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Abstract—Based on the spherical harmonics representation of image formation, we derive a new photometric metric for evaluating the

correctness of a given rigid transformation aligning two overlapping range images captured under unknown, distant, and general

illumination. We estimate the surrounding illumination and albedo values of points of the two range images from the point

correspondences induced by the input transformation. We then synthesize the color of both range images using albedo values

transferred using the point correspondences to compute the photometric reprojection error. This way allows us to accurately register

two range images by finding the transformation that minimizes the photometric reprojection error. We also propose a practical method

using the proposed photometric metric to register pairs of range images devoid of salient geometric features, captured under unknown

lighting. Our method uses a hypothesize-and-test strategy to search for the transformation that minimizes our photometric metric.

Transformation candidates are efficiently generated by employing the spherical representation of each range image. Experimental

results using both synthetic and real data demonstrate the usefulness of the proposed metric.

Index Terms—Range image, registration, photometry, spherical harmonics, photometric reprojection

Ç

1 INTRODUCTION

AUTOMATING the 3D modeling process of real objects is a
topic of major importance. Three-dimensional models

of real objects are widely used in the industry for
applications ranging from digitalization of cultural heritage
to medical imagery, but also for postproduction verification
or situational awareness, to cite a few.

Recent laser scanning techniques allow the acquisition of
high-accuracy range images with color attached to each
point. Since only a part of the object is visible from one
viewpoint, a wide class of 3D modeling techniques starts
by acquiring multiple range images from different view-
points or for different object poses to ensure that full
coverage of the object’s surface is captured. All range
images then have to be aligned together before being
merged and integrated into a common 3D model. This is
because each range image is represented in the local
coordinate system defined by the sensor position and
orientation. The process of aligning pairs of range images is
called pairwise range image registration.

Let us here clarify our situation of interest. Recently,
with the development of RGB-D video cameras, a new
trend of work has emerged on registering and fusing
dense sequences of depth images [9], [11]. Our situation,
however, assumes using a high-accuracy laser scanner for
constructing a high-accuracy 3D model of a single object.
Because of the time of acquisition and heavy experimental
manipulations for such a laser scanner, it is in general

preferred to capture as few range images as possible. This
is why we focus on pairwise registration only. Since we are
considering only two range images, fusion techniques such
as the volumetric method proposed in [11], which are used
in the frame-to-global-model registration strategy, are not
applicable in our case. Moreover, note that the output data
obtained with a laser scanner and an RGB-D video camera
are different. The first difference is the accuracy in the
depth measurements. The second difference is that a laser
scanner can be precisely tuned to focus on a desired area
of the scene. This allows discarding points that are away
from the object of interest. It is even possible to directly
acquire nicely segmented out objects with a laser scanner.
RGB-D sensors such as the Microsoft Kinect camera do not
have this property and provide, in general, cluttered
scenes containing not only the object of interest but also
most of the surrounding points. In this paper, we focus on
registering range images acquired with a laser scanner and
thus we do not consider either cluttered scenes or
background.

A concrete scenario may be, for example, the 3D
modeling of archeological objects. For study and/or
analysis of archeological objects, it is important to obtain
high-accuracy 3D models that fit well to the real shape of
the object. As a consequence, laser scanners (which are
still the most accurate depth sensors) are in general used
to capture data of high quality. By putting a target object
on a black table and tuning the focus of the laser scanner,
it then becomes possible to capture range images of a
single, cleanly segmented out object that can be directly
input for registration.

Many studies have been proposed that allow accurate
pairwise registration of range images ([2], [3], [12], [13]).
However, they highly rely on the geometry and/or texture
of the object to be modeled and inevitably fail in some
situations. In particular, a challenge arises when the input
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range images, captured under unknown lighting, lack
discriminative geometric features. Such a situation is likely
to occur when modeling man-made objects outside of the
laboratory. A concrete scenario may be the on-site digita-
lization of cultural heritage such as ancient pottery (which
are likely to exhibit strong symmetries in their shape).

When an object’s surface lacks discriminative geometric
features, textural features (derived from the object’s
textured surface) are often used to guide the registration
([2], [17]). However, under general illumination conditions,
the assumptions required for using textural features (such
as color consistency or color normalization) do not hold
true, and using illumination-invariant features such as
reflectance properties (albedo for the diffuse reflectance)
becomes preferable [23]. Without known correspondences
between two range images or without known illumination,
however, computing such features is not possible. There-
fore, the feature-based approach where features are used
to find correspondences does not work under unknown
lighting.

Another approach to registration can be found where
alignment is achieved by minimizing a cost function [4],
[18] without using explicit point correspondences. In
general, the cost function is based on reprojection error.
Defining such functions for 2D images has been widely
studied and famous methods such as the cross-correlation
method are available. However, defining such functions for
range images remains an open challenge.

Some works exist in which the cost function is derived
using a combination of robust geometric metrics and robust
textural metrics (those textural metrics are, in general,
direct extensions of the 2D textural metrics) [17]. If the
combination is done independently, such as a weighted
sum of geometric entities and textural ones, however, the
results are not completely satisfactory in that it requires
fine tuning and still presents several limitation cases.
Therefore, there is a need to define a metric that accounts
for both entities concurrently and that is supported by the
theory. Photometry, which is the theory that relates
geometry, reflectance properties, and incident illumination,
is well suited for our purpose.

We investigate the use of photometry for 3D registration
and propose: 1) a novel photometric metric for evaluating
the correctness of a given transformation and 2) a practical
registration method. We consider the situation where the
object pose changes during acquisition while the viewpoint
and illumination stay fixed. We assume a Lambertian
reflection with no interreflections nor any cast shadows. We
note that when the object’s pose changes while the
illumination stays fixed, its appearance in both shape and
color changes. By contrast with state-of-the-art methods that
strive to cancel lighting to independently combine geo-
metric and textural entities, our proposed method makes
use of lighting by concurrently taking into account geo-
metric and textural entities to gain discriminative power
that facilitates the search for the best alignment.

The spherical harmonics give a compact yet accurate
representation of image formation. For a given transforma-
tion and its induced point correspondences, this represen-
tation allows the estimation of illumination and albedo,

both of which are used with one range image to synthesize
the color image of the other range image. The difference
between the synthesized color images and the captured
color images (we will refer to it as the photometric
reprojection error) defines our photometric metric without
using any a priori information on the incident lighting. This
function evaluates the consistency of the relationship
between geometry, texture, and illumination. Note that
not only the color of corresponding points but also normal
at points are used concurrently to produce the synthesized
images. In the extreme case, this allows us to work even
when the surface of the object is untextured.

We use a hypothesis-and-test registration method to
demonstrate the usefulness of our proposed photometric
metric. Our method carries out registration not by estimat-
ing transformations from point correspondences but by
generating transformations and evaluating them to find the
best one. Directly evaluating each possible transformation is
computationally unrealistic, even using RANSAC-like
methods [5]. To efficiently generate transformations, we
use the spherical representation of each range image. Over
the sphere, we generate rigid transformations and evaluate
them to reach the best one for the final result.

