizes the number of inliers, and work
regardless of the fraction of outliers. However, its random approach takes a long
time to ensure high accuracy.
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In discrete spaces, it is preferable to use discretized models rather than con-
tinuous ones because the representation of the models is also discrete. Discrete
model fitting in the 2D discrete space is studied for lines [1, 6], annuluses [7],
and polynomial curves [4]. For lines and annuluses, methods that work for a
data set including outliers, i.e., points that do not describe the model, have been
developed, however, such a method that deals with outliers for discrete polyno-
mial curves remains to be reported. This paper aims at developing a method
for discrete polynomial curve fitting for a given set of discrete points including
outliers.

We formulate the discrete polynomial curve fitting problem as a discrete op-
timization problem where the number of inliers is maximized. We then propose
a method that guarantees its output to achieve local optimal. Our proposed
method combines RANSAC and a local search. Namely, starting with a seed ob-
tained by RANSAC, our method iteratively and locally searches for equivalent
or better solutions to increase the number of inliers. Our method guarantees
the obtained set of inliers is local maximum in the sence of the set inclusion.
Experimental results demonstrate the efficiency of our method.

2 Discrete Polynomial Curve Fitting Problem

2.1 Definitions of Notions

A (continuous) polynomial curve of degree k in the Euclidean plane is defined
by

P = {(x, y) ∈ R
2 : y = a1x

k + a2x
k−1 + · · ·+ akx+ ak+1, a1 �= 0}, (1)

where a1, . . . , ak+1 ∈ R.
We define the discretization of eq. (1), namely, a discrete polynomial curve,

by
D = {(x, y) ∈ Z

2 : 0 ≤ y − f(x) ≤ w} , (2)

where f(x) = a1x
k + a2x

k−1 + · · ·+ akx+ ak+1, and w is a given constant real
value. ai, k and w are respectively called the coefficient, the degree, and the width
of the discrete polynomial curve (i = 1, . . . , k + 1). Geometrically, D is a set of
integer points lying between two polynomial curves y = f(x) and y = f(x) +w,
and w is the vertical distance between them. We remark that D is a Digital
Level Layer (DLL) [3].

We define several notions for a discrete polynomial curve. For a finite set of
discrete points

S = {pj ∈ Z
2 : j = 1, 2, . . . , n} ,

where the coordinates of pj are finite values, and a discrete polynomial curve D,
pj ∈ D is called an inlier, and pj /∈ D is called an outlier of D. The set of inliers
is called the consensus set of D which is denoted by C. Two polynomial curves
y = f(x) and y = f(x) + w are called the support lines of D. In particular, we
call y = f(x) the lower support line, and y = f(x) + w the upper support line.
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Points on the support lines are called critical points of D. In particular, a point
on the lower support line is called a lower critical point, while that on the upper
support line is an upper critical point.

2.2 Description of the Discrete Polynomial Curve Fitting Problem

Let Dk,w be the set of all discrete polynomial curves of degree up to k with width
w. The problem of discrete polynomial curve fitting is described as follows:

Input. A set of discrete points S, a degree k, and a width w.

Output. A (k + 1)-tuple of coefficients (a1, . . . , ak+1) of D ∈ Dk,w having the
maximum number of inliers.

A consensus set having the maximum number of inliers, denoted by Cmax, is
called the maximum consensus set. We remark that not less than one optimal
solution can exist.

2.3 Discrete Polynomial Curve Fitting in the Parameter Space

A discrete polynomial curve of Dk,w is identified as a point in the parameter space
(a1, . . . , ak+1). We formulate the problem of discrete polynomial curve fitting
as an optimization problem in the parameter space to obtain the maximum
consensus set.

Given a point (x′, y′) ∈ S, (a1, . . . , ak+1) determining D ∈ Dk,w such that
D � (x′, y′) satisfies

0 ≤ −x′ka1 − · · · − x′ak − ak+1 + y′ ≤ w . (3)

We call the set of such points in the parameter space the level layer for (x′, y′).
(x′, y′) is a lower critical point when the left-hand side equality is satisfied, and
is an upper critical point when the right-hand side equality is satisfied. For a
consensus set C = {(x1, x1), . . . , (xm, ym)}, we have (a1, . . . , ak+1) that satisfies

⎧
⎪⎨

⎪⎩

0 ≤ −xk
1a1 − · · · − x1ak − ak+1 + y1 ≤ w ,

...
0 ≤ −xk

ma1 − · · · − xmak − ak+1 + ym ≤ w .

