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Abstract. We propose a method for drawing gaze to a given target in
videos, by modulating the value of pixels based on the saliency map.
The change of pixel values is described by enhancement maps, which
are weighted combination of center-surround difference maps of inten-
sity channel and two color opponency channels. Enhancement maps are
applied to each video frame in the HSI color space to increase saliency
in the target region, and to decrease that in the background. The TLD
tracker is employed for tracking the target over frames. Saliency map is
used to control the strength of modulation. Moreover, a pre-enhancement
step is introduced for accelerating computation, and a post-processing
module helps to eliminate flicker. Experimental results show that this
method is effective in drawing attention of subjects, but the problem of
flicker may rise in minor cases.

Keywords: visual focus of attention, saliency, video modulation, gaze
navigation.

1 Introduction

To understand the behavior of human visual attention is an important task in
the study of neuroscience. Human gaze can be directed by the ability of learning,
recall, or recognition. More frequently, the direction of gaze is controlled by our
born ability to discriminate object appearances. To understand the principle of
human vision, creating a computational model for visual attention is a primary
task in the cross subject of neuroscience and computer science.

One promising way to estimate the visual focus of attention is to use a saliency
map, which identifies image regions that draw more human attention. Koch
and Ullman [9] firstly proposed a prototype of saliency map model. Itti et al.
[6] summarized the previous work and proposed the basic bottom-up saliency
map model. Afterwards, Itti et al. [7] extended the saliency map to deal with
videos by addinsg flicker and motion detection. In later years, more models of
saliency computation were proposed. The graph-based visual saliency [4] added
an ‘activation’ step after the extraction of original features. The ability of feature
selection was improved in this work, but the proposed algorithm is more complex.
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Huang et al. [5] proposed a saliency model in HSV color space, for extracting
regions of interest. Although their proposed saliency map is defined in a more
human-perception oriented color space, key functions of map components are
similar to those of Itti et al. ’s bottom-up model.

One of the potential applications of saliency maps is the gaze-based interface
where we need to draw user’s visual attention. With the help of saliency map,
it is possible to navigate the visual focus of attention by modulating features in
the image. By this way, we can encourage the audience to watch the information
we stress, without any aid of texts or overlapped graphics. In broadcasting of
sports games, on the other hand, following the motion of a single player by
image modulation will lead to a comfortable visual experience. Additionally, if
we apply such image modulation to rear-view images displayed inside a car, the
driver need not to read texts anymore while driving.

An early trial on gaze navigation by image modulation was to shift the hue
and luminance to raise attraction, and then remove the modulation immediately
when the subject’s gaze has moved to the target [1]. A pixel-wise modulation
for still images was, on the other hand, proposed by Hagiwara et al. [3]. In this
method the gaze was drawn to a given target in the modulated image, but un-
natural color was observed in the modulated image. Another algorithm to modu-
late an image and video was proposed [11,13]. In this work the saliency map was
generated in L*a*b* space, and the map was applied to images for modulation.
Although this approach produced a fine and neutral result, a threshold map for
each image needed to be manually preset, which made the method impractical
in the real situation. In their work, each frame was independently adjusted and
coherence between video frames was not taken into account.

Similar to the works above, translating the visual attention to a specified re-
gion using video modulation is our primary task. Namely, the goal of this work
is to draw the gaze to a given target in a video by modulating the frames of the
video. During the process, a target region is manually specified in the first frame,
and the corresponding regions in subsequent frames of a video are automatically
tracked by the TLD tracker [8], which is known to work robustly and accurately.
Saliency in the region is estimated by a saliency map [7], with which we create
a mask. Then we generate several centre-surround difference maps from the im-
age and multiply them with the mask. After this, the maps are added back to
the image as the modulation. The key idea of this operation is to enlarge the
local contrast on the target. Considering the visual satisfaction for the viewer,
we modulate both intensity and color simultaneously in the HSI space. Since
we aim to draw the viewer’s focus effectively and to make the modulation as
less noticeable as possible, the strength of modulation is determined to raise of
target’s saliency as well as to maintain the similarity to the original image. More-
over, we introduce a pre-enhancement step to accelerate computation required
for the modulation. Due to inconsistency of modulation across the video, the
appearance of objects may fluctuate between frames, which is commonly known
as flicker. To reduce this effect, all frames are rendered by a post-processing op-
eration, which results in smoothing the modulations over frames. Experiments
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Fig. 1. Flowchart of process. Our method consists of two main parts: the processing
loop part (on the left) and the output loop part (on the right).

using subjects demonstrate that our method can increase the time of fixation on
the target, and that the flicker is more suppressed for intensity modulation than
color modulation.