The contribution of our work is twofold: 1) We derive a
photometric function to evaluate given transformations
under general and distant, unknown lighting, and 2) we
demonstrate the effectiveness of our photometric metric by
implementing a practical registration method using the
hypothesis-and-test search strategy. To the best of our
knowledge, this is the first work that registers range images
devoid of salient geometric features under general and
distant unknown lighting using photometry. We remark
that a part of this work has been reported in [24].

2 RELATED WORK

In general, pairwise registration methods can be divided
into two categories: 1) the one that searches for the best
correspondences between points of the two range images to
find the best transformation, 2) the one that searches for the
best transformation by minimizing a cost function. While
the methods that fall into the first category are fast in
general, methods falling into the second category are, in
general, more robust and accurate.

2.1 Registration Using Point Correspondences

In general, methods searching for the best correspondences
consist of feature detection and description, followed by
feature matching (the transformation aligning two range
images is then estimated using the obtained correspon-
dences). The iterative closest point (ICP) [3] and its variants
are popular methods where points are matched to their
closest point. The list of correspondences is iteratively
updated until the estimated transformation converges to a
stable solution. The major drawback of the ICP-like
approach is that it may get trapped in local minima and
thus depends highly on the initial alignment.

Many interest point detectors and feature descriptors
have been proposed in the last decade to establish point
correspondences using textural features. In early work,
Johnson and Kang [14] or Okatani and Sugimoto [17]
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proposed using color or chromaticity to match points.
However, the color and chromaticity of a point are not
distinctive by themselves and good quality of correspon-
dences cannot be achieved.

The SIFT and SURF descriptors ([2], [16]) are popular
textural features which are extensively used for aligning 2D
images. Seo et al. [21] extended the SIFT feature for range
image alignment by accounting for the projective distortion.
However, SIFT-like methods do not account for changes in
pose-illumination relationship, but rely on the color normal-
ization assumption (i.e., intensity changes uniformly with
changes in illumination, and normalization of features with
respect to the overall intensity is sufficient). The above-
mentioned methods thus all suffer from changes in the
pose-illumination relationship.

Thomas and Sugimoto [23] proposed using albedo
(which is invariant to pose-illumination relationship) to
register pairs of range images devoid of salient geometric
features. However, this approach assumes simple illumina-
tion (a single point light source), which is rarely the case in
a practical situation.

In a broader sense, photometry states the relationship
between geometry, reflectance properties, and incident
illumination. As a consequence, from a single range image
it is not possible to estimate one of the three without
knowing the others. Therefore, the feature-based approach,
where features are computed for two range images
independently, fails in some situations when illumination
is not known.

2.2 Registration by Minimizing a Cost Function

Matching features is not the only way we can take to align
range images. Other transformation search methods can be
found in the literature where a cost function is minimized
over a parameter space. Some use the optimization strategy
such as Gauss-Newton ([4], [8], [12], [18]), and some use the
hypothesis-and-test strategy such as RANSAC or brute-
force search ([7]). In [8], for example, the similarity measure
is defined as the cross correlation of the spherical
representations of surfaces, and it is customized according
to the surface-intrinsic attributes while the spherical
harmonics speed up the optimization process. The optimi-
zation method is fast but sensitive to the initial alignment,
while the hypothesis-and-test strategy does not depend on
initialization, even though it may be slower.

Several geometric cost functions as well as 2D textural
cost functions have already been explored. However, to the
best of our knowledge, there is not yet work done on
defining a 3D photometric metric for aligning pairs of range
images, and as far as we know, no photometric metric
under unknown lighting has been reported.

3 THE PHOTOMETRIC METRIC

We introduce our photometric metric under unknown
lighting that does not compare features but computes
reprojection error. By doing so, we simultaneously take into
account geometry, reflectance properties, and illumination
to derive a metric that makes full use of photometry. Fig. 1
illustrates the derivation of our proposed metric.

3.1 Review of Spherical Harmonics Representation

The spherical harmonics have been shown to be a powerful

tool to model image formation [19], and, for the Lambertian

reflectance, up to the second-order spherical harmonic

expansion is known to be sufficient to approximate the

image formation with more than 98 percent accuracy [1].

We briefly recall the principles of the spherical harmonics

representation and refer to [1] for more details.
We consider a convex, Lambertian object illuminated by

distant isotropic lights. The intensity of the reflected light is

known to be a function of the normal and albedo. Namely,

according to the Lambert’s law and for an incident light ray

of intensity �, the intensity of the reflected ray at a point xxxx, is

�maxðcosð�Þ; 0Þ, where � is the angle between the incident

light ray and the normal at the surface at point xxxx. Then, the

irradiance EðxxxxÞ at a point xxxx for a distant global illumination

L and the diffuse reflection kernel1 R is given by an integral

over the sphere:

EðxxxxÞ ¼
Z 2�

0

Z �

0

Lð�; �ÞRðGxxxxð�; �ÞÞsinð�Þd�d�; ð1Þ

where ð�; �Þ are the incident angles in the global coordinate

system and Gxxxx is the transformation from the global

coordinate system to the local coordinate system centered

around the normal of the point xxxx.
The irradiance at a point xxxx is then scaled by the albedo

�ðxxxxÞ to have the color of the point: IðxxxxÞ ¼ �ðxxxxÞEðxxxxÞ. The

spherical harmonics allow a compact representation of the

image formation. Namely, the color IðxxxxÞ of a point xxxx on

the Lambertian surface is approximated as

IðxxxxÞ � �ðxxxxÞ
X2

l¼0

Xl
m¼�l

Ll;mRl;mðxxxxÞ; ð2Þ

where Ll;m and Rl;mðxxxxÞ represent the spherical harmonic

coefficients of L and R �Gxxxx, respectively (� stands for the

function composition operator). We notice that the sphe-

rical harmonic coefficients Rl;mðxxxxÞ of the Lambertian

reflection kernel R �Gxxxx are known as functions of the

normal at point xxxx ([1]).
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Fig. 1. Procedural evaluation of a given transformation.

1. Rð�Þ ¼ maxðcosð�Þ; 0Þ.



3.2 Evaluation Metric for a Transformation

We use the spherical harmonics representation of image
formation to derive our photometric evaluation metric for a
given rigid transformation. We remark that our photometric
metric does not suffer from scale ambiguity that arises
when estimating photometric features; neither requires any
a priori information on the incident illumination.