(4)

Letting PC be the convex polytope (the intersection of these level layers) defined
by eq. (4), PC is the set of (a1, . . . , ak+1) determining D ∈ Dk,w such that D ⊃ C
but not S∩D = C. Therefore, D determined by (a1, . . . , ak+1) in PC contains at
least |C| inliers. For an arbitrary consensus set C′ such that C′ ⊃ C, PC′ ⊂ PC

since PC′ is the intersection of PC and the level layers for the points in C′\C.
Finding Cmax is equivalent to finding the convex polytope(s) for Cmax in the

parameter space. Fig. 1 shows an example of level layers in the case of k = 1.
Note that an intersection of level layers is always a convex polygon in this case.
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Fig. 1. An example of level layers in the case of k = 1. The darkness is proportional
to the number of inliers.

If we define F (a1, . . . , ak+1) = the number of inliers of D determined by
(a1, . . . , ak+1), then the discrete polynomial curve fitting problem is equivalent
to seeking

arg max
(a1,...,ak+1)

F (a1, . . . , ak+1) (5)

for given S, k, and w.

3 Properties of Discrete Polynomial Curves

A polynomial curve of degree up to k is uniquely determined by different k + 1
points on the curve. Theorem 1 states that a discrete polynomial curve also has
a similar property.

Theorem 1. A discrete polynomial curve D ∈ Dk,w is uniquely determined by
k + 1 critical points having k + 1 different x-coordinates where each of them is
specified whether it is an upper or a lower critical point.

Proof. A discrete polynomial curveD∈ Dk,w with k+1 critical points (s1, t1), . . . ,
(sk+1, tk+1) such that si �= sj for all i �= j, is identified as a point (a1, . . . , ak+1)
in the parameter space satisfying

⎧
⎪⎨

⎪⎩

−sk1a1 − · · · − s1ak − ak+1 + t1 = c1 ,
...

−skk+1a1 − · · · − sk+1ak − ak+1 + tk+1 = ck+1 ,

(6)

where

ci =

{
0 if (si, ti) is a lower critical point
w if (si, ti) is an upper critical point

(i = 1, . . . , k + 1) .
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Fig. 2. Discrete polynomial curves of GS,k,w in the parameter space. They are the
intersection points of the boundaries of level layers; the white points represent them.

Eq. (6) has the unique solution in (a1, . . . , ak+1) because it has k + 1 linearly
independent equations. 	

We remark that eq. (6) does not have a solution if si = sj for ∃i, j (i �= j).

Theorem 1 indicates that the set of all discrete polynomial curves in Dk,w

generated from k + 1 points in S is finite where the k + 1 points are used as
critical points. The set is denoted by GS,k,w. GS,k,w is not empty iff the points
in S have at least k + 1 different x-coordinates.

Assume that GS,k,w is not empty. To identify a discrete polynomial curve in
GS,k,w, we consider 2n hyperplanes that are the boundaries of the level layers
for all points in a given S = {(x1, y1), . . . , (xn, yn)},

−xk
i a1 − · · · − xiak − ak+1 + yi = 0

−xk
i a1 − · · · − xiak − ak+1 + yi = w

(i = 1, . . . , n) . (7)

Note that the boundaries of the two level layers for (x′
1, y

′
1) ∈ S and (x′

2, y
′
2) ∈ S

are parallel iff x′
1 = x′

2. Since D ∈ GS,k,w has at least k + 1 critical points
with k+1 different x-coordinates, (a1, . . . , ak+1) determining D satisfies at least
k + 1 independent equations in eq. (7). Therefore, D is an intersection point
of the boundaries of the level layers identified by these equations. Fig. 2 shows
an example of discrete polynomial curves of GS,k,w in the parameter space. We
remark that for an arbitrary consensus set C, any discrete polynomial curve of
Dk,w determined by a vertex of PC is an element of GS,k,w.

Since GS,k,w is a finite set, if it contains an element having the maximum
consensus set, then we can find the optimal (a1, . . . , ak+1) (in the sense that it
maximizes the number of inliers) by brute-forth search in GS,k,w.

