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Image Categorization Using Hierarchical Spatial Matching Kernel
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<Summary> Spatial pyramid matching (SPM) has been an important approach to image categorization. This method
partitions the image into increasingly fine sub-regions and computes histograms of local features at each sub-region. Although
SPM is an efficient extension of an unordered bag-of-features image representation, it still measures the similarity between
sub-regions by application of the bag-of-features model. Therefore, it is limited in its capacity to achieve optimal matching
between sets of unordered features. To overcome this limitation, we propose a hierarchical spatial matching kernel (HSMK)
that uses a coarse-to-fine model for the sub-regions to obtain better optimal matching approximations. Our proposed kernel
can deal robustly with unordered feature sets as well as various cardinalities. In experiments, results of HSMK outperformed
those of SPM and led to state-of-the-art performance on several well-known databases of benchmarks in image categorization,
even though we use only a single type of image feature.
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1. Introduction

Image categorization is the task of classifying a given im-
age into a suitable semantic category. The semantic cate-
gory is definable as the depiction of a whole image such as
a forest, a mountain or a beach, or of the presence of an in-
teresting object such as an airplane, a chair or a strawberry.
Among existing methods for image categorization, the bag-
of-features (BoF) model is a popular and efficient one. It con-
siders an image as a set of unordered features extracted from
local patches. The features are quantized into discrete visual
words, with sets of all visual words designated as a dictionary.
A histogram of visual words is then computed to represent an
image. A main weakness in this model is that it discards the
spatial information of local features in the image. To over-
come it, spatial pyramid matching (SPM)1), an extension of
the BoF model, uses aggregated statistics of local features on
fixed sub-regions. It uses a sequence of grids at three levels
of resolution to partition the image into sub-regions. Then it
computes a BoF histogram for each sub-region at each level
of resolution. Consequently, the representation of the whole
image is the concatenation vector of all histograms.

Empirically, it is realized that to obtain good performance,
the BoF model and SPM must be applied together with specific
nonlinear Mercer kernels2)such as the intersection kernel or χ2

kernel. When the kernel function is proved to be positive def-
inite, Mercer kernels guarantee the optimal solutions in learn-
ing algorithms. The intersection kernel for a BoF histogram

is useful in Support Vector Machine (SVM) based image cat-
egorization and object recognition tasks. The Pyramid Match
Kernel3) is suitable for discriminative classification with un-
ordered sets of local features.

Therefore, a kernel-based discriminative classifier is trained
by calculating the similarity between each pair of sets of un-
ordered features in whole images or in sub-regions. Numer-
ous problems are well known to exist in image categoriza-
tion such as the presence of heavy clutter, occlusion, different
viewpoints, and intra-class variety.

In addition, the sets of features have various cardinalities
and are lacking in the concept of spatial order. SPM em-
beds a part of the spatial information over the whole image
by partitioning an image into a sequence of sub-regions, but
to measure the optimal matching between corresponding sub-
regions, it still applies the BoF model, which is known to be
confined when dealing with sets of unordered features.

As described in this paper, we propose a new kernel func-
tion based on the coarse-to-fine approach. We call it a hi-
erarchical spatial matching kernel (HSMK). HSMK enables
not only capturing of the spatial order of local features, but
also accurate measurement of the similarity between sets of
unordered local features in sub-regions. In HSMK, a coarse-
to-fine model on sub-regions is realized using multiple reso-
lutions as shown in (b) of Fig. 1. Therefore, our feature de-
scriptors capture not only local details from fine resolution
sub-regions, but also global information from coarse resolu-
tion ones. In addition, matching based on our coarse-to-fine
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Fig. 1 Feature descriptor can be extracted local features from
difference regions and resolutions by (a) and (b). (a)
Spatial pyramid matching (SPM)1). (b) The proposed
Hierarchical spatial matching kernel (HSMK).

model involves a hierarchical process, which indicates that a
feature that does not find its correspondence in a fine resolu-
tion still presents the possibility of having its correspondence
in a coarse resolution. Accordingly, our proposed kernel can
achieve better optimal matching approximation between sub-
regions than SPM.

2. Related work

The BoF model is a popular and powerful method for image
categorization and generic object recognition. This framework
functions by extracting local image features, quantizing them
according to typical clustering method such as k-means vector
quantization, accumulating histograms of the ”visual word”
over the input image, and then classifying the histograms with
simple classifiers such as an SVM and Boosting. However,
the traditional BoF model discards the context information for
spatial layout of an image.