A given transformation between two range images
(range images 1 and 2) induces point correspondences
across the two images. We use the spherical harmonics
representation of image formation to derive a linear system
from the point correspondences with the illumination as
unknown. The estimated illumination then allows us to
compute albedo values at points of the range images, which
are transferred to their corresponding points. The trans-
ferred albedo values are used together with the estimated
illumination and geometry to synthesize colors of the two
range images. The synthesized colors are then compared
with the captured colors of the two range images to
evaluate the photometric consistency (i.e., photometric
reprojection error) of the alignment induced by the given
rigid transformation.

Let T denote a given transformation and

ðxxxxi;�ðT ðxxxxiÞÞÞi2½0;n�1� and ð�ðT�1ðyyyyiÞÞ; yyyyiÞi2½0;m�1�

denote the induced point correspondences, where xxxxi 2 RRRR3

belongs to range image 1 (denoted as I1), yyyyi 2 RRRR3 belongs to
range image 2 (denoted as I2), and � denotes the point
correspondences identification operator (see Section 3.3). If
T accurately aligns the two range images, then two
corresponding points represent the same point of the
surface viewed in different poses, and their albedo is the
same �ðxxxxiÞ ¼ �ð�ðT ðxxxxiÞÞÞ (similarly, �ðyyyyiÞ ¼ �ð�ðT�1ðyyyyiÞÞÞ).
R is known and depends on only the surface normals.

Therefore, using (2), we can derive a linear system LM ¼ 0
with L as unknown, where L ¼ ½L0;0; L1:�1; L1;0; L1;1; L2:�2;
L2;�1; L2;0; L2;1; L2;2� is a row vector in 9D and M ¼
½Mi�i2½0;nþm�1� is a 9� ðnþmÞ matrix, where n and m are
the number of corresponding points from range images 1
and 2, respectively, with

Mi ¼ ½I1ðxiÞR0;0ð�ðT ðxiÞÞÞ � I2ð�ðT ðxiÞÞÞR0;0ðxiÞ;
. . . ; I1ðxiÞR2;2ð�ðT ðxiÞÞÞ � I2ð�ðT ðxiÞÞÞ
R2;2ðxiÞ�> ðif i < nÞ;

Mi ¼ ½I2ðyiÞR0;0ð�ðT�1ðyiÞÞÞ � I1ð�ðT�1ðyiÞÞÞ
R0;0ðyiÞ; . . . ; I2ðyiÞR2;2ð�ðT�1ðyiÞÞÞ
� I1ð�ðT�1ðyiÞÞÞR2;2ðyiÞ�> ðif n � i < nþmÞ:

8>>>>>>>>>><
>>>>>>>>>>:
The matrix M is known, and we can estimate the

illumination ~LðT Þ with respect to the given transforma-
tion T using the SVD, up to an unknown scaling factor �
(� 6¼ 0). We can then estimate albedo of each point:

�ðxxxxÞ ¼ 1

�

IðxxxxÞP2
l¼0

Pl
m¼�l

~Ll;mðT ÞRl;mðxxxxÞ

 !
: ð3Þ

We need to carefully choose an attribute for our
evaluation. For example, comparing the estimated albedo
of corresponding points is not effective. This is because the

photometric solution for a given transformation has scale

ambiguity, and regardless of the relationship between

geometry, illumination, and albedo, a solution with a

small-scaled albedo always gives better results. Namely,

the reprojection error k ~LðT ÞMk or the residual error in

albedo k�ðxxxxiÞ � �ð�ðT ðxxxxiÞÞÞk is different for ~L and � ~L, with

� 6¼ 1 while ~L and � ~L correspond to the equivalent

photometric solution. We thus use the captured color images

as the ground truth to evaluate the transformation T . This is

justified by the fact that the estimated photometric

properties should be coherent with the correspondences

and the captured images if T is accurate.
Corresponding points ðxxxxi;�ðT ðxxxxiÞÞÞ should have the

same albedo if T is accurate. We thus synthesize the color of

xxxxi in range image 1 as follows:

~I1
T ðxxxxiÞ ¼ �ð�ðT ðxxxxiÞÞÞ

X2

l¼0

Xl
m¼�l

~Ll;mðT ÞRl;mðxxxxiÞ: ð4Þ

Similarly, we synthesize the colors ~I2
T ðyyyyiÞ of points yyyyi in

range image 2.
We now define our photometric reprojection error of T :

EvalðT Þ ¼
Pn�1

i¼0 kI1ðxxxxiÞ � ~I1
T ðxxxxiÞk þ

Pm�1
i¼0 kI2ðxxxxiÞ � ~I2

T ðxxxxiÞk
nþm :

ð5Þ

We remark that the unknown scaling factor � that arises

when estimating albedo in (3) is no longer present in (5).
We notice that the shape of Eval depends on T .

Namely, ~I1
T and ~I2

T change even for the same point,

depending on T . Thus, the derivation of Eval is procedural

and we do not have an analytical formula for the function.

In addition, ~I1
T and ~I2

T are only piecewise continuous with

sufficiently similar transformations. This is because the

distribution of albedo over the surface is only piecewise

continuous. As a consequence, the values of the entries of

the matrix M in the linear system defined above vary

piecewise continuously with sufficiently similar transfor-

mations and so does the estimated photometric properties

as well as the synthesized images.

3.3 Point Correspondences Identification

Though it is a simple task, identifying the point correspon-

dences from the given transformation T is the most time-

consuming one for our evaluation metric. It is thus of major

importance to perform it as fast as possible. We use

projective data association [20] to realize fast point correspon-

dences estimation.
For two range images I1 and I2, their corresponding depth

maps D1 and D2 with the associated intrinsic matrix K, and

the given transformation T aligning I1 to I2, the corre-

sponding point �ðxxxxÞ 2 I2 of a point xxxx 2 I1 is identified as

follows: 1) xxxx is transformed into the camera coordinate

system of I2 (yyyy ¼ Txxxx), 2) the point yyyy is perspective projected

into image coordinates (ði; j; 1Þ ¼ Kyyyy), 3) �ðxxxxÞ, the closest

point in I2 of xxxx, is then identified as the point associated to

the pixel ði; jÞ in D2. Searching for the closest points from I2

to I1 is carried out similarly.

THOMAS AND SUGIMOTO: RANGE IMAGE REGISTRATION USING A PHOTOMETRIC METRIC UNDER UNKNOWN LIGHTING 2255



3.4 Stable Points Identification

Points in the overlapping area do not always correspond
exactly. This is due to different digitization of the over-
lapping area depending on the object pose. As a conse-
quence, even for the best transformation aligning the range
images, there may be some point correspondences
ðxxxx;�ðT ðxxxxÞÞÞ that do not satisfy the statement �ðxxxxÞ ¼
�ð�ðT ðxxxxÞÞÞ. This is because the distribution of albedo at
an object’s surface is not continuous. In such a case, the
quality of the estimated photometric properties (illumina-
tion and albedo) may be significantly degraded, which
would reduce the reliability of our photometric metric. To
overcome this problem, we first identify a stable point, i.e.,
a point whose albedo and normal values are sufficiently
similar to those of its corresponding point even though the
correspondence may not be exact. We then use only stable
points to evaluate our photometric function. We extract
stable points independently from two range images as a
preprocessing step.