Theorem 2. If GS,k,w is not empty, then there exists D ∈ GS,k,w such that
S ∩D = Cmax.
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To prove Theorem 2, we need the following lemma.

Lemma 1. If GS,k,w is not empty, then the points in Cmax have at least k + 1
different x-coordinates.

Proof. We show that a consensus set C whose points have m(≤ k) different x-
coordinates is not maximum. Let X1, . . . , Xm be these x-coordinates. Then, PC

is written by
⎧
⎪⎨

⎪⎩

L1 ≤ −Xk
1 a1 − · · · −X1ak − ak+1 ≤ U1 ,

...
Lm ≤ −Xk

ma1 − · · · −Xmak − ak+1 ≤ Um ,

(8)

where Li, Ui ∈ R, and Ui − Li ≤ w for i = 1, . . . ,m. Since the points in S have
at least k + 1 different x-coordinates, there exists a point (X,Y ) ∈ S\C such
that X �= Xi for i = 1, . . . ,m. The level layer for (X,Y ) is

0 ≤ −Xka1 − · · · −Xak − ak+1 + Y ≤ w. (9)

There exists at least one solution (a1, . . . , ak+1) satisfying both of eq. (8) and
eq. (9). Therefore, there exists at least one discrete polynomial curve D′ ∈ Dk,w

such that D′ ⊃ C ∪ {(X,Y )}, which concludes that C is not maximum. 	

Lemma 1 states that a consensus set whose points have less than k+1 different
x-coordinates is not maximum. Therefore, we need not consider such consensus
sets in proving Theorem 2. We now give the proof of Theorem 2.

Proof. If PCmax is bounded, then each of its vertices corresponds to an element
of GS,k,w, from which Theorem 2 is immediately obtained. Therefore, we only
have to show that PCmax is bounded.

Since GS,k,w is not empty, there exist at least k+1 points (u1, v1), . . . , (uk+1,
vk+1) ∈ Cmax such that ui �= uj for all i �= j thanks to Lemma 1. Any
(a1, . . . , ak+1) in PCmax satisfies

⎧
⎪⎨

⎪⎩

0 ≤ −uk
1a1 − · · · − u1ak − ak+1 + v1 ≤ w ,

...
0 ≤ −uk

k+1a1 − · · · − uk+1ak − ak+1 + vk+1 ≤ w ,

(10)

which can be rewritten as
⎧
⎪⎨

⎪⎩

−uk
1a1 − · · · − u1ak − ak+1 + v1 = d1 ,

...
−uk

k+1a1 − · · · − uk+1ak − ak+1 + vk+1 = dk+1 ,
(11)

where 0 ≤ di ≤ w (i = 1, . . . , k + 1). We thus obtain

⎛

⎜
⎝

a1
...

ak+1

⎞

⎟
⎠ =

⎛

⎜
⎜
⎜
⎝

−uk
1 · · · −u1 1

...
. . .

...
...

−uk
k · · · −uk 1

−uk
k+1 · · · −uk+1 1

⎞

⎟
⎟
⎟
⎠

−1 ⎛

⎜
⎜
⎜
⎝

d1 − v1
...

dk − vk
dk+1 − vk+1

⎞

⎟
⎟
⎟
⎠

. (12)
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Denoting the (i, j) entry of the inverse matrix by mij allows eq. (12) to be
written as

ai =

k+1∑

j=1

mij(dj − vj) (i = 1, . . . , k + 1) . (13)

Eq. (13) shows that ai is linear in d1, . . . , dk+1. Therefore, the set of (a1, . . . , ak+1)
satisfying eq. (10) is bounded since 0 ≤ di ≤ w. PCmax is its subset, and conse-
quently is bounded. 	


Theorem 2 states that the consensus sets {S ∩ D : D ∈ GS,k,w} contain all
the maximum consensus sets. Therefore, if GS,k,w is not empty, then all the
maximum consensus sets are found by the brute-forth search. Hereafter, we
assume that GS,k,w is not empty, which almost always holds.

4 Discrete Polynomial Curve Fitting Algorithm

RANSAC iteratively generates model parameters by randomly sampling points
from a given set to find the ones describing a largest number of points in the
set. Finding all the maximum consensus sets by RANSAC requires to compute
the consensus sets for all the discrete polynomial curves of GS,k,w, which is com-
putationally expensive and impractical. In fact, the brute-forth search requires
up to 2k+1

( |S|
k+1

)
iterations. In this section, we propose a method that effectively

achieves a solution guaranteeing local optimality in the sense of the set inclusion
by introducing a local search.

