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Abstract. The saliency map has been proposed to identify regions that
draw human visual attention. Differences of features from the surround-
ings are hierarchially computed for an image or an image sequence in
multiple resolutions and they are fused in a fully bottom-up manner to
obtain a saliency map. A video usually contains sounds, and not only
visual stimuli but also auditory stimuli attract human attention. Nev-
ertheless, most conventional methods discard auditory information and
image information alone is used in computing a saliency map. This paper
presents a method for constructing a visual saliency map by integrating
image features with auditory features. We assume a single moving sound
source in a video and introduce a sound source feature. Our method de-
tects the sound source feature using the correlation between audio signals
and sound source motion, and computes its importance in each frame in a
video using an auditory saliency map. The importance is used to fuse the
sound source feature with image features to construct a visual saliency
map. Experiments using subjects demonstrate that a saliency map by
our proposed method reflects human’s visual attention more accurately
than that by a conventional method.

Keywords: gaze, visual attention, visual saliency, auditory saliency,
audio signal, video, sound source feature.

1 Introduction

Visual focus of attention can be an important cue for understanding human
behaviors or supporting human activities [17]. To estimate human visual focus of
attention, a computational model of visual saliency map, which identifies image
regions that draw more human attention, was proposed by Itti et al. [9]. The
saliency map is computed based on center-surround contrast of image features
such as color, intensity or orientation in an image in a fully bottom-up manner.

Following a method computing a saliency map of a still image [9], many
types of saliency maps have been intensively studied. Itti et al. [8] employed
a feature-integration theory [16] and incorporated low-level dynamic features
such as motions or flickers to extend the model to be applicable to a video.
Harel et al. [6] introduced a graph structure over image maps that arise in
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saliency computation to improve the accuracy of a saliency map. Bruce et al.[2]
used Shannon’s self-information in measuring saliency to construct a model of
bottom-up overt attention. Cerf et al. [3] proposed combining face detection
with a saliency map computed from contrasts of image features. Taking into
account the difference between central (fovea) and peripheral areas in computing
a saliency map was proposed by Kubota et al. [12]. Saliency computation from
an ego-centric video was proposed by Yamada et al. [17].

Eye movements are indeed affected by visual stimuli and visual attention is
drawn accordingly. Human attention, however, is attracted by auditory stimuli
as well. When we hear an extraordinary sound, we tends to look at the direction
of the sound source even if it is not visually salient. A video usually contains
sounds and auditory stimuli are available. Nevertheless, most existing methods
for computing saliency from a video discard such sounds and use image fea-
tures alone. Combining image features with sounds in saliency computation is
promising to significantly improve the accuracy of a saliency map.

In contrast to visual saliency, few models to determine salient audio signals
have been proposed [11,14,10]. Kayer et al. [11] proposed an auditory saliency
map model to detect salient sounds embedded in noisy backgrounds. In that
work, the sound wave is converted to a time-frequency representation to have
an intensity image and then important auditory features (intensity, frequency
contrast and temporal contrast) are extracted on different scales. An auditory
saliency map is computed using the center-surround contrast of the features in
the same way of computing a visual saliency map.

In the context of human-machine interaction, there are a few attempts in
which audio signals are taken into account to construct a visual saliency map
[7,14]. Since they focus on real-time performance for the interaction, the accuracy
of constructed saliency maps is not deeply investigated; how to control the system
in real time is more important. In [7], for example, a microphone array is used
as a device to estimate high salient auditory stimuli in real time. Visual saliency
map and auditory saliency map are fused by a weighted linear combination into
a single audio-visual saliency map, which is used for robot head control. This
method, however, cannot be applicable without any microphone array. Moreover,
it cannot deal with recorded videos.

This paper presents a method for constructing a visual saliency map for a
video1 by incorporating sounds in its computation. We assume a single moving
sound source. To treat sounds like image features, we introduce a sound source
feature which represents the location of a sound source in each frame. The loca-
tion of a sound source is computed using the correlation with audio signals and
sound source motion by [18]. Our method then computes the importance of the
sound source feature in each frame using an auditory saliency map by [11]. The
importance is then used to fuse the sound source feature with image features.
By this way, we obtain a visual saliency map that reflects sounds contained in

1 Hereafter, we discriminate an image sequence from a video to highlight the
existence/non-existence of sounds. In this paper, a video contains audio signals while
an image sequence does not.
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Fig. 1. Computation flow of a saliency map

a video. Experiments using subjects confirm that our proposed saliency map
outperforms a saliency map computed using image features alone.