2 System Overview

A video is decomposed into frames and processed sequentially in our method.
Firstly, pyramids are generated in a frame, which participate in constructing a
saliency map. Meanwhile, the TLD tracker gives a bounding box of the tracked
object, and then we create an binary image highlighting the bounding box area.
By multiplying this image with the saliency map, we create the grayscale mask
for modulation. To simplify the system, we only focus on pixel-wise modulation,
in which each pixel has no movement in space. Therefore, orientation and motion
are not modulated in our method. To prevent unnatural flickers, enhancement
of flicker is also excluded from our method. Therefore difference maps only for
intensity, red-green opponency and blue-yellow opponency, are generated from
pyramids.

A flowchart of the entire algorithm is illustrated in Fig. 1. The procedures on
the left constitute the processing loop, which generates the values of modulation
to be applied on each frame. The procedures on the right constitute the output
loop, which smooths the values over the time and applies them on frames.
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In the processing loop part, the difference maps are weighted, combined, and
masked, resulting in 3 enhancement maps. To make a better use of the co-
herence between frames, and for fast computation, the initial difference map
weights of each frame are passed from the previous frame. This step is called
pre-enhancement in our method. The enhancement maps are converted to en-
hancement maps of hue, saturation, intensity and the image is also decomposed
into the H, S, I channels. The modulation is executed through vector combi-
nation of each channel and its corresponding enhancement map. Then, after
the conversion of the image back to RGB space, the current status is evaluated
through the saliency map to have a decision: if the target region achieves the
maximum of saliency in the image, the process terminates (illustrated by green
arrow in Fig. 1); otherwise weights increments are calculated to promote boost-
ing of this frame (illustrated by red arrow). Finally weights are saved before the
next frame processing starts.

The output loop part is to established to solve the flickers due to unpredictable
change of weights. The key idea here is the smoothing of weights over the time.
To accelerate the speed of modulation, we use the cached pyramids and masks
obtained from the processing loop parts. The output loop part executes after the
processing loop part completes for a frame, but a delay of a few frames exists
for the smoothing of weights over the time. Since the processing is currently not
real time, the output loop part can also run independently when the processing
loop part terminates.

3 Saliency Map Creation

Visual attention is human’s ability of selecting a region in the visual field to
reduce scene analysis. In order to quantify the human visual attention, we need
a saliency map for each frame. Our saliency map is generated based on the
bottom-up model proposed by Itti et al. [6] [7]. An input RGB frame is firstly
split into 3 channels: r, g, b. Then 5 images are generated from the channels:
I = (r+g+b)/3, R = r− (g+b)/2, G = g− (r+b)/2, B = b− (r+g)/2, and Y =
r+g−2(|r−g|+ b). All of the mono-color images are normalized by I and small
values (< 0.1 for example) in them are set to zero. Next, Gaussian pyramids of
each image are created: I(σ), R(σ), G(σ), B(σ), Y (σ), where σ ∈ [0, 8] represents
the scale. For orientation detection, 4 Gabor pyramids O(σ, θ) are also created
from I [2]. For detecting time-varied features, 4 motion pyramids R(σ, θ) are
created from O(σ, θ) and its shifts according to the Reichardt model [12].

Next, feature maps are created through absolute across-scale difference of
scales in each pyramid. Among them, the color opponent feature maps come
from difference between mono-color pyramids. In order to highlight the most
discriminative feature within each map, we have a normalization step upon each
feature map. Here we employ the simple max-local normalization [6] to compute
fast and preserve more features. The reason for this is that our modulation
mask generation needs the detail of small-salient features in the map, which
the iterative normalization cannot provide. After normalization, feature maps



210 T. Shi and A. Sugimoto

are added in the across-scale manner, resulting in conspicuity maps. Finally the
normalized conspicuity maps are combined into a master saliency map S. In our
implementation saliency maps are linearly normalized to the fixed range [0,1],
which guarantees that the pixel with value 1 is the maxima of saliency.

Differently from the model by Itti et al. [7], the feature maps of flicker and
conspicuity map of flicker are removed in our implementation. Our intensive
experiments suggested that the flicker detection module always makes modulated
videos flickering, which plays a negative role in keeping the modulated video
smooth. To make the video visually comfortable, we decided to remove the flicker
module.