It is well known that in a small vicinity and for diffuse
reflection, the difference in chromaticity approximates
the difference in albedo well. Accordingly, we define a
stable point using both difference of chromaticity and
difference of normals in a small vicinity. Namely, a point xxxx
is identified to be stable if

8yyyy such that kyyyy� xxxxk < �s;

kcðxxxxÞ � cðyyyyÞk < �c and knnnnðxxxxÞ � nnnnðyyyyÞk < �n;
ð6Þ

where yyyy is a point in the range image concerned, c is
chromaticity, nnnn represents the surface normals, and �s, �c,
and �n are three thresholds.

4 ANALYSIS OF THE PHOTOMETRIC METRIC

We analyze the behavior of our photometric metric under
various parameters. Starting from the ground-truth trans-
formation that perfectly aligns two range images, we
generate several transformations by randomly perturbing
the parameters of the ground-truth transformation and plot
the photometric reprojection error as the function of the
registration error (7) for each generated transformation. We
notice that when the function is not defined (insufficient
number of corresponding points), the photometric metric
returns þ1. We then clamp the photometric reprojection
error to ½0; 255� for better visualization.2 The random
perturbation was obtained by perturbing the rotation angles
inside the range ½�0:3; 0:3� radians and the translation

values inside the range ½�0:7; 0:7� mm. First, a uniform
noise was applied with range ½�0:3; 0:3� radians for
perturbations in the angles and ½�0:7; 0:7� mm for the
perturbations in the translation. To increase the density of
transformations generated close to the ground truth, we
then successively applied a uniform noise with ranges
½�0:15; 0:15�, ½�0:07; 0:07�, and ½�0:03; 0:03� radians for
perturbations in the angles and ½�0:3; 0:3�, ½�0:1; 0:1�, and
½�0:01; 0:01� mm for the perturbations in the translation.

We performed this procedure for different illumination
conditions and different values of �s. We chose to test our
photometric metric against different values of �s because it
is the parameter that reflects the size of the neighborhood
used in identifying the stable points.

4.1 Our Metric against Different Illumination
Conditions

Fig. 3 illustrates our photometric metric with respect to the
different illumination conditions illustrated in Fig. 2. We
remark that many points are accumulated on the line
error ¼ 255, and that the more the registration error
increases, the more points are accumulated on this line.
This is due to clamping our metric to ½0; 255�. In all
situations, we used the same range images, with the same
initial positions. Situation 1 (Fig. 2a) is obtained by
illuminating the two range images with a light probe using
the spherical harmonics representation of image formation.
Situations 2, 3, and 4 (Figs. 2b, 2c, and 2d) are obtained by
illuminating the range images with an ambient light and a
point light source in different positions and with different
colors. In Situations 2, 3, and 4, the classic Lambertian
reflection model was used to simulate image formation. For
all situations, the stable points were identified using the
parameters �s ¼ 0:03, �c ¼ 0:01, and �n ¼ 0:2.

First, we observe that while the variation in the
photometric reprojection error is large for transformations
with large registration error (most of the metric values are
then above 255), it becomes small for transformations with
small registration errors (most of the metric values are then
below 255). This is naturally explained by the fact that the
transformations with larger registration errors are much
more different from each other than those with smaller
registration errors (and so for the point correspondences).

Second, we observe that the behavior of our photometric
metric is similar in all situations, even though the
illumination conditions are completely different (extended
light sources in situation 1, point light source with different
positions and different colors in the other three situations).
This is because no a priori information on the illumination
is used in deriving the photometric cost function.
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Fig. 2. The four different illumination conditions.



Third, we observe that for the same registration error,
our photometric metric can have different values. Two
factors explain this phenomena. 1) While the registration
error is the same, the transformations are different. For
example, from the ground-truth position, sliding one range
image to the left or to the right with the same translation
magnitude gives the same registration error. However, the
point correspondences are different, which gives different
photometric reprojection errors (Fig. 4). 2) The texture at the
surface of an object is not continuous. As a consequence,
while in some directions the normals and albedo values
vary smoothly, in some other directions the albedo values
may change brutally (Fig. 5). This explains why in some
cases, even for a small change in the registration error, the
photometric reprojection error changes drastically and why
in some cases, even for significant change in the registration
error, it changes slowly.

Finally, we observe that, as expected, the transformations
with the minimum photometric reprojection errors are also
the ones with the minimum registration errors. We notice,
however, that the extreme case exists where two different
transformations give the minimum photometric reprojec-
tion error. Namely, this situation occurs if albedo values
and normals exhibit the same symmetries. This extreme
case rarely occurs in real situations and we may ignore such
a case from the practical point of view.

From these observations, we can conclude that 1) a
transformation with a small photometric reprojection error
is close to the ground-truth transformation aligning the
range images, 2) the minimal solution is almost insensitive
to changes in illumination, and 3) our proposed photo-
metric metric will be difficult to minimize using traditional
optimization methods.

4.2 Our Metric against Different Values of �s
Fig. 6 illustrates our photometric metric with respect to
different values for �s. We remark that �s reflects the
minimum size of the neighborhood containing points with

similar albedo and normal values required for a point to be
identified as stable.

On one hand, we observe that when �s increases, the
values taken by our metric become more concentrated for
small registration errors and more sparse for large registra-
tion errors. The first effect can be explained by the fact that
for a large �s, the chromaticity and normals around the
stable points are homogeneous inside a large area. There-
fore, for slightly different transformations, the albedo and
normal values of the corresponding points change slightly
and then the matrix M defined in Section 3.2 also does so.
Thus, the photometric reprojection error varies more slowly
with respect to the transformation when �s increases. The
second effect can be explained by the fact that when �s
increases, the number of stable points decreases, and then
the number of situations where the number of correspon-
dences is insufficient for estimating Eval increases.

On the other hand, we observe that when �s increases,
our photometric metric becomes less discriminative for
evaluating the quality of the registration. This is because the
albedo and normal values of the stable points become less
discriminative (similar chromaticity and normals for corre-
spondences obtained for slightly different transformations).

In conclusion, a large value for �s brings more robustness
to our metric, while a small �s brings more discriminative
power to our metric (and thus increases its accuracy).

5 REGISTRATION

Given two overlapping range images, we seek a rigid
transformation that minimizes the photometric reprojection
error defined in (5). When minimizing the photometric
reprojection error, we have to decide the strategy we use.
As we discussed in Section 4, our proposed photometric
metric is hard to minimize using traditional optimization
methods. Therefore, we choose the hypothesis-and-test
search. Fig. 7 illustrates the flowchart of our proposed
registration method.
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Fig. 4. Two different transformations having the same registration errors
give different photometric reprojection errors.