2 Visual Saliency Map

We here present a brief overview on how to compute a bottom-up visual saliency
map [8]. The core concept in computational visual saliency is extracting regions
with vastly different image features than their surrounding regions. Figure 1
depicts the computation flow. An input frame is decomposed into a set of multi-
scale feature maps which extract local spatial discontinuities in the modalities
of color, intensity, orientation, motion and flicker. All feature maps are then
combined into a unique scalar saliency map which encodes for the salience of a
location in the scene irrespectively of the particular feature which detected this
location as conspicuous.

Gaussian pyramids [5], hierarchical images in multi-scales, are first created
from an input frame. For color and intensity, five base images are first generated
using an input RGB channels, denoted by R,G and B, of a frame: i = (R +
G + B)/3, r = R − (G + B)/2, g = G − (R + B)/2, b = B − (R + G)/2 and
y = (R+G)/2−|R−G|/2−B. Four base images r, g, b and y are then individually
normalized by i and small values (for example, less than 1/10) are set to zero.
Next, Gaussian pyramids of each image are created by iteratively applying the
pair of smoothing with a Gaussian filter and down-sampling. We denote the
pyramids by i(σ), r(σ), g(σ), b(σ) and y(σ) where σ = 0, 1, . . . , 8 represents the
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Algorithm 1. The max-lacal normalization N(·)
1. Normalizing the values in the map to a fixed range [0,M ].
2. Set M̄ as the average of the local maximal values over the map, each of which is

strictly less than M .
3. Multiply (M − M̄)2 to all the values in the map.

scale. Gaussian pyramid i(σ) is used as the intensity feature while Gaussian
pyramids r(σ), g(σ), b(σ) and y(σ) are as the color features. For orientation, on
the other hand, four Gabor pyramids o(σ, θ) (θ = 1, 2, 3, 4) are created from
base image i [5]. For the modalities of dynamic features (motion and flicker),
orientation and intensity are used for creating pyramids. Four motion pyramids
m(σ, θ) are created from o(σ, θ) and its shift while flicker pyramid f(σ) is created
by taking the absolute difference of i(σ)’s between two successive frames.

Feature maps are computed in a center-surround structure akin to visual re-
ceptive fields from the Gaussian pyramids of image features. Center-surround
operations are implemented by the absolute across-scale subtraction, i.e., abso-
lute difference between a fine and a coarse scales in a pyramid in concern. When
two images at different scales in a pyramid are given, the bilinear interpolation
[4] is first applied to a smaller image so that the two images have the same size.
The corresponding pixel-wise subtraction between the two images is then com-
puted. We note that color feature maps follow the opponent color theory (we
thus have two color-opponent feature maps). We first compute the subtraction in
each pair of opponent color and then apply the absolute across-scale subtraction.

For each feature, its corresponding feature maps are individually normalized
and then combined to have a single conspicuity map. The max-local normal-
ization2[9], denoted by N(·), highlights the most discriminative features in each
feature map. Algorithm 1 shows the detail of this normalization. The across-
scale addition is applied to normalized feature maps, which results in a con-
spicuity map. We remark that two color-opponent feature maps are combined
into a color conspicuity map. We denote the conspicuity map for each fea-
ture (intensity, color, orientation, flicker, and motion) by ī(x, t), c̄(x, t), ō(x, t),
f̄(x, t), and m̄(x, t) ∈ R, where x is the coordinates of a point in a frame and
t ∈ {0, 1, ..., T − 1} is the frame number.

Finally, the normalized conspicuity maps are all linearly combined to have a
single saliency map for the frame:

sv(x, t) =
1

5

{
N (̄i(x, t)) +N(c̄(x, t)) +N(ō(x, t))

+N(f̄(x, t)) +N(m̄(x, t))
}
. (1)

If a point has a large value, the point highly attracts the visual focus of attention.
A point with a low value, on the other hand, tends not to attract attention.