4 Generating Enhancement Maps

In order to quantify the modulation, we create a grayscale image, called en-
hancement map in this paper, holding the adjustment on pixels in every partic-
ular channel. In creating the enhancement maps, we start from creating a mask,
which discriminates the area to raise saliency from the area to decrease saliency.

4.1 Target Filtering

By employing the TLD tracker [8], we can fetch a bounding box of a target.
In processing each frame, we firstly create a raw binary image B, in which
pixels inside the bounding box are set to 1, while those outside are 0. In order
to exclude the background from raising saliency, the area of the target object
should be refined. Since the saliency map always highlights moving objects, we
make use of it to accurately extract the target. The final mask is generated by:

M = S × (B ∗H),

where × denotes the pixel-wise product, ∗ denotes convolution, and H is a
Gaussian kernel. Convolving B with H smooths the border of the bounding box,
making the border less noticeable. Then, by means of the pixel-wise product, we
highlight only highly salient pixels in the resulting mask. After these, the range
of mask M is normalized to [0,1] to guarantee a constant maximum value for
each frame across the video.

4.2 Extracting Center-Surround Difference

Raw features are extracted through center-surround differences between different
scales in a pyramid. This procedure is similar to generating feature maps in the
saliency model [7]. Here we name an image holding raw features as a difference
map. To modulate intensity and color modules, their corresponding difference
maps are generated through subtracting surrounding scales from centre scales:

DI(c, s) = I(c)� I(s),
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DRG(c, s) = (R(c)−G(c)) � (G(s)−R(s)),

DBY (c, s) = (B(c)− Y (c))� (Y (s)−B(s)),

where c, s denote scales, c ∈ {0, 1, 2}, s = c + δ, δ ∈ {3, 4}.They are not same
as feature maps: firstly, in order to keep the peak/valley property of features,
difference maps are signed; secondly, scales enrolled (starting from 0) here are
lower than those in feature maps (starting from 2). This is beacuse we found that
lower scales work in more detail, producing more visually comfortable results.

4.3 Weighting the Difference Maps

To effectively navigate the gaze in any circumstances, saliency on the target
should be enhanced and, at the same time, saliency outside the target (in the
background) needs decreasing. To decrease saliency, we can subtract difference
maps from the background to suppress the discriminative features. For each
difference map D (including DI(c, s), DRG(c, s), DBY (c, s)), we denote the maps
in charge of increasing and decreasing saliency respectively as D1 and D2:

D1 = D ×M, D2 = D × (1−M).

In a channel, each difference map contains features on its own center-surround
scales. In some scales the features are homogenous between the target and the
background, while in the other scales they are discriminative. To modulate
saliency as effectively as possible, we let the discriminative scales contribute
more to our work. This is achieved through assigning weights to maps. We de-
note the mean and the standard deviation for peak values in the absolute map
|D1| by μ̂1 and σ̂1, and those in |D2| by μ̂2, σ̂2. Then the weights for D1 and D2

are designed respectively as:

w1 = σ̂1e
(μ̂1−μ̂2), w2 = σ̂2e

(μ̂2−μ̂1).

We take only the absolute peaks in calculation because centre-surround features
only exist in a local peak or valley. A weight is large only when the mean value
of features in its corresponding region (target/background) is larger than that
in another region, and when there is a large discrimination in its region.

4.4 Enhancement Maps

An enhancement map is the across-scale combination of weighted difference
maps. The difference maps are enlarged to the size of original image before com-
bination. In a channel, let E1 be an enhancement map in charge of increasing
saliency, and E2 be that in charge of decreasing saliency:

E1 =

2⊕

c=0

c+4⊕

s=c+3

w1(c, s)n(D1(c, s)),
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E2 =

2⊕

c=0

c+4⊕

s=c+3

w2(c, s)n(D2(c, s)),

where n(·) is a rescaling operation to fit the map to [-1, 1]: n(A) = A
max |A| .

Then a master enhancement map can be created from E1 and E2:

E = α[n(E1)− βdn(E2)],

where α is a rate controlling the strength of each time of modulation, and βd is
a ratio constraining the modulation on the background. To maintain the same
visual perception even after the modulation, pixels in the background (which
have a large population) are modulated as slightly as possible. Since the size
of the tracked target is almost fixed throughout the video, the value of βd is
initialized only by the portion of the target area to the background area. In most
cases βd becomes a small value between [0,1] due to the area of the background
being much larger than that of the target. We remark that when areas of the
target and the background are equal with each other, βd becomes 1 to guarantee
the same speed in modulating two parts.