Fig. 5. The photometric reprojection error varies differently for different
directions of the transformation.

Fig. 3. Photometric reprojection error in function of the registration error for the different situations.



5.1 Transformation Search

The hypothesis-and-test search is performed by testing the
correctness of the registration for a set of rigid transforma-
tion candidates. The search ends when a rigid transforma-
tion accomplishing accurate registration is found or when
all candidates are tested (the rigid transformation minimiz-
ing the cost function is then selected).

The most famous hypothesis-and-test search is the
RANSAC method, where candidates are generated from
random triplets of correspondences. Straightforwardly
using RANSAC is computationally unrealistic. This is
because we have potentially around 1012 possibilities for
range images with 104 points. Therefore, how to efficiently
search the best rigid transformation aligning range images
becomes a critical issue.

On one hand, rigid transformations aligning two range
images can be equivalently represented by sets of rigid point
correspondences induced by the transformations. Therefore,
if we represent the range image in another domain while
keeping the rigidity of point correspondences, we can
discuss the problem of searching the best transformation
aligning the range images in this new domain.

On the other hand, the unit sphere is a convenient
representation of a close-zero genus 3D surface. For closed
surfaces,3 the spherical representation is pose invariant
[26]. Therefore, the local structure in the spherical domain
does not change and the rigidity of point correspondences
is kept. In addition, the rigid transformations aligning two
spheres belong to SOð3Þ. We thus employ the spherical
representation for range images. This representation
reduces the transformation parameter space from SOð3Þ �
RRRR3 to SOð3Þ.

The spherical representation of range images is, unfortu-
nately, not pose invariant because surfaces in a range image
are not closed. As a consequence, the local structure in the
spherical domain may change in the original domain. This
means that the rigidity of point correspondences in the
spherical domain may not be kept in the original domain.
To tackle this problem, we introduce refinement of the
spherical representations throughout the registration pro-
cess to reduce changes of the local structure in the spherical
domain as much as possible. Due to the possibility of
violating rigidity of point correspondences in the original
domain, we also have to generate the rigid transformations
in the original domain from the point correspondences
obtained in the spherical domain using the method
proposed by Horn [10] as follows: A 3D rotation in SOð3Þ
gives us point correspondences in the spherical domain. In

the original domain, we use the same point correspon-
dences as the input of [10] to obtain the corresponding rigid
transformation in SOð3Þ �RRRR3.

We remark that though we can use the RANSAC method
to generate transformation candidates from SOð3Þ, we
prefer to use an exhaustive search to ensure convergence
to the optimal solution. To reduce the computational time,
we reduce ½0 : 360�3 to ½0 : 20

step�
3, where step increases during

the iteration. In the experiments, we set step ¼ 2i for the
ith iteration, with i ranging from 0 to maxiter. Note that we
uniformly sampled the current searching space at every
iteration. In the experiments, at every iteration, we sampled
11 points in each dimension.

5.2 Spherical Representation and Refinement

Our spherical representation method is inspired by the
method proposed in [26] for closed surfaces. The input is an
unorganized point set represented in the global coordinate
system, and the output is a structured mesh with
corresponding coordinates on the unit sphere that preserves
the local structure. We note that the spherical representation
of each range image is computed independently.

5.2.1 Spherical Representation

We first orthogonally project all the 3D points of a range
image along the z-axis (viewing direction) to a plane. We
then compute the convex hull of the projected points and
identify the vertices of the convex hull. The vertices are
used to generate Delaunay triangulations. The set of 3D

2258 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 35, NO. 9, SEPTEMBER 2013

Fig. 7. Flowchart of transformation search.

Fig. 6. Photometric reprojection error in the function of the registration error for different values of �s.

3. A closed surface is defined as a surface that is compact and without a
boundary; a nonclosed surface is a compact surface with a boundary.



points in the range image corresponding to the vertices of
the convex hull is then projected to the unit sphere by
normalizing the coordinates of each point. Next, we select a
point (in the range image) that is not included in the
vertices of the convex hull and carry out the following
process: We progressively construct triangulations by
adding the point and compute the local position of the
point with respect to the new triangulation. The local
position is computed in the flattened vicinity of the point,
obtained using conformal mapping [15], to accurately
represent the local structure. The point is then positioned
on the sphere using this local position. This series of
processes is carried out until all the points in the range
image are involved. The concrete procedure is described in
Algorithm 1 and illustrated in Fig. 8.

Algorithm 1. Progressive spherical representation

Require: range image RI

Ensure: spherical representation S of RI that preserves

the local structure of RI

Mesh0  triangulated 2D convex hull of RI, centered

around its center of mass

PtMesh set of vertices belonging to Mesh0

S0  projection of Mesh0 to the sphere

List list of points in RI but not in PtMesh

nb size of List

for i ¼ 0 to nb� 1 do

� a point of List

ðaaaa; bbbb; ccccÞ  three points of the enclosing triangle of �

in Meshi
Meshiþ1  Delaunay triangulation of Meshi where �

has been added

P  polygon in Meshiþ1 containing the points

ð�; aaaa; bbbb; ccccÞ
U  flatten polygon obtained by conformal mapping

of P [15]

ð	; 
; �Þ  barycentric coordinates of � in U for

ðaaaa; bbbb; ccccÞ
�0  	aaaa0 þ 
bbbb0 þ �cccc0
Siþ1  Si þ f�0g, with the same connectivity as in

Meshiþ1

List List� f�g
end for

return Sn

5.2.2 Spherical Representation Refinement

Without loss of generality, we consider the problem of
aligning range image 1 to range image 2. After each
iteration, we refine the spherical representation of range
image 1 with respect to range image 2.

The overlapping areas between the two range images
from the current best transformation are first identified. The
bijection B between points of the two overlapping areas is
then computed. Namely, for a point xxxx in the overlapping
area O1 of range image 1, BðxxxxÞ ¼ closestðxxxxÞ if xxxx ¼
closestðclosestðxxxxÞÞ; BðxxxxÞ is undefined otherwise. Here,
closest stands for the closest point (in the sense of the
euclidean distance) in the overlapping area of the other
range image. Then, for each point of O1, its coordinates on
the sphere are set to those of its closest point. The remaining

points of O1 that do not have an image for B are placed on
the sphere using the local positions as we did in the
spherical representation above.

5.3 Time Complexity Analysis

Our proposed algorithm has its input of two range images
with n and m points, respectively, and outputs the
transformation T that best aligns the two input range
images. Here, we briefly analyze the computational com-
plexity of our proposed algorithm. We refer to Fig. 7 for the
different steps of our method and give the computational
complexity for each of these steps.