2 The range becomes [0,M ] after this normalization. M is a given constant value. We
set M to 1.0 in our experiments.
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3 Saliency Map with Audio Signals

We design a visual saliency map model that reflects saliency of the spatial loca-
tion of a sound source. To treat sounds like image features, we introduce a sound
source feature which represents the location of the sound source in each frame.
We also compute an importance of the sound source feature in each frame.

3.1 Detecting a Sound Source Feature

As we assume a single moving sound source, we have to identify the location of
the sound source to use the sound source feature. Motion of a sound source can
be detected using image features in a video. Therefore, the correlation between
sound source motion and audio signals can be used to identify the location of
the sound source.

We employ a method [18] to detect the sound source location where the lo-
cation of a sound source is detected by using a correlation with sound source
motion and audio signals. This method computes a visual inconsistency feature
representing motion changes at each point in a frame, and an audio inconsis-
tency feature representing audio changes at each frame in a video. From these
features, an audiovisual correlation at each point at each frame is computed by
tracking points that maximizing the correlation between the visual and audio
features using a beam search. This audiovisual correlation represents synchro-
nization of motion changes and audio changes in a video. Assuming that human
visual attention is attracted by motions that synchronize with audio signals, it
is reasonable to use this audiovisual correlation as our sound source feature. We
denote the sound source feature by h(x, t) where x is the coordinates of a point
in a frame and t is the frame number.

3.2 Computing Weights for Frames

The sound source feature does not account for changes in audio signal because
the correlation between sound source motion and audio signals cannot capture
changes of audio signals. When we hear a loud sound, our attention is attracted
by the sound at the beginning. Such attention, however, is not preserved if we
keep listening to the same loud sound. Therefore, in order to reflect changes of
audio signals into a saliency map, we have to assign a weight to each frame which
represents discriminative changes of audio signals over frames. We use auditory
saliency to measure this weight according to the insight that human attention is
attracted by salient sounds.

The auditory saliency map is a model to analyze saliency of audio signals. We
employ an auditory saliency map [11] to compute auditory saliency. The audi-
tory saliency map is computed by converting audio signals to a two-dimensional
image, i.e., a sound spectrogram, which is a time-frequency representation of a
sound. Sound intensity, frequency contrast, and temporal contrast are extracted
as image features from the sound spectrogram. The auditory saliency map is
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obtained by hierarchially computing differences of these features from the sur-
roundings in multiple resolutions and fusing them in a fully bottom-up manner
like a visual saliency map. We denote the auditory saliency map by sa(t, f) where
f is frequency.

For each frame, we compute its weight w(t) of the sound source feature from
the auditory saliency map sa(t, f). Since the dimension of sa(t, f) is two and that
of w(t) is one, dimension reduction is required. Assuming that human attention
is attracted by a sound derived from a single sound source and that human
turns attention to the most salient sound in each frame, we extract the most
high salient frequency in each frame as the weight of the frame. This selection of
frequency allows us to reduce the effect of audio noises as well. The most salient
sound at frame t is defined as

w(t) = max
f

sa(t, f). (2)

w(t) is normalized the range of [0,W ]. As we see in the experiments, W depends
on the video. We experimentally determine W .

3.3 Constructing a Saliency Map with Audio Signals

We incorporate the sound source feature h(x, t) and its weight w(t) into con-
structing a visual saliency map. Since h(x, t) is not a conspicuity map, h(x, t)
cannot be directly combined with conspicuity maps ī(x, t), c̄(x, t), ō(x, t), f̄(x, t)
and m̄(x, t), each of which is derived from an image feature. According to the
feature integration theory by Treisman [16], each feature is independently pro-
cessed in parallel and fused in the end. In our case, independently of the image
features, h(x, t) is computed as the sound source location that is synchronized
with audio signals in a video. We can thus deal with h(x, t) like other image
features and construct a conspicuity map for h(x, t) in the same way as those
for the image features.

The process to construct the conspicuity map for h(x, t) is as follows:

1. create a sound source Gaussian pyramid h(σ) from the audiovisual correla-
tion in each scale of the intensity Gaussian pyramid i(σ),

2. compute sound source feature maps based on the mechanisms of center-
surround,

3. compute a sound source conspicuity map h̄(x, t) by normalizing and combing
the sound source feature maps.