Numerous methods have been proposed recently to im-
prove the problems inherent in the traditional BoF model.
Boiman et al.4) presented no descriptor quantization for non-
parametric Nearest-Neighbor(NN) classifier in image catego-
rization. FeiFei et al.5) proposed a generative probabilis-
tic visual model based on Bayesian incremental algorithm.
Moosmann et al.6) introduced extremely randomized cluster-
ing forests to generate discriminative visual words using clus-
tering decision trees. Yang et al.7) unified codebook gener-
ation for object category recognition with classifier training.
They proposed generative methods to model the co-occurrence
of visual words, or discriminative visual words learning.

Lazebnik et al.1) proposed an SPM method that can capture
the spatial layout of features that are ignored in the BoF model.

The SPM is particularly effective as well as being easy and
simple to construct. It is used as a major part in many state-
of-the-art frameworks in image categorization8). SPM is often
applied with a nonlinear kernel such as the intersection kernel
or χ2 kernel. It requires high computation and large storage.

Grauman and Darrell3) proposed a fast kernel function
called the pyramid match using multi-resolution histograms.
The pyramid match hierarchically measures the similarity be-
tween histograms which consist of sets of features extracted
from the finest resolution to the coarsest one. The proposed
kernel approximates the optimal partial matching by comput-
ing a weighted intersection over multi-resolution histograms
for classification and regression tasks. Maji et al.9) pro-
posed an approximation to improve efficiency in building the
histogram intersection kernel, but efficiency can be attained
merely using pre-computed auxiliary tables, which are re-
garded as a type of pre-trained nonlinear support vector ma-
chine (SVM).

Mairal et al.10) modeled data vectors as sparse linear com-
binations called sparse coding methods. They improved the
visual dictionary in terms of discriminative ability or lower re-
construction error instead of using quantization by K-means
clustering. To give SPM the linearity needed to address large
datasets, Yang11) proposed a linear SPM with spare coding
(ScSPM), in which a linear kernel is chosen instead of a non-
linear kernel because of the more linearly separable property
of sparse features.

Our proposed kernel emphasizes improvement of the simi-
larity measurement between sub-regions using a coarse-to-fine
model instead of the BoF model used in SPM. In recent works,
some methods devoted to image categorization through multi-
scale method have been described. Wang & Wang12) proposed
a multiple scale learning (MKL) framework in which multiple
kernel learning (MKL) is used to learn the optimal weights in-
stead of using predefined weights of SPM. The multiple scale
learning method can determine the optimal combination of
base kernels constructed in different image scales for visual
categorization. However, we consider the sub-regions on a
sequence of different resolutions as the pyramid matching ker-
nel (PMK)3). Furthermore, instead of using the pre-defined
weight vector for basic intersection kernels to penalize across
different resolutions, we reformulate the problem into a uni-
form MKL to obtain it more effectively. In addition, our pro-
posed kernel can deal with different cardinalities of sets of un-
ordered features by application of square root diagonal nor-
malization13) for each intersection kernel, which is not con-
sidered in PMK.
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3. Hierarchical Spatial Matching Kernel

In this section, we first describe the original formulation of
SPM and then introduce our proposed HSMK, which uses a
coarse-to-fine model as a basis for improving SPM.

3.1 Spatial Pyramid Matching
Each image is represented as a set of vectors in the D-

dimensional feature space. Features are quantized into discrete
types called visual words using K-means clustering or sparse
coding. The matching between features turns into a compari-
son between discrete corresponding types. Therefore, they are
matched if they are of the same type and unmatched otherwise.

SPM constructs a sequence of different scales with l =

0, 1, 2..., L on an image. In each scale, it partitions the image
into 2l × 2l sub-regions and applies the BoF model to measure
the similarity between sub-regions. Let X and Y be two sets
of vectors in the D-dimensional feature space. The similarity
between two sets at scale l is the sum of the similarity among
all corresponding sub-regions:

Kl(X,Y) =
22l∑
i=1

I(Xl
i ,Y

l
i ), (1)

where Xl
i is the set of feature descriptors in the ith sub-region

at scale l of the image vector set X. The intersection kernel I
between Xl

i and Yl
i is formulated as

I(Xl
i , Y

l
i ) =

V∑
j=1

min(HXl
i
( j),HYl

i
( j)), (2)

where V is the total number of visual words and Hα( j) is the
number of occurrences of the jth visual word which is obtained
by quantizing feature descriptors in the set α. Finally, the SPM
kernel (SPMK) is the sum of weighted similarity over the scale
sequence:

K(X, Y) =
1
2LK0(X,Y) +

L∑
l=1

1
2L−l+1Kl(X,Y). (3)

The weight 1
2L−l+1 associated with scale l is inversely pro-

portional to the sub-region width at that scale. This weight is
used to penalize the matching because it is easier to find the
matches in the larger regions. All matches found at scale l are
also included in a finer scale l − ζ with ζ > 0.