At each inner iteration, our method performs two steps:
1) 3D rigid transformation candidate generation, 2) evalua-
tion of the candidate transformation. During step 1, we
identify point correspondences in the spherical domain and
then estimate the rigid transformation for the correspon-
dences in the original domain. The closest point identifica-
tion in the spherical domain is done in OðnÞ computations
(by projective assignment). Estimating the rigid transforma-
tion for the point correspondences is done in OðnÞ
computations and evaluating the transformation takes
OðnþmÞ computations. Therefore, for l inner iterations,
the inner loop takes Oðl� ðnþmÞÞ computations.

Identifying the current overlapping areas takes OðnþmÞ
computations. Therefore, refining the spherical representa-
tion of range image 1 is done in OðnþmÞ computations.
Finally, for l inner iterations and h outer iterations, our
registration method takes Oðh� l� ðnþmÞÞ computations.
We notice that all inner iterations are completely indepen-
dent. Therefore, using parallel implementation would
drastically reduce the computational time.

6 EXPERIMENTS

To demonstrate the usefulness of our proposed method, we
evaluate our algorithm in several challenging situations
using synthetic and real data. For the comparison, we used
seven methods. For methods that search for best matches,
we used the method proposed in [23] using albedo with a
given directional light source (Method 2), the method
proposed in [23] using chromaticity instead of albedo
(Method 3), the SIFT algorithm [16] (we used the available
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Fig. 8. Illustration of the loop “for” of Algorithm 1.
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TABLE 1
Description of All Methods Used for Comparison

Fig. 9. Initial state for the two different setups. Fig. 10. Results obtained with the eight methods for the first setup.



code provided by Vedaldi [25]) with a RANSAC outlier
removal postprocess (SIFT-RANSAC), and the registration
method proposed in [9] that combines SIFT-RANSAC and
ICP algorithms (RGBD). For methods that minimize cost
functions, we extended the stochastic minimization method
[18] (Stochastic) and the second order minimization method
using quadratic approximation [4] (Second Order) (both
initially account for geometry only) so that they can also
consider color information.4 Namely, for both methods, we
combined the L2 color distance term with the euclidean
distance term to derive the cost functions. We also used our
proposed method using chromaticity instead of our photo-
metric evaluation function (Method 1). The employed
metrics and searching strategies of all the methods used
for comparison are summarized in Table 1. In this table, S
denotes the source image (range image 1, for example), M
denotes the model image (range image 2, for example),
chromðÞ denotes the chromaticity vector of a point
(chrom1ðÞ, chrom2ðÞ, and chrom3ðÞ denote the red, green,

and blue channels of the chromaticity vector, respectively),

RGBðÞ denotes the color vector of a point, and closestðÞ
denotes the closest point in the model image of a point in

the source image.
We consider the problem of aligning range image 1 to

range image 2 and we assume we are given the ground

truth (obtained manually for real data). We evaluate the

registration result using the distance between the esti-

mated position of points of range image 1 after registra-

tion and their ground-truth position. Namely, given Tg
and Te, the ground-truth transformation and the estimated

transformation, respectively, the registration error errðTeÞ
is computed as follows:

errðTeÞ ¼
Pn

i¼1 kTgðxxxxiÞ � TeðxxxxiÞk2

n
; ð7Þ
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TABLE 2
Description of the Data Vase

Fig. 12. Registration results obtained with our method for the various
situations presented in Section 4. The transformations evaluated during
the registration process are plotted in red and superimposed onto the
graphs shown in Section 4.

Fig. 11. Results obtained with the eight methods for the second setup.

Fig. 13. Experiments with different levels of noise added to the color.

4. This is because there is no existing photometric cost function
minimization technique to compare with.



where n is the number of points in range image 1 and
fxxxxigi2½1;n� are the points of range image 1.
�s, �c, and �n were set to 3 � res, 0.02, and 0.1, respectively

for all experiments with synthetic data and to 2 � res, 0.05,
and 0.2 for all experiments with real data. res here means
the resolution of the range images (i.e., the average distance
between neighboring points).

6.1 Synthetic Data

6.1.1 The Data Vase

The synthetic data, called vase, were obtained using a 3D
modeler software (3D Studio Max) (see Table 2). The exact
albedo is known and we simulated lighting under different
illuminations. This dataset is challenging for registration in
that the shape is rotationally symmetric, the texture of the
object presents several repetitive patterns, and no exact
correspondences exist between the two range images.

The first setup is illustrated in Fig. 9a. The range images
were illuminated by the light probe galileo from the Debevec
database [6], and the color was synthesized using spherical
harmonics with a Lambertian reflection kernel. Fig. 10
shows the results obtained with the eight methods men-
tioned above. In this situation, the illumination is domi-
nated by ambient light, and the changes in RGB appearance
between the two range images are small. This situation is
thus well adapted to using chromaticity. Nevertheless, our
evaluation function worked well compared with the

chromaticity cross correlation (Method 1). Moreover, be-
cause of repetitive texture patterns (multiple “G” letters for
example) and distant initial positions, Method 2, Method 3
as well as SIFT-RANSAC (i.e., methods that match points
based on their textural features) did not give satisfactory
results. Note that RGBD did not improve the registration
result because of the lack of salient geometric features. We
observe that Stochastic and Second Order did not perform
well on this example, though they do consider color
information in addition to geometry. This can be explained
by the fact that the color distribution function over the
object’s surface is noncontinuous and nonsmooth; therefore,
the cost function is not differentiable and is highly
oscillatory. As a consequence, the minimization strategy
using the gradient descend (as done in Second Order)
becomes easily trapped into local minima and the stochastic
search strategy (as done in Stochastic) fails due to the highly
oscillatory behavior of the cost function. Our proposed
search strategy, in contrast, efficiently found the global
minimum. The estimated transformation Te by our proposed
method was a rotation of ð�19:9; 0:00; 0:94; 0:35Þ and a
translation of ð0:19;�0:01; 0:03Þ, and EvalðTeÞ was5 1.2.
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Fig. 15. Experiments with the data Al 2.
Fig. 14. Experiments with the data Al.

5. The color was coded in RGB with values between 0 and 255. Since the
color of a point is approximated with 98 percent accuracy in (2), the
reprojection error of around 1.2 means that the optimal solution is found
provided that the distribution of RGB values is uniform over the range.



The second setup is illustrated in Fig. 9b. The illumination
was composed of three directional light sources of different
intensities as well as an ambient light source. The images
were rendered using the standard Lambertian model. Fig. 11
shows the results obtained with the eight methods. In this
situation, the illumination induces significant changes in the
object appearance (e.g., the color of several points changed
from reddish to white). Results obtained with all the
methods were similar to those obtained in the first setup.
Our method could achieve accurate alignment (similar to the
one obtained in the previous setup). The estimated trans-
formation Te obtained with our proposed method was a
rotation of ð�20:1; 0:00; 0:94; 0:35Þ and a translation of
ð0:19;�0:01; 0:03Þ, and EvalðTeÞ was 3.4.