We construct our proposed saliency map for a video by linearly combining h̄(x, t)
with the conspicuity maps derived from static image features (intensity, color,
orientation) and dynamic image features (flicker and motion) using weight w(t).

s(x, t) =
1

5 +W

{
N (̄i(x, t)) +N(c̄(x, t)) +N(ō(x, t))

+N(f̄(x, t)) +N(m̄(x, t)) + w(t)N(h̄(x, t))
}
. (3)
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Table 1. Details of videos

Video �frames fps sound source location

A 121 25 left
B 115 25 right
C 112 25 right

�������Video
Frame

045 065 085 105

A

B

C

Fig. 2. Example of the input videos. Image sequences surrounded in red indicate the
sound source locations.

4 Experiments

The proposed saliency map was evaluated in terms of how much scan-path data
fit human visual attention. We compute the conventional saliency map sv (Eq.
(1)) and our proposed saliency map s (Eq. (3)) from input videos, and compared
their performances and found that our proposed saliency map outperformed the
conventional saliency map.

4.1 Experiment Set-Up

We used three pairs of an image sequence and its corresponding audio signals:
videos A, B, and C [1]. Table 1 shows the details of the videos A, B, and C, and
some example frames are illustrated in Fig. 2. Each video used in our experiment
consists of combined two image sequences aligned in the right and left, and the
audio signal sound is attached to the sequence in only one side. We say right if
the sound is attached to the image sequence in right-hand side and left if the
sound is attached in left-hand side (cf. Table 1). The color feature c was not
used in our experiments since all the frames of the videos are monochrome.

We used an eye tracker Tobii TX3003 to detect scan-pathes of 10 subjects.
The scan-path data were used as the ground truth for evaluation. We used a chin

3 Tobii TX300 eye tracker. http://www.tobii.com/en/eye-tracking-research/
global/products/hardware/tobii-tx300-eye-tracker/

http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-tx300-eye-tracker/
http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-tx300-eye-tracker/
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support to restrict subjects’ head movements. With this restriction, the accuracy
of eye tracking is increased and stable scan-path data become available. We used
speakers that are built in the eye tracker to output audio signals. We obtained
10 scan-path data by displaying the videos to the subjects. We identified as gaze
points the points among the scan-path data whose movements are not greater
than 2.12 pixels per 0.1 seconds.

4.2 Evaluation Criteria

We used a Receiver Operating Characteristic (ROC) curve [15] and a Normalized
Scanpath Saliency (NSS) [13] as evaluation criteria of the saliency map. This is
because these criteria are known to be better suited to scan-path evaluation.

The ROC is a curve that plots a false detection rate (labelling a non-gazed
location as fixed) as a function of a detection rate (labelling gazed locations
as fixed). The more the ROC curve is located at an upper left, the higher the
accuracy of the saliency map becomes. Moreover, we calculated an Area Under
the Curve (AUC) value of the ROC curve. The closer the AUC value is 1.0, the
higher the accuracy of the saliency map becomes.

The NSS measures significant difference from a random scan-path movement.
The NSS value is calculated as the average of saliency over the entire saliency
map that is normalized into mean 0.0 and variance 1.0. If the NSS value is
greater than 0.0, the saliency map is significant compared with a random case.

4.3 Results and Discussion

As mentioned above, W depends on the video. This is because W affects the
balance between the sound source feature and the image features. To find an ap-
propriate W for each video, we changed W by 1.0 from 0.0 to 10.0 and evaluated
the saliency map of each video using our evaluation criteria4 (we also tested the
cases of W = 15.0 and 20.0). Figures 3 and 4 show AUC values and NSS values
under different W s.

From Figs. 3 and 4, as the overall tendency, we observe that as W increases,
both AUC and NSS increase at the beginning, then decrease and finally become
almost constant. This observation suggests that the accuracy of our proposed
saliency map depends on W and that an appropriate W exists that achieves
the most accurate saliency map: as W increases, the accuracy is improved at
the beginning and then degraded to converge at a constant. The reason for this
property comes from the following facts. (1) Saliency of gaze points is increased
by incorporating the sound source feature at the beginning. (2) Such tendency
continues until the image features and the sound source feature are balanced.
(3) Once the sound source feature is overweighted, saliency of gaze points starts
decreasing. (4) The sound source feature gradually dominates saliency values
(and image features are almost neglected finally). We remark that if the accuracy

4 Note that W = 0.0 indicates s = sv. The case of W = 0.0 corresponds to the method
without using auditory feature.
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Fig. 5. Audio energy and w(t)

of sound source feature detection is poor, saliency of a wrong region, i.e., a region
incorrectly identified as the sound source location, is increased by incorporating
the sound source feature. The accuracy of the saliency map is degraded in such a
case. Indeed, in Figs. 3 and 4, there are cases where the accuracy of the saliency
map greatly decreases. We selected and fixed the most effective value of W for
each video: W = 5.0 (video A), W = 2.0 (video B) and W = 3.0 (video C).
These W s were used to obtain the results below.