To make the target getting close to the saliency maxima, α is proportional to
the difference between the peak saliency in the target area and 1:

α =

{
k[1−max (S ×B)] for intensity,

kβc[1−max (S ×B)] for RG and BY,

where the coefficient k constrains the modulation speed, and βc is the ratio
constraining the color modulation. βc is also initialized during processing at
the first frame: it becomes a large value only when the target area is both
brighter and more saturated than the background. The reason for this is that
we only execute strong color modulation on vivid objects to prevent unnatural
appearances of other objects.

4.5 Weight Management

To save the computational cost, we take over the modulation at a frame t to that
at its next frame t + 1. Since features in even nearby frames have differences,
directly applying enhancement maps of frame t to t + 1 will cause blurring.
Therefore, we take only the weights at t and apply them to difference maps
at t + 1. The step of constructing the enhancement map in this way is named
pre-enhancement.

We provide each difference mapDt with a pre-enhancement weightW t (where
t denotes a frame index). For the first frame, we set all W 1

1 (c, s) ← 0 and
W 1

2 (c, s) ← 0. We define increments ΔW by the products of all multipliers on
difference maps in the construction of enhancement maps:

ΔW t
1(c, s) = αt 1

max |Dt
1(c, s)|

1

max |Et
1|
wt

1(c, s),
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ΔW t
2(c, s) = αtβd

1

max |Dt
1(c, s)|

1

max |Et
1|
wt

1(c, s).

Then all W t are adjusted by adding the increments (subscripts 1, 2 and param-
eters c, s are eliminated):

W t ← W t +ΔW t.

Except for the first frame, we firstly construct pre-enhancement maps before
calculating new weights:

Et
0 =

c3⊕

c=c1

c+δ2⊕

s=c+δ1

[W t
1(c, s)D

t
1(c, s)−W t

2D
t
2(c, s)].

Then we apply the pre-enhancement maps to the image and evaluate the saliency.
New weights are calculated only when the peak saliency of target is less than 1. It
saves the computation when the predicted weights meet the required modulation
of this frame. In most cases, the weights W 1

1 (c, s) and W 1
2 (c, s) increase frame

after frame to raise the saliency of the target to the maximum. However, when
the stimuli in the background is weakened, the required modulation for target
decreases. In order to make W t convergent, we multiply the weights with a
coefficient γt between [0, 1] before applying the pre-enhancement of the next
frame (subscripts 1, 2 and parameters c, s are omitted):

W t+1 = γtW t.

γt has a small value when the image differs significantly from the original image,
while it returns to 1 when no modulation is applied. Therefore γt and αt always
promote the modulation in two directions: γt aims to make the modulated image
similar to the original image, while αt encourages the image to have more mod-
ulation. They cooperate to get W t fixed when the target region in the original
image has already the saliency maxima. In all other cases, they cooperate to
make the modulation as effective and un-noticeable as possible.

In the output loop part of our method, all frames can be rendered according to
the weights generated in the processing loop part. To reduce the flicker resulted
from the inconsistency of frame modulation, before the rendering, each weight
is averaged with its neighboring values in the temporal domain:

W
t
=

1

2T + 1

t+T∑

τ=t−T

W τ ,

where (2T +1) is the number of participating frames in an operation. After this
operation, modulations on contiguous frames become familiar, thus flickering
from the modulation are greatly reduced. More frames participating in an aver-
aging operation can produce more visually comfortable result, but also increase
the delay of output. In our experiments the choice of (2T + 1) = 9 produced
good results.
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5 Saliency Modulation in the HSI Space

To achieve a natural appearance of the modulated image, enhancement maps are
applied to the image in the HSI color space. In this space, a color value consists
of hue θ, saturation ρ, and intensity i. Every RGB pixel of the original image
needs to be converted to the HSI space for modulation [10].

5.1 Intensity Modulation

Since the intensity enhancement map EI is created from the intensity channel of
each pixel, we are able to modulate the intensity individually. We simply combine
every value in the map EI (denoted by eI) to its corresponding intensity value
of the pixel:

i ← i+ eI .