We define neighbors in GS,k,w for our local search. When D ∈ GS,k,w is given,
we define neighbors of D denoted by ND as the discrete polynomial curves hav-
ing k upper and lower critical points all of which are identical with those of D
where the x-coordinates of the critical points are different from each other. Note
that D /∈ ND. Then, (a1, . . . , ak+1) of D

′ ∈ ND satisfies the same k independent
equations as that of D in eq. (7). Therefore, (a1, . . . , ak+1) corresponding to D′

is on the intersection line of the k hyperplanes that are the boundaries of the
level layers identified by these equations. Thus, the neighboring relations are
determined by the intersection lines of k boundaries of level layers. We call these
lines neighboring lines. Fig. 3 shows an example of neighbors in the parameter
space when k = 1. In this case, the neighboring lines are identical to the bound-
aries of level layers themselves. We call D′ having at least the same number of
inliers a good neighbor of D.

Our method consists of two steps (Algorithm 1). In the first step, we use
RANSAC to obtain a seed for the second step. In the second step, we intro-
duce a local search, called rock climbing, to increase the number of inliers. Given
an initial seed (discrete polynomial curve) obtained by RANSAC, rock climb-
ing searches the discrete polynomial curves having a largest number of inliers
among the seed and its neighbors, and then iterates this procedure using the
obtained curves as new seeds. Algorithm 2 describes the concrete procedure of
rock climbing.
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Fig. 3. An example of the neighbors (k = 1). The neighbors of the black point are
depicted with white points. They are on the neighboring lines, i.e., lines passing through
the black point.

Algorithm 1. Our method

Input: A set of discrete points S, a degree k, a width w, a number of iterations t for
RANSAC.

Output: A set of discrete polynomial curves.
Run RANSAC with t iterations.
Run rock climbing using a seed obtained by RANSAC.
return The output of rock climbing.

A consensus set C is called local maximum when no consensus set exists that
is a superset of C. We denote a local maximum consensus set by Clocal.

Theorem 3. Rock climbing outputs discrete polynomial curves that correspond
to all the vertices of a PClocal

.

Proof. Let C be the consensus set of the current discrete polynomial curve.
We first consider the case of C = Clocal. Any two vertices of a convex polytope

are reachable with each other by tracing edges of the polytope. This means that
we can obtain all the vertices of PClocal

by propagating the neighboring relation
from the current vertex, since each edge of PC is a part of a neighboring line.
Furthermore, any (a1, . . . , ak+1) in PClocal

satisfies F (a1, . . . , ak+1) = |Clocal|.
Consequently, we can obtain all the vertices of PClocal

by iteratively searching
good neighbors.

If C �= Clocal, then a consensus set C′ = C∪(x′, y′) exists where (x′, y′) ∈ S\C.
PC′ is the intersection of PC and the level layer for (x′, y′). Therefore, each vertex
of PC′ is on an edge or a vertex of PC as illustrated in Fig. 4 . This means that
we can obtain all the vertices of PC′ by propagating the neighboring relation
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Algorithm 2. Rock climbing

Input: S, k, w, an initial discrete polynomial curve Dinit ∈ GS,k,w.
Output: A set A of discrete polynomial curves.

A := {Dinit}
loop

A′ :=A set of discrete polynomial curves in

(
A ∪

⋃
D∈A

ND

)
having a largest num-

ber of inliers
if A = A′ then

Break out of the loop
else

A := A′

end if
end loop
return A

Fig. 4. PC (black) and PC′ (blue). Each vertex of PC′ is on an edge or a vertex of PC .
Suppose that the black point corresponds to the current polynomial curve. Then the
white points are the neighbors in PC .

from the current vertex of PC . Furthermore, any (a1, . . . , ak+1) in PC satisfies
F (a1, . . . , ak+1) ≥ |C|. Consequently, we can obtain all the vertices of PC′ by
iteratively searching good neighbors. This discussion holds as long as C �= Clocal.
By repeating this procedure, we finally obtain C′ = Clocal. 	


From Theorem 3, we can always find all the vertices of a PClocal
by rock climbing.