Figure 5 shows an audio energy calculated by audio signals and w(t). We ob-
serve that w(t) becomes large at frames when the audio energy greatly changes.
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Fig. 6. Examples of images and saliency maps of Video A
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Fig. 7. Examples of images and saliency maps of Video B
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Thus, it is possible to reflect discriminative changes of audio signals over frames
by using w(t).

Figures 6, 7, and 8 show examples of images and saliency maps of videos A, B,
and C, respectively. In each figure, gaze points obtained by displaying the video,
gaze points obtained by displaying only the image sequence, the conspicuity
map of the sound source feature h̄, the conventional visual saliency map sv,
and our proposed saliency map s are illustrated in this order. We remark that
gaze points are represented as white crosses. In the saliency maps, high salient
regions are displayed in white. If the white crosses fall into the white regions, the
saliency map is highly accurate. We observe that gaze points are affected by the
existence/non-existence of audio signals and the gaze points are drawn to the
sound source (left or right) depending on the frame. This indicates that human
gazes are attracted by not only visual stimuli but also auditory stimuli. We also
observe that (1) h̄ is indeed reflected in sv, and (2) how much h̄ is reflected in
sv depends on the frame. Therefore, we can conclude that the proposed saliency
map appropriately reflects changes of audio signals in terms of w(t).

Figure 9 shows the ROC curves of videos A, B, and C. The ROC curve of s is
located in a more upper left than sv for all the videos. Therefore, the accuracy
of the saliency map increases by incorporating sound source feature h̄. This
confirms that incorporating audio signals significantly improves a saliency map.

5 Conclusions

This paper presented a method for constructing a visual saliency map for a
video by incorporating sounds in its computation. To deal with sounds like image
features, we introduced a sound source feature which represents the location of a
sound source in each frame. The location of a sound source was computed using
the correlation with audio signals and sound source motion. Our method then
computed the importance of the feature in each frame using an auditory saliency
map. The importance was then used to fuse the sound source feature with image
features. By this way, we obtained a visual saliency map that reflects sounds
contained in a video. Experiments using subjects confirmed that our proposed
saliency map outperforms a saliency map computed using image features alone.
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14. Schauerte, B., Kühn, B., Kroschel, K., Stiefelhagen, R.: Multimodal saliency-based
attention for object-based scene analysis. In: Proceedings of the 24th International
Conference on Intelligent Robots and Systems (IROS). IEEE/RSJ (2011)

15. Tatler, B.W., Baddeley, R.J., Gilchrist, I.D.: Visual correlates of fixation selection:
effects of scale and time. Vision Research 45(5), 643–659 (2005)

16. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive
Psychology 12(1), 97–136 (1980)

17. Yamada, K., Sugano, Y., Okabe, T., Sato, Y., Sugimoto, A., Hiraki, K.: Attention
prediction in egocentric video using motion and visual saliency. In: Ho, Y.-S. (ed.)
PSIVT 2011, Part I. LNCS, vol. 7087, pp. 277–288. Springer, Heidelberg (2011)

18. Yuyu, L., Sato, Y.: Visual localization of non-stationary sound sources. In: Pro-
ceedings of the 17th ACM International Conference on Multimedia, pp. 513–516.
ACM (2009)


	Incorporating Audio Signals into Constructing
a Visual Saliency Map

	1 Introduction
	2 Visual Saliency Map
	3 Saliency Map with Audio Signals
	3.1 Detecting a Sound Source Feature
	3.2 Computing Weights for Frames
	3.3 Constructing a Saliency Map with Audio Signals

	4 Experiments
	4.1 Experiment Set-Up
	4.2 Evaluation Criteria
	4.3 Results and Discussion

	5 Conclusions
	References