3.2 Proposed kernel: Hierarchical Spatial Matching
Kernel

To improve efficiency in achieving the similarity measure-
ment between sub-regions, we use a coarse-to-fine model on
sub-regions by mapping them into a sequence of different res-
olutions 2−r × 2−r with r = 0, 1, 2...,R as in3).

Xl
i and Yl

i respectively denote the sets of feature descriptors
in the ith sub-regions at scale l of image vector sets X, Y . At
each resolution r, we apply the normalized intersection kernel
F r using the square root diagonal normalization method to
measure the similarity as

F r(Xl
i ,Y

l
i ) =

I(Xl
i(r), Yl

i (r))√
I(Xl

i(r), Xl
i(r))I(Yl

i (r), Yl
i (r))
, (4)

where Xl
i(r), Yl

i (r) respectively denote the sets Xl
i , Yl

i at res-
olution r. The histogram intersection between X and itself
is equivalent with its cardinality. Consequently, letting NXl

i (r)

and NYl
i (r) be the cardinality of sets Xl

i(r) and Yl
i (r), the equa-

tion (4) is rewritten as

F r(Xl
i ,Y

l
i ) =
I(Xl

i(r), Yl
i (r))√

NXl
i (r)NYl

i (r)

. (5)

The square root diagonal normalization of the intersection ker-
nel not only satisfies Mercer’s conditions13), but also penalizes
the difference in cardinality between sets as in equation (5).

To obtain the synthetic similarity measurement of the
coarse-to-fine model, we define the linear combination over
a sequence of local kernels, each term of which is calculated
using equation (5) at each resolution. Accordingly, the kernel
function F between two sets Xl

i and Yl
i in the coarse-to-fine

model is formulated as

F (Xl
i ,Y

l
i ) =

R∑
r=0

θrF
r(Xl

i ,Y
l
i )

where
R∑

r=0

θr = 1, θr ≥ 0,∀r = 0, 1, 2, ...,R.

(6)

Moreover, when the linear combination of local kernels
is integrated with SVM, it can be reformulated as an MKL
problem where basic local kernels are defined as equation (5)
across the resolutions of the sub-region as

min
�wα,w0,�ξ,�θ

1
2

(
N∑
α=1

θα
∥∥∥ �wα
∥∥∥

2)2 + C
N∑

i=1

ξi

s.t. yi(
N∑
α=1

θα〈 �wα,Φα(�xi)〉 + w0) ≥ 1 − ξi
∑N
α=1 θα = 1, �θ ≥ �0, �ξ ≥ �0,

(7)

where �xi is an image sample, yi is the category label for �xi, N

is the number of training samples, ( �wα, w0, and �ξ) are parame-
ters of SVM, C is a soft margin parameter defined by users to
penalize training errors in SVM, �θ is a weight vector for ba-
sic local kernels, N is the number of the basic local kernels of
the sub-region over the sequence of resolutions, �θ ≥ �0 means
that any entry of vector �θ is nonnegative, Φ(�x) is the function
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(a) Input image

(b) HSMK Layout (c) Histogram of BoW using HSMK
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Fig. 2 Illustration for HSMK applied to images X and Y with L = 2 and R = 2 (a). HSMK first partitions the
images into 2l × 2l sub-regions with l = 0, 1, 2 as SPMK (b). However, HSMK applies a coarse-to-fine
model for each sub-region by considering it on a sequence of different resolutions 2−r×2−r with r = 0, 1, 2
(c). The weight set notes (aj

i , b
j
i , r

j
i ), where i is 0, 1, 2 and j is 1, 2, ..., 15, 16. The equation (8) with the

weight vector achieved from the uniform MKL is applied to obtain better optimal matching approximation
between sub-regions instead of using the BoW model as in SPMK.

that maps the vector �x into the reproducing Hilbert space, and
< ·, · > denotes the inner product. MKL solves the parameters
of SVM and the weight vector simultaneously for basic local
kernels.