Therefore, we can generate all (a1, . . . , ak+1)’s determining D such that D ⊃
Clocal from these vertices.

It should be noted that our method does not always terminate immediately
at a local optimal consensus set. Rock climbing examines every neighbor to seek
good ones, and rock climbing does not terminate as long as good neighbors exist.

Rock climbing has possibilities of not achieving a global optimum. Its output
depends on an initial seed. Having a “good” seed will be preferable. That is why
we use RANSAC to obtain an initial seed having as many inliers as possible.
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5 Experiments

To demonstrate the effectiveness of our proposed method, we compared our
method with RANSAC under two different scenarios. First, we fixed the ratio
between inliers and outliers among input points and changed the number of in-
put points. Then, we evaluated the computational time required to obtain the
maximum number of inliers. Second, we fixed the number of input points and
changed the ratio between inliers and outliers. Then, we evaluated the computa-
tional time. In both cases, we observed that our method outperforms RANSAC.

For the first scenario, we set k = 2, w = 1 and fixed the ratio of outliers
among input points to be 25%, 50%, 75%. For each fixed ratio, we generated
five different discrete input point sets S, where |S| was changed by 40 from
40 to 200 (see Fig. 5 for examples). In each set, integer points satisfying 0 ≤
y − 0.01x2 ≤ w (−100 ≤ x ≤ 100) were randomly generated for inliers (blue
points) and integer points that do not satisfy this inequality were randomly
generated within [−100, 100]× [−100, 100] for outliers (red points). We remark
that we designed in each fixed outlier ratio, all the five input point sets have
the same optimal solutions in GS,k,w (k = 2, w = 1). (Data-sets having different
outlier ratios do not have the same optimal solutions.)

To these data-sets, we applied our method 100 times independently where we
set t = 1000 (the number of iteration for our RANSAC step). We then evaluated
the computational time to obtain Cmax (a consensus set having the maximum
number of inliers) in terms of the required number of samplings there. Note
that one sampling takes the same computational time and thus the number of
samplings can be a measurement for the computational time. For comparison,
we applied RANSAC alone without setting any limited number of iterations,
and terminated it when Cmax is obtained.

The average number of samplings over the 100 trials is given in Table 1 and
illustrated in Fig. 6. We see that our method finds Cmax more than twice faster
than RANSAC and that the difference of required numbers of samplings to
find Cmax drastically becomes larger as the number of input points increases.
From Fig. 6, we can also observe that regardless of outlier ratios, the required
number of samplings has a similar behavior depending on the number of input
points. Namely, the required number of samplings slowly increases and is not
exponentially affected by the number of input points for our method while it
exponentially increases for RANSAC. We can thus conclude that the number of
input points has far less impact on our method than RANSAC.

For the second scenario, we again set k = 2, w = 1 and fixed the number of
input points to be 200. We generated nine different discrete input point sets,
where the ratio of outliers was changed by 10% from 10% to 90% (see Fig.
7 for examples). In each set, inliers and outliers are generated in the similar
way as the first scenario. To these data-sets, we applied our method 100 times
independently and evaluated the required number of samplings to obtain Cmax.
We also applied RANSAC alone using the same condition as the first scenario
case.
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(a) |S| = 40, 25% outliers.
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(c) |S| = 200, 25% outliers.
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(d) |S| = 40, 50% outliers.
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(e) |S| = 120, 50% outliers.
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(f) |S| = 200, 50% outliers.
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(g) |S| = 40, 75% outliers.
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(h) |S| = 120, 75% outliers.
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(i) |S| = 200, 75% outliers.

Fig. 5. Input set examples with different numbers of points and different outlier ratios
(k = 2). (a), (b), (c) are for 25% outliers; (d), (e), (f) are for 50% outliers; (g), (h), (i)
are for 75% outliers.

Table 2 and Fig. 8 show the average number of samplings over the 100 trials.
From these results, we can see that our method finds Cmax more than ten times
faster than RANSAC. We can also observe that in both methods, the outlier
ratio does not affect the required number of samplings as far as the number of
input points is the same. We remark that in our method, the required number
of samplings in the case where the outlier ratio is 90% (in this case, the number
of inliers is 20 while that of outliers is 180) becomes almost twice of that for
the other cases. This suggests that there may be a minimum number of inliers
required for our method to work effectively. Investigating this is left for future
work.