5.2 Color Opponency Modulation

After intensity modulation, the intensity of each pixel is fixed. The color op-
ponency modulation of each pixel works on the pixel’s chromatic plane (which
is a rounded horizontal profile with a constant intensity in the HSI space). We
denote an individual value in ERG by eRG, and that in EBY by eBY . For each
pixel, we project values of both eRG and eBY as the magnitude of vectors in the
unit circle of a chromatic plane (Fig. 2a). The directions of vectors follow the
directions of colors that win in the opponency. We obtain a vector eC for each
pixel by combining eRG and eBY :

eC =

√
3

2
eRG u0 + (

1

2
|eRG| − eBY ) v0,

where u0 is the unit vector with hue θu = −π
6 (along the R-G opponent axis),

and v0 is the unit vector with hue θv = π
3 (along the B-Y opponent axis).

eC can then be converted to the polar coordinate system: eC = (eθ, eρ), where
the magnitude of eθ is the modulation for saturation and angle eρ is that for
hue. Now for each pixel, the color modulation is carried out through the vector
addition:

θ ← θ + eθ, ρ ← ρ+ eρ.

The modulated image is then converted back to RGB space.

5.3 Data Correction

Because the HSI space is an irregular double-cone space, raising the saturation
or intensity of a pixel may result in an out-of-range value (as it shown in Fig.
2b). Simply constraining θ, ρ, i value within [0,1] may shift the hue value after
the conversion to the RGB space. Due to the irregular surface of the space,
formulating the surface with H, S, I values is hard and thus using a convex
linear combination is not appropriate. Our solution to this problem is to fix
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(a) The enhancement maps should be
converted to vector eC .

pA

p′B

pB

(b) A section with constant hue in the HSI
space. In the section, pA is enhanced to
pB, but should be corrected to p′B .

Fig. 2. Conversion of enhancement maps and illustration of the ‘out of range’ problem

the maximum out-of-range channel (either r, g, or b) to 1, while keeping h
and i unchanged, and then to find the maximum admissible ρ inversely. In this
subsection only, we denote the individual pixel values of r, g, b by non-italic r, g,
b to differentiate the notation of the entire image. When r is out-of-range and
also the largest in r, g, b, we set r to 1. The corrected g and b values are:

g =

√
3

2
(1− i) tan θ +

3

2
i− 1

2
, b = −

√
3

2
(1− i) tan θ +

3

2
i− 1

2
.

Similarly, we can apply this strategy to other cases where g or b is out-of-range.
When g gets out of range, g is set to 1, and

r = i− 2(1− i)
cos θ

cos θ −√
3 sin θ

, b = 2i+ 2(1− i)
cos θ

cos θ −√
3 sin θ

− 1;

when b is out-of-range, we set b to 1, and

r = i− 2(1− i)
cos θ

cos θ +
√
3 sin θ

, g = 2i+ 2(1− i)
cos θ

cos θ +
√
3 sin θ

− 1.

6 Experiments

6.1 Experiment Design and Preparation

We implemented our method in MATLAB, and prepared 2 original video clips
(with names given as A01, B02) for processing. Both of them were single shots
with 30fps. For each clip we defined 2 completely different bounding boxes for the
TLD tracker, to obtain 2 versions of modulated video (one version is named A1,
B1, and the other version is A2, B2). Some snapshots of each video clip are shown
in Fig. 3 The specifications of each video and bounding boxes are illustrated in
Table 1. The relative area of the target is computed by the proportion of the
target area to the image area.

1 Source: <ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/>
2 Source: <http://www.youtube.com/watch?v=aU5Hq_Kz7n0>

<ftp://ftp.tnt.uni-hannover.de/pub/svc/testsequences/>
<http://www.youtube.com/watch?v=aU5Hq_Kz7n0>
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(a) Original frame in A0 (b) Modulated version A1 (c) Modulated version A2

(d) Original frame in B0 (e) Modulated version B1 (f) Modulated version B2

Fig. 3. Snapshots of original and modulated videos. The white bounding boxes indicate
the target regions to be modulated in A1/B1, while the black boxes corresponds to
those in A2/B2.

Table 1. Specification of clips and targets

Resource Resolution Length Proportion of area
(frames) 1 2

A 352×288 300 0.0056 0.0576

B 852×480 300 0.0263 0.0021

In total, 6 videos (including original and modulated versions) were used for
each subject. Each video was equally treated and played once for each subject. 15
subjects participated in our experiments. We divided 15 subjects into 3 groups.
For different groups, videos were shown in a different order, and videos of the
same content were displayed alternatively. These were designed to reduce the
impact of human high-level vision (gaze movements directed by thoughts for
example). We also forced the subjects to reset their fixation points between
videos to eliminate the effect of the previous content to the next one. After
watching videos, each subject reported whether or not each video he/she watched
was modulated, and whether he/she observed flicker in each video.