These basic local kernels are defined analogously across res-
olutions of the sub-region. Therefore, the redundant infor-
mation between them is high. The experiments described by
Gehler and Nowozin8) and especially Kloft et al.14) have shown
that the uniform MKL, which is an approximation of MKL
into traditional nonlinear kernel SVM, is the most efficient for
this case in terms of both performance and complexity. Con-
sequently, formulae (6) with linear combination coefficients
obtained from the uniform MKL method become

F (Xl
i , Y

l
i ) =

1
R + 1

R∑
r=0

F r(Xl
i ,Y

l
i ). (8)

Figure 2 illustrates an application of HSMK with L = 2
and R = 2. HSMK also maps the sub-regions into a sequence
of different resolutions for PMK to obtain better measurement
of similarity between them. However, the weight vector is
achieved from the uniform MKL. Consequently, it is more ef-
ficient and theoretical than the predefined one in PMK. Fur-
thermore, applying the square root diagonal normalization al-
lows it to deal robustly with differences in cardinality that are
not considered in PMK. HSMK is formulated based on SPM
in the coarse-to-fine model, which is efficient with sets of un-
ordered feature descriptors, even in the presence of differences
in cardinality. Mathematically, the formulation of HSMK is
the following:

K(X, Y) =
1
2L F0(X, Y) +

L∑
l=1

1
2L−l+1 Fl(X, Y)

with Fl(X,Y) =
22l∑
i=1

F (Xl
i ,Y

l
i )

=
1

R + 1

22l∑
i=1

R∑
r=0

F r(Xl
i , Y

l
i ).

(9)

Briefly, HSMK uses the kd-tree algorithm to map each fea-
ture descriptor into a discrete visual word; then the normalized
intersection kernel by the square root diagonal method is ap-
plied to the histogram of V bins to measure the similarity. We
have N feature descriptors in the D-dimension space, and the
kd-tree algorithm costs O(log V) steps to map feature descrip-
tors. Therefore, the complexity of HSMK is O(DM log V)
with M = max(NX ,NY ). In fact, the complexity of the op-
timal matching kernel15) is O(DM3).

4. Experimental results

Most recent approaches use local invariant features as an
effective means of representing images because they can well
describe and match instances of objects or scenes under widely
various viewpoints, illuminations, or even background clutter.
Among them, SIFT16) has robust and efficient features. To
achieve better discriminative ability, we use the dense SIFT
by operating a SIFT descriptor of 16 × 16 patches computed
over each pixel of an image instead of key points16) or a grid
of points1). In addition to improving robustness, we convert
images into gray scale ones before computing the dense SIFT.
Dense features have the capability of capturing uniform re-
gions such as sky, water or grass where key points usually do
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Fig. 3 Example images of various datasets used in experiments: (a) Oxford flower dataset,
(b) Caltech 101 dataset, and (c) Scene Categorization dataset

Table 1 Classification rate (%) with a single feature compari-
son on Oxford Flower dataset (with NN that denotes
the nearest neighbor algorithm)

Method Accuracy (%)
HSV (NN)20) 43.0
SIFT-Internal (NN)20) 55.1
SIFT-Boundary (NN)20) 32.0
HOG (NN)20) 49.6
HSV (SVM)8) 61.3
SIFT-Internal (SVM)8) 70.6
SIFT-Boundary (SVM)8) 59.4
HOG (SVM)8) 58.5
SIFT (MSL)12) 65.3
Dense SIFT (HSMK) 72.9

Table 2 Classification rate (%) comparison between SPMK
and HSMK using the Oxford Flower dataset

Kernel M = 400 M = 800
SPMK 68.09% 69.12%
HSMK 71.76% 72.94%

not exist. Moreover, the combination of dense features and
the coarse-to-fine model allows images to be represented more
exactly because feature descriptors achieve more neighbor in-
formation across many levels in resolution. We performed un-
supervised K-means clustering on a random subset of SIFT
descriptors to build visual words. Typically, we used two dic-
tionary sizes M in our experiment: M = 400 and M = 800.

We conducted experiments for image categorization of two
types: object categorization and scene categorization. For ob-
ject categorization, we used the Oxford Flower dataset17). To
show the efficiency and scalability of our proposed kernel, we
also used the large scale object datasets such as CALTECH-
1015) and CALTECH-25618). For scene categorization, we
evaluated the proposed kernel on the MIT scene19) and UIUC
scene1) datasets. Example images of datasets used in experi-

ments are presented in Fig. 3.