So far, we had experiments only for quadratic curves (k = 2). In order to
confirm our observations even for another order case, we conducted the same
experiments under the condition of k = 3 and w = 1. As input points, we
randomly generated inliers satisfying 0 ≤ y − 0.0001x3 ≤ w (−100 ≤ x ≤ 100)
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Table 1. Number of samplings (×103) required for achieving Cmax (k = 2)

ratio of outliers (%) |S| 40 80 120 160 200

25
our method 0.8 1.6 2.4 3.6 5.0
RANSAC 2.0 16.5 46.1 101.7 211.2

50
our method 0.8 1.4 2.4 3.2 5.4
RANSAC 1.7 14.9 46.6 113.1 223.4

75
our method 1.7 2.4 4.3 6.0 8.8
RANSAC 6.1 64.4 256.1 560.1 1062.0
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(a) 25% outliers.
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(b) 50% outliers.
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(c) 75% outliers.

Fig. 6. Required number of samplings depending on |S| (k = 2)

-100

-50

 0

 50

 100

-100 -50  0  50  100

(a) 10% outliers.
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(d) 60% outliers.
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(e) 80% outliers.
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(f) 90% outliers.

Fig. 7. Input set examples with different outlier ratios under the same number of
points (|S| = 200, k = 2)

Table 2. Number of samplings (×103) under different outlier ratios (k = 2)

ratio of outliers (%) 10 20 30 40 50 60 70 80 90

our method 4.7 4.6 4.2 4.6 4.6 4.4 4.6 4.3 7.0
RANSAC 76.7 80.1 75.9 87.7 81.2 74.9 75.8 72.0 77.4
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Fig. 8. Required number of samplings depending on outlier ratio (k = 2)
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(a) |S| = 40, 25% outliers.
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(b) |S| = 120, 25% outliers.
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-100

-50

 0

 50

 100

-100 -50  0  50  100

(e) |S| = 120, 50% outliers.
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(f) |S| = 200, 50% outliers.
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(g) |S| = 40, 75% outliers.
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(i) |S| = 200, 75% outliers.

Fig. 9. Input set examples with different numbers of points and different outlier ratios
(k = 3). (a), (b), (c) are for 25% outliers; (d), (e), (f) are for 50% outliers; (g), (h), (i)
are for 75% outliers.
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Table 3. Number of samplings (×103) required for achieving Cmax (k = 3)

ratio of outliers (%) |S| 40 80 120 160 200

25
our method 1.5 4.2 8.4 11.9 16.5
RANSAC 23.5 374.2 2321.9 7380.0 14749.4

50
our method 2.1 6.3 11.4 15.8 20.2
RANSAC 51.0 963.4 4784.3 24186.0 50754.9

75
our method 7.4 7.5 13.5 17.8 26.2
RANSAC 55.8 1052.4 4890.6 14855.5 54525.0
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(a) 25% outliers.
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(b) 50% outliers.
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(c) 75% outliers.

Fig. 10. Required number of samplings depending on |S| (k = 3)
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Fig. 11. Input set examples with different outlier ratios under the same number of
points (|S| = 200, k = 3)
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Table 4. Number of samplings under different outlier ratios (k = 3)

ratio of outliers (%) 10 20 30 40 50 60 70 80 90

our method (×104) 1.7 1.8 1.9 1.7 1.9 2.0 1.9 2.6 5.7
RANSAC (×107) 2.9 2.6 2.9 2.9 2.4 2.8 2.6 2.9 3.1

Fig. 12. Required number of samplings depending on outlier ratio (k = 3)

and outliers over [−100, 100] × [−100, 100] so that no outlier satisfies this in-
equality (see Figs. 9 and 11 for examples). The results are shown in Tables 3
and 4 and Figs. 10 and 12. From these results, we have the same observation as
the quadratic curves case. We can thus conclude that our method significantly
outperforms RANSAC.

6 Conclusion

This paper dealt with the problem of fitting a discrete polynomial curve to a
given set of points including outliers. We formulated this problem as an optimiza-
tion problem where the number of inliers is maximized. Our proposed method
effectively searches solutions by rock climbing using an initial seed obtained by
RANSAC. We showed that our method guarantees local maximality of inliers in
the sense of the set inclusion. The effectiveness of our method was demonstrated
using experiments.
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