The results obtained with our method for the various
situations presented in Section 4 are shown in Fig. 12 along

with the graphs of the photometric reprojection error
evaluated during the registration process. We can see that
during the registration, the lower bound of our photometric
metric is always evaluated, which allowed us to converge
and validated our search strategy. However, we remark
that when �s is too small, the registration result is degraded.
This is because the quality of the point correspondences
becomes poor.

Fig. 13 shows the results of intensive experiments when
adding noise into the color. Random noise was added to the
rendered colors with different levels independently in each
RGB channel. For each level of noise, our method was run
40 times. Fig. 13a shows the errors after registration and
Fig. 13b shows the number of runs for which our method
failed in registering the two range images (i.e., the error was
greater than five times the resolution of the range image).
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Fig. 17. The experimental setup.

Fig. 18. Experiments with the data Can.

Fig. 16. Experiments against various initial relative poses.

TABLE 3
Description of Data Can, Hand, Pottery, Cylinder
and Helmet (Size Denotes the Number of Points)



From these results, we can see that our method can achieve

accurate results even in the presence of noise in the

captured colors. However, when the noise becomes larger,

our method happens to fail from time to time. This can be

explained by the discretization of the searching space. To

reduce the number of failures, it is required to refine the

discretization of the searching space (which will increase

the computational time).
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TABLE 4
Quantitative Evaluation of Registration Results for the Six Datasets



6.1.2 The Data Al

Results obtained with another synthetic data called Al are

shown in Fig. 14. This synthetic data was of resolution

about 0.01 mm. Two range images were rotated by

40.0 degrees around the vertical axis and illuminated by

a fixed directional light source. The observed colors were

synthesized using the classic Lambertian reflection model.

This situation is challenging in that the change in pose

between the two range images induces significant change

in intensity. Moreover, there are a large number of

occluded points and few points with salient photometric

features, which makes the matching problem more

difficult to solve.
Our method successfully registered the two range

images. In particular, the hypothesis-and-test strategy (our

proposed method and Method 1) gave better results when

compared with the feature-based methods (Method 2,

Method 3, and SIFT-RANSAC). This is because of the

advantage of global optimization functions against local

functions. We remark that in this case, RGBD worked well

thanks to sufficient geometric features and sufficiently good

initialization obtained with SIFT-RANSAC, while Stochastic

and Second Order did not work well, probably because the

initialization was too far from the ground truth.
To illustrate the advantage of using our proposed

photometric metric over state-of-the-art methods, we created

the synthetic data Al 2 shown in Fig. 15a that is the same

geometric object as the data Al, with the same transforma-

tion, initialization, and illumination but without the texture.

To be more precise, we set all color channels of all points to

255 and then illuminated the object with a directional gray

light using the classical Lambertian model. As we can see

from the results shown in Fig. 15b, our method could

estimate the transformation that aligns the two input range

images. This is because our method takes support from

changes in appearance due to illumination, in contrast with

the other methods that strive to cancel (or ignore) this effect.
To verify the robustness of our method against the initial

relative pose between the input range images, we captured

several range images of the synthetic data Al, from the same

viewpoint but under different poses. We restricted our

experiment to the situation where the rotation axis is fixed,

while the rotation angle varies. Each pose was obtained by

rotating the 3D model around the vertical axis, with

THOMAS AND SUGIMOTO: RANGE IMAGE REGISTRATION USING A PHOTOMETRIC METRIC UNDER UNKNOWN LIGHTING 2265

Fig. 19. Experiments with the data Hand. Fig. 20. Initial state for data Base, Cylinder 1, Cylinder 2, and Helmet.



different rotation angles (ranging from 1.0 degree up to
50.0 degrees) and in the clockwise direction.

Fig. 16a shows the results obtained with our method. We
can see that for a rotation angle up to 46.0 degrees, we could
always obtain accurate registration results (for a rotation
angle of 46.0 degrees, the percentage of overlapping area
between the two range images was about 80.0 percent).
As described in Section 5.1, the rotations of maximum
20 degrees are searched in the spherical domain. In this
case, the deformations induced by the projection operator
resulted in 20 degrees in the spherical domain covering
46 degrees in the original domain. Therefore, even though
in the original domain the rotation angle is about 46 degrees,
our method was still working. However, for a rotation
angle greater than 46.0 degrees, we observe failures in the
registration. This can be explained by the fact that the initial
spherical representations of the two input range images
(computed independently) became too different. As a
consequence, as we can see in Fig. 16b, it prevents us from
generating a searching space fine enough for convergence.
In fact, the transformation that correctly aligns the two
range images (which also minimizes our photometric
evaluation function) is not generated.

6.2 Real Data

We employed a Konica Minolta Vivid 910 laser scanner,
which captures the 3D shape and the texture of an object.
The ground-truth transformation was obtained manually.
We note that there is a gamma correction factor in the
obtained color images which should preferably be canceled.
In our experiments, however, we did not know this factor,
and thus the gamma correction was not canceled.

Fig. 17 illustrates the experimental setup used to capture
all real data. A target object was put on a black turning
table; the laser scanner Vivid 910 was fixed and focused on
the target object. We then rotated the table to capture two
range images of the object in different poses. All data shown
in the following experiments are direct output of the laser
scanner; no segmentation algorithm was applied.

6.2.1 The Data Can and Hand

We obtained two range images of a rotationally symmetric
can that is approximately 10.0 cm high and has a diameter
of about 5.0 cm (Fig. 18a). Details on the data called Can are
given in Table 3, and the results are shown in Fig. 18b and
Table 4. These data are challenging in that the quality of the
image is low and there is an unknown gamma correction
factor. Moreover, these data exhibit several repetitive
patterns, such as similar letters, while the texture is either
red or white with large uniform areas. Nevertheless, our
proposed method accurately registered the two range
images. The obtained accuracy was under the resolution
of the laser scanner, and our method worked extremely
well compared to the other methods. For estimated
transformation Te obtained with our proposed method,
EvalðTeÞ was 2.56.

Another data item called Hand is presented in Fig. 19a
and Table 3. Registration results are shown in Fig. 19b and
Table 4. For this data, the intensity of a point in two range
images changed drastically (e.g., points at the middle of
the images). Therefore, the use of chromaticity to evaluate
the correctness of transformations becomes unreliable. Our

method is the only one that achieved accurate registration
of the two range images. The gap in accuracy between our
proposed method and Method 1 became larger than that
for the data can. This is because drastic changes in
intensity degrade reliability of chromaticity while our
method uses a photometric metric. Methods 2 and 3 still
failed pitifully.
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Fig. 21. Registration results for data Pottery, Cylinder 1, Cylinder 2,
and Helmet.