4.1 Object categorization
To assess the efficiency of the proposed HSMK for object

categorization, we compared the classification accuracy with
that of conventional SPM in Oxford Flowers dataset and Cal-
tech datasets.
Oxford Flowers dataset: This dataset includes common
flowers in the United Kingdom 17 classes, collected by Nils-
back et al.17). Each class has 80 images with wide scale, pose,
and light variations. Moreover, intra-class flowers such as
irises, fritillaries, and pansies are widely diverse in their colors
and shapes. Some cases show close similarity between flowers
of different classes such as that between dandelion and Colts’
Foot. In our experiments, we followed the set-up of Gehler and
Nowozin8), randomly choosing 40 samples from each class for
training and using the rest for testing. We did not use a valida-
tion set as in17),20) for choosing the optimal parameters.

Table 1 shows that our proposed kernel achieved a state-
of-the-art results obtained using a single image feature. We
use various classifiers for comparison results such as Nearest
Neighbour (NN), SVM, and MSL12) method. The HSMK us-
ing dense SIFT gives 72.9% that outperformed not only SIFT-
Internal20) of 70.6%, the best feature for this dataset computed
on a segmented image, but also the same feature on SPMK
with the optimal weights by MSL of 65.3%. Table 2 shows
that the performance of our HSMK outperformed that of con-
ventional SPMK when using a single SIFT feature.
Caltech datasets: To show the efficiency and robustness
of HSMK, we also evaluated its performance on large-scale
object datasets, i.e., the CALTECH-101 and CALTECH-256
datasets. These datasets feature high intra-class variability,

The Journal of the Institute of Image Electronics Engineers of Japan Vol.42 No.2（2013）

218



Table 3 Classification rate (%) comparison using the CALTECH-101 dataset
5

training
10

training
15

training
20

training
25

training
30

training
Grauman & Darrell3) 34.8% 44% 50.0% 53.5% 55.5% 58.2%
Wang et al.12) - - 61.4% - - -
Lazebnik et al.1) - - 56.4% - - 64.6%
Yang et al.11) - - 67.0% - - 73.2%
Boimann et al.4) 56.9% - 72.8% - - 79.1%
Gehler & Nowozin (MKL)8) 42.1% 55.1% 62.3% 67.1% 70.5% 73.7%
Gehler & Nowozin (LP-β)8) 54.2% 65.0% 70.4% 73.6% 75.7% 77.8%
Gehler & Nowozin (LP-B)8) 46.5% 59.7% 66.7% 71.1% 73.8% 77.2%
Our method (HSMK) 50.5% 62.2% 69.0% 72.3% 74.4% 77.3%

Table 4 Classification rate (%) comparison between SPMK and HSMK using the CALTECH-101 dataset
5

training
10 training 15 training 20 training 25 training 30 training

SPMK (M = 400) 48.18% 58.86% 65.34% 69.35% 71.95% 73.46%
HSMK(M=400) 50.68% 61.97% 67.91% 71.35% 73.92% 75.59%

SPMK (M = 800) 48.11% 59.70% 66.84% 69.98% 72.62% 75.13%
HSMK(M=800) 50.48% 62.17% 68.95% 72.32% 74.36% 77.33%

Table 5 Classification rate (%) comparison on UIUC Scene
(15 classes) dataset

Method Accuracy (%)
Lazebnik et al. (SPMK)1) 81.4
Yang et al. (ScSPM)11) 80.3
SPMK 79.9
Our method (HSMK) 82.2

Table 6 Classification rate (%) comparison with the
CALTECH-256 dataset

Kernel 15
training

30
training

Griffin et al. (SPMK)18) 28.4% 34.2%
Yang et al. (ScSPM)11) 27.7% 34.0%
Gehler & Nowozin (MKL)8) 30.6% 35.6%
SPMK 25.3% 31.3%
Our method (HSMK) 27.2% 34.1%

poses, and viewpoints. On CALTECH-101, we conducted ex-
periments with 5, 10, 15, 20, 25, and 30 training samples for
each class, including the background class, and used up to 50
samples per class for testing. Table 3 compares the classifica-
tion rate results of our approach with other ones. As shown,
our approach obtained comparable results with those of state-
of-the-art approaches even using only a single feature, whereas
others used many types of features and complex learning al-
gorithms such as MKL and linear programming boosting (LP-
B)8). Table 4 shows that the result of HSMK outperformed that
of SPMK in this case as well. It is noteworthy that when the
experiment was conducted without the background class, our
approach achieved a classification rate of 78.4% for 30 train-
ing samples. This result shows that our approach is efficient in
spite of its simplicity.

On the UIUC Scene dataset, we followed the experimental

Table 7 Classification rate (%) comparison on MIT Scene (8
classes) dataset

Method Accuracy (%)
GIST19) 83.7
Local features21) 77.2
Dense SIFT (SPMK) 85.8
Dense SIFT (HSMK) 88.3

setup described in1). We randomly chose 100 training samples
per class. The rest were used for testing. As shown in Ta-
ble 5, the result of our proposed kernel also outperformed that
of SPMK1) as well as SPM based on sparse coding11) for this
dataset.

On CALTECH-256, we performed experiments with
HSMK using 15 and 30 training samples per class, includ-
ing the clutter class, and 25 samples of each class for testing.
We also re-implemented SPMK18) but used our dense SIFT
to enable a fair comparison of SPMK and HSMK. As shown
in Table 6, the HSMK classification rate was about 3 percent
higher than that of SPMK.

4.2 Scene categorization
We also performed experiments using HSMK on the MIT

Scene (8 classes) and UIUC Scene (1 5 classes) datasets. For
them, we set M = 400 as the dictionary size. On the MIT
Scene dataset, we randomly chose 100 samples per class for
training and 100 other samples per class for testing. As shown
in Table 7, the classification rate for HSMK was 2.5 percent
higher than that of SPMK. Our approach also outperformed
other local feature approaches21) as well as local feature com-
binations21) by more than 10 percent, and was better than the
global feature GIST19), an efficient feature in scene categoriza-
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Table 8 Classification rate (%) comparison between HSMK
with vector quantization and HSMK with sparse cod-
ing on an Oxford Flower dataset

HSMK Vector
Quantization

Sparse Coding

Linear kernel 63.53% 73.38%
Intersection kernel 72.94% 75.00%

Table 9 Classification rate (%) comparison between HSMK
with vector quantization and HSMK with sparse cod-
ing on CALTECH-101 dataset with 30 training sam-
ples

HSMK Vector
Quantization

Sparse Coding

Linear kernel 65.28% 78.93%
Intersection kernel 77.33% 80.60%

tion.

5. Experiments revisited: HSMK with Sparse Cod-
ing

As in section 4., hierarchical spatial matching kernel is
proved as an efficient and effective kernel. However, it is still a
nonlinear kernel because of the fact that an intersection kernel
is used as a basic kernel to build it. Therefore, it is difficult
to apply HSMK to address large-scale datasets effectively in
terms of time consumption. To help HSMK overcome this is-
sue, we exploit a sparse coding approach and max spooling
strategy to make data linear instead of using a vector quantiza-
tion method by K-means. Therefore, we can replace the inter-
section kernel by a linear kernel as a basic kernel to construct
HSMK based on the linear property of such data. It is worth-
while noting that the performance will become much greater
when we apply the linear kernel as a basic kernel in HSMK in
the case of using the vector quantization method.

We conducted the same configuration as that in section 4.
for experiments of HSMK with sparse coding, but we set a
dictionary size of M = 800. For sparse coding, we apply
l1 regularization instead of other regularization constraint like
l0 or l2 norm because l1 norm regularization is known as the
best choice for an image categorization problem11),22). Subse-
quently, we follow an efficient algorithm proposed by Lee et

al.23) to achieve the solution for a sparse coding problem.
Table 8 and Table 9 respectively show a comparison of ap-

plication between vector quantization and sparse coding with
HSMK on the Oxford Flower and CALTECH-101 datasets.
They prove that sparse coding is an efficient method to make
HSMK linear, it can maintain the performance of HSMK
as in case of using an intersection kernel as basic kernels.
The performance of HSMK with a linear kernel decreases
about 1.62% and 1.07% on Oxford Flower and CALTECH-
101 dataset respectively in comparison with HSMK with in-

tersection kernel while it is about 10% in the case of using
vector quantization.

We can explore from the results presented in Table 8 and
Table 9 that the performance of HSMK with the intersection
kernel is better than that of HSMK with the linear kernel for
both vector quantization and sparse coding in Oxford Flower
and CALTECH-101 datasets. Furthermore, it differs with the
case of spatial pyramid kernel which in11), Yang et al. claimed
that SPK with linear kernel was also better than SPK with non-
linear kernel when we used sparse coding.