Results obtained using SIFT-RANSAC, RGBD, Stochas-
tic, and Second Order are also illustrated in both Figs. 18b
and 19b, and numerical results are given in Table 4. RGBD
gave interesting results for these two data: For the data Can,
the SIFT-RANSAC obtained good alignment, and RGBD
thus obtained good results as well. For the data Hand,
on the other hand, RGBD obtained less accurate results in
spite of more geometric features. This is because SIFT-
RANSAC did not provide accurate alignment for RGBD.
Stochastic and Second Order did not work for the data
Can because of poor initialization, discontinuity in color
distribution, and symmetry of the geometrical shape. We
remark that Second Order gave fair results for the data
Hand because of the fact that its geometry was sufficient to
give good direction for gradient descent minimization.
However, Stochastic did not work for the data Hand.

6.2.2 Other Data

Fig. 20 illustrates the different objects called Pottery,
Cylinder 1, Cylinder 2, and Helmet. Table 3 lists the
description of all the data. The data Cylinder 1 and Cylinder 2
are range images of the same object, with the same changes
in pose but under different illumination conditions. Note
that the data Pottery had a height of about 10 cm and a
width of about 20 cm, the data Cylinder had a height of
about 20 cm and a width of about 8 cm, and the data Helmet
had a height of about 8 cm and a width of about 5 cm. The
results obtained with these objects are shown in Table 4 and
illustrated in Fig. 21.

The data Pottery is challenging in that its shape is
rotationally symmetric while its texture does not exhibit
clear key-points with distinctive features that could be used
for matching. Because in Methods 2 and 3 we do not use
key point detector, the number of outliers in matching
becomes larger than that of inliers. This results in failed
registration. SIFT-RANSAC uses key point detector and key
point descriptor identified in the intensity images for
matching. In the intensity images, however, the texture
patterns are not distinctive enough, which leads to some
mismatches and results in failed registration. Because the
shape of the object is rotationally symmetric, using
geometry did not help the registration process much, as
we can see in the results obtained with RGBD, Stochastic or
Second Order. On the other hand, our proposed method
uses a global error metric and a hypothesis-and-test search
which allowed us to successfully register the two range
images. We notice that using chromaticity in this case did

not work. This is because the difference of chromaticity
between points of the two range images is not discrimina-
tive enough to find the best transformation.

The data Cylinder 1 and Cylinder 2 are challenging in that
their reflective properties cause several missing points and
large noise in the depth values. This is because the accuracy
of the laser scanner decreases when the texture at the
surface becomes black (the laser beam is then not properly
reflected), which is the case for all letters. This effect has a
dramatic impact on Methods 2 and 3 because the missing
points may prevent the region from growing in one range
image while it will continue growing in the other range
image. In addition, the noise in the depth values amplifies
the distortion between the descriptors of the same point in
the two range images. This results in failed registration.
SIFT-RANSAC worked fairly well for the data Cylinder 1
thanks to the small changes in color between the two range
images and many textural features, but did not work for the
same object under different illumination conditions (data
Cylinder 2). On the other hand, our proposed method could
obtain accurate registration results for both situations.

The data Helmet were captured to see the performance of
our proposed method to an object with salient geometric
features against the state-of-the-art methods. From the
results illustrated in Fig. 21d and shown in Table 4,
we observe that our proposed method obtained results of
the same accuracy as the state-of-the-art methods, though
our method is not specifically designed for objects with
salient geometric features.

Table 4 summarizes quantitative results obtained for all
the objects and with all the methods. It shows the ground-
truth transformations, the estimated transformations after
registration, as well as the registration errors in mm and in
term of resolution. Fig. 22 shows the success rate obtained
for our real datasets with all the methods. For each method,
we plot the number of successful registrations we obtained
over the six datasets. To determine whether a registration is
successful, we employed three different criteria (illustrated
in blue, red, and green) based on the registration error.
Namely, we define 1) a registration is successful if the error
is below the data resolution (i.e., 0.55 mm) (in blue), 2) a
registration is successful if the error is below twice the data
resolution (i.e., 1.1 mm) (in red), and 3) a registration is
successful if the error is below four times the data
resolution (i.e., 2.2 mm) (in green). We can see that our
proposed method obtained the best robustness in terms of a
variety of objects. In particular, the advantage of our
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Fig. 22. Number of successful registrations obtained for the six datasets with all the methods.



method is clear under the criterion that the registration
error is below the resolution of the range image (in blue).

7 SUMMARY AND DISCUSSION

We introduced a new photometric metric for registering
range images of Lambertian surfaces under general and
distant, unknown lighting. Our metric evaluates photo-
metric reprojection error by taking into account the
relationship between reflectance properties, geometry, and
illumination. We use captured color of range images as the
ground truth to eliminate scale ambiguity that arises when
estimating photometric features. We also demonstrated the
effectiveness of our metric by using the hypothesis-and-test
strategy for the registration where a range image is
represented over the sphere and its representation is
refined throughout the registration process. We notice that
different approaches to using our photometric metric for
registration exist. For example, we can use a coarse
registration method as an initialization of a brute-force
search in the vicinity of the initial estimate of the
transformation. We chose to use the spherical representa-
tion of range images to reduce the searching space because
it allows us not to depend on the quality of an initial coarse
registration, making the overall registration method more
stable against the initial conditions.

Though in this paper, we handled only range images
of a single segmented out object, with the recent
development of depth sensors a new scenario became
available. In particular, with an RGB-D video camera, the
input data generally consist of a cluttered scene with or
without background. Therefore, to see the potential
applicability of our proposed method to RGB-D videos,
we additionally tested two other data. We captured the
data Scenes 1 and 2 that simulate cluttered scenes with
and without background. Fig. 23 shows the input data as
well as the initial poses.

From the results shown in Fig. 24, we can see that our
proposed method can handle background and multiple
objects to some extent. In particular, we observe that with
the data Scene 1, we obtained accurate results similar to
those obtained with RGBD that is specifically designed for

RGB-D videos. Note that the photometric reprojection error
of the transformation estimated with our method was 12.5.
The failure of our proposed method with the data Scene 2
may be due to the large portion of depth measurement
errors (as shown in Fig. 25). More precisely, as we can see
inside the red box in Fig. 25, depth measurement errors
typically arise around the areas where the geometry of the
scene presents strong discontinuities. In such cases, the
laser scanner often tends to interpolate depth values around
discontinuous areas. This induces a large portion of false
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Fig. 25. Top view of range image 1 of Scene 2.

Fig. 23. Data Scenes 1 and 2.

Fig. 24. Registration results for data Scenes 1 and 2.



normal estimation and, thus, incoherent photometric solu-

tions, even for the best transformation. Indeed, the photo-

metric reprojection error of the transformation estimated

with our method for Scene 2 was 50.4. In cluttered scenes,

many geometric discontinuities likely exist due to multiple

objects. As a consequence, before directly applying our

proposed method to RGB-D videos, we first need to

investigate how robust our proposed photometric cost

function is against localized large depth measurement

errors caused by geometric discontinuities.
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