The results of sparse coding for HSMK with the intersec-
tion kernel in Table 8 and Table 9 are, respectively, state-
of-the art results for the Oxford Flower and CALTECH-101
datasets. Therefore, HSMK with sparse coding is an effec-
tive approach for image categorization. Especially the perfor-
mance of HSMK with a linear kernel can achieve comparable
results to those of HSMK with a nonlinear kernel in the case
of using sparse coding.

6. Conclusion

As described in this paper, we propose an efficient and ro-
bust kernel that we call the hierarchical spatial matching kernel
(HSMK). It uses a coarse-to-fine model for sub-regions to im-
prove the spatial pyramid matching kernel (SPMK). Thereby,
it obtains more neighbor information through a sequence of
different resolutions. In addition, the kernel efficiently and ro-
bustly handles sets of unordered features as SPMK and pyra-
mid matching kernel as well as sets having different cardinali-
ties.

Combining the proposed kernel with a dense feature ap-
proach was found to be sufficiently effective and efficient. It
enabled us to obtain at least comparable results with those
by existing methods for datasets of many kinds. Moreover,
our approach is simple because it is based solely on a sin-
gle feature with nonlinear support vector machines, in contrast
to other more complicated recent approaches based on multi-
ple kernel learning or feature combinations. Additionally, it is
more effective when we combine HSMK with sparse coding.

In most well-known datasets of object and scene categoriza-
tion, the proposed kernel was also found to outperform SPMK,
which is an important component as a basic kernel in multiple
kernel learning. Therefore, we can replace SPMK with HSMK
to improve the performance of frameworks based on basic ker-
nels.

Acknowledgements

This work was supported in part by JST, CREST, and JSPS.

The Journal of the Institute of Image Electronics Engineers of Japan Vol.42 No.2（2013）

220



References
1) S. Lazebnik, C. Schmid, J. Ponce: “Bneyond Bags of Features: Spa-

tial Pyramid Matching for Recognizing Natural Scene Categories”, Proc.
of Computer Vision and Pattern Recognition(CVPR), pp.2169 – 2178
(2006).

2) S. Boughhorbel, J.P. Tarel, F. Fleuret: “Non-Mercer Kernels for Svm Ob-
ject Recognition”, Proc. of British Machine Vision Conference (2004).

3) K. Grauman, T. Darrell: “The Pyramid Match Kernel: Discriminative
Classification with Sets of Image Features”, Proc. of International Con-
ference on Computer Vision(ICCV), Vol.2, pp.1458 –1465 (2005).

4) O. Boiman, E. Shechtman, M. Irani: “In Defense of Nearest-Neighbor
Based Image Classification”, Proc. of Computer Vision and Pattern
Recognition(CVPR) (2008).

5) L. Fei-Fei, R. Fergus, P. Perona: “Learning Generative Visual Mod-
els from Few Training Examples: An Incremental Bayesian Approach
Tested on 101 Object Categories.”, Proc. of Workshop on Generative-
Model Based Vision (2004).

6) F. Moosmann, B. Triggs, F. Jurie: “Randomized Clustering Forests for
Building Fast and Discriminative Visual Vocabularies”, Proc. of NIPS
Workshop on Kernel Learning: Automatic Selection of Kernels (2008).

7) L. Yang, R. Jin, R. Sukthankar, F. Jurie: “Unifying Discriminative
Visual Codebook Generation with Classifier Training for Object Cat-
egory Recognition”, Proc. of Computer Vision and Pattern Recogni-
tion(CVPR), pp. 1–8 (2008).

8) P. Gehler, S. Nowozin: “On Feature Combination for Multiclass Ob-
ject Classification”, Proc. of International Conference on Computer Vi-
sion(ICCV), pp.221 –228 (2009).

9) S. Maji, A. Berg, J. Malik: “Classification Using Intersection Kernel
Support Vector Machines is Efficient”, Proc. of Computer Vision and
Pattern Recognition(CVPR), pp. 1–8 (2008).

10) J. Mairal, F. Bach, J. Ponce, G. Sapiro: “Online Dictionary Learning for
Sparse Coding”, Proc. of International Conference on Machine Learn-
ing(ICML), pp.689–696 (2009).

11) J. Yang, K. Yu, Y. Gong, T. Huang: “Linear Spatial Pyramid Matching
Using Sparse Coding for Image Classification”, Proc. of Computer Vi-
sion and Pattern Recognition(CVPR), pp.1794 –1801 (2009).

12) S.C. Wang, Y.C.F. Wang: “A Multi-Scale Learning Framework for Visual
Categorization”, Proc. of Asian Conference on Computer Vision(ACCV)
(2010).

13) B. Scholkopf, A.J. Smola, Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond, MIT Press, Cam-
bridge, MA, USA (2001).

14) M. Kloft, U. Brefeld, P. Laskov, S. Sonnenburg: “Non-Sparse Multiple
Kernel Learning”, Proc. of NIPS Workshop on Kernel Learning: Auto-
matic Selection of Kernels (2008).

15) R.I. Kondor, T. Jebara: “A Kernel Between Sets of Vectors”, Proc.
of International Conference on Machine Learning(ICML), pp.361–368
(2003).

16) D.G. Lowe: “Distinctive Image Features from Scale-Invariant Key-
points”, International Journal of Computer Vision, Vol.60, No.2, pp.91–
110 (2004).

17) M.E. Nilsback, A. Zisserman: “A Visual Vocabulary for Flower Clas-
sification”, Proc. of Computer Vision and Pattern Recognition(CVPR),
pp.1447–1454 (2006).

18) G. Griffin, A. Holub, P. Perona: “Caltech-256 Object Category Dataset”,
Technical Report No.7694, California Institute of Technology (2007).

19) A. Oliva, A. Torralba: “Modeling the Shape of the Scene: A Holistic
Representation of the Spatial Envelope”, International Journal of Com-
puter Vision, Vol.42, No.3, pp.145-175 (2001).

20) M.E. Nilsback, A. Zisserman: “Automated Flower Classification over
a Large Number of Classes”, Proc. of Indian Conference on Computer
Vision, Graphics and Image Processing(ICVGIP) (2008).

21) M. Johnson: “Semantic Segmentation and Image Search”, Ph.D. thesis,
University of Cambridge (2008).

22) R. Raina, A. Battle, H. Lee, B. Packer, A.Y. Ng: “Self-Taught Learning:
Transfer Learning from Unlabeled Data”, Proc. of International Confer-
ence on Machine Learning(ICML) (2007).

23) H. Lee, A. Battle, R. Raina, A.Y. Ng: “Efficient Sparse Coding Algo-
rithms”, Proc. of NIPS (2006).

24) T.T. Le, Y. Kang, A. Sugimoto, S.T. Tran, T.D. Nguyen: “Hierarchi-
cal Spatial Matching Kernel for Image Categorization”, Proc. of Interna-
tional Conference on Image Processing and Recognition (ICIAR) (2011).

(Received November 30, 2012)

Tam T. LE
He received his B.S. degree in the honors program
and M.S degree in Computer Science from the Uni-
versity of Science, Vietnam National University
HCMC, Vietnam in 2008 and 2011, respectively.
He was a Lecturer and Research Assistant at the
University of Science, VNU-HCMC, Vietnam. He
is currently a PhD student at Graduate school of
Informatics, Kyoto University, Japan. His research
interests include image categorization, feature rep-
resentation, sparse coding, and kernel methods.

Yousun KANG (Member)
She received a Ph.D. degree from Tokyo Institute
of Technology in 2010. She worked with Toy-
ota Central R&D LABS., Inc. for three years
from 2007. During 2010–2011, she was a re-
searcher in the National Institute of Informatics,
Japan. She is currently an Associate Professor at
Tokyo Polytechnic University. Her research inter-
ests include texture analysis, scene understanding,
pattern recognition, image processing, and com-
puter vision. She is a member of the RSJ, IIEEJ
and IEICE of Japan.

Akihiro SUGIMOTO
He received his B.S, M.S, and Dr. Eng. degrees in
Mathematical Engineering from The University of
Tokyo in 1987, 1989, and 1996, respectively. Af-
ter working at Hitachi Advanced Research Labora-
tory, ATR, and Kyoto University, he joined the Na-
tional Institute of Informatics, Japan, where he is
currently a professor. During 2006–2007, he was a
visiting professor at ESIEE, France. He received a
Paper Award from the Information Processing So-
ciety in 2001. He is a member of IEEE. He is in-
terested in mathematical methods in engineering.
Particularly his current main research interests in-
clude discrete mathematics, approximation algo-
rithm, vision geometry, and modeling of human vi-
sion.

The Journal of the Institute of Image Electronics Engineers of Japan Vol.42 No.2（2013）

221