Table 2. Rates of successfully directed samples before and after modulation

Video A1 A2 B1 B2

Original 0.0188 0.0350 0.0989 0.0076

Modulated 0.0813 0.1020 0.1497 0.0594
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During the experiments, a Tobii TX3003 eye tracker was employed to track
the fixation point of the subjects. We used only the first sample in the duration
of each frame as the fixation position in this frame.

6.2 Experimental Results

Over an entire video, by taking the rate of the number of fixation points falling
into the bounding box of each frame to the number of valid frames, we computed
the rate of successfully directed fixations. The rates of fixations before and after
modulation for each modulated version are shown in Table 2.

Here we can see for all the modulation on different contents, the rates of
fixations on the targets in modulated videos all greatly increased compared to
those in the original videos. This indicates that our method successfully drew
the gaze to given targets. However, the rate for modulated videos itself did not
achieve a large value. This is because human gaze is always wandering over the
image and it is hard to force someone always to look at the target over the entire
video. Moreover, the area of the target affects the success of modulation. We can
see in the same content, a larger area has a high probability of fixation falling
into it, while a small area is hard to attract gaze.

To analyze the tracked fixations in more detail, we calculated the relative
distances from fixations to the bounding box in each frame. Then we created a
grid of 2-D containers and binned all the distances into the grid, resulting in a
target-centered 3-D histogram. Among all the containers, the one at (0,0) bins all
the data of in-bounding-box fixation, while the other containers bin the fixation
in their particular positions to the target. We then plotted 2-D heat-maps where
the color of each grid represents the height of each container. Fig. 4 shows the
heat-map for modulation version B1, which had the lowest growth (51.41%) of
the falling-in rate. We can observe that the target (the black van) was originally
salient in a large bunch of gaze attractions. After modulation, the accumulation
on container (1,0) was diluted and some energy was transferred to (0,0).

Statistics of questionnaire are shown in Fig. 5. For each video, the blue bar
illustrates the ratio of subjects who felt the video was modulated, and the red bar
shows the ratio of subjects who observed flicker. For all contents, the feeling of
modulation on modulated versions was higher than that on the original version.
This means that our modulation was easy to be noticed. For content B, we
can see that the observation of flicker was almost proportional to the growth of
falling-in rates in Table 2. Although the feeling of flicker should be eliminated, we
have to admit that flicker does attract gaze. However, for the feeling of flicker, A0
received a higher mark than its modulated versions. No subject observed flicker in
A1 although in this video both color opponency modules were greatly modulated.
This may come from the quality of video and the moving characteristic of the
target.

To investigate the relationship between the perceived flicker and the strength
of modulation, we computed the mean and the standard deviation of difference

3 Product information: http://www.tobii.com/en/eye-tracking-research/global/
products/hardware/tobii-tx300-eye-tracker/

http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-tx300-eye-tracker/
http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-tx300-eye-tracker/
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Fig. 4. Heat-map of containers of video B0 vs. B1
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Fig. 5. Subjective judgements of modulation and flicker
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Fig. 6. Mean and standard deviation of weights of modules

map weights for each module (shown in Figure 6).In this figure, a larger mean
indicates that the clip is more strongly modulated, while a larger standard de-
viation indicates greater fluctuation of modulation is caused across frames. We
observe that a strong modulation in one of the color opponency modules might
be the cause of perceived flicker. Especially for video B2, although the modula-
tion on intensity was great, the colors were adjusted very slightly, which made
it less likely to be marked as ‘flickering’. Reason for this may be human vision
is more sensitive to color opponent contrast than intensity contrast.

7 Conclusion

We have successfully navigated human gaze to our given targets in videos, by
modulating saliency of videos under the HSI space. For every frame the mod-
ulation was simultaneously carried out for intensity, red-green opponency, and
blue-yellow opponency. Given the target tracked by the TLD tracker, saliency
in the target region becomes boosted, while saliency in the background becomes
reduced. This is evaluated with the help of a saliency map. Moreover, our pro-
posed method employs the pre-enhancement step for computation efficiency, as
well as a post-processing module for the prevention of flickers. Experimental re-
sults showed that this method can effectively draw attention of subjects to the
predefined targets. We discovered that subjects were more likely to notice the
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cue of modulation when exposed to greatly modulated videos. The observation
of flicker was likely to be stronger when color opponency channels are greatly
modulated. To reduce the flicker effect is left for future work on this topic. In our
experiments, the size of bounding box was always maintained, and the tracker
might sometimes lose the target. Therefore, to find a more robust way of target
tracking, with an ability of zooming the bounding box with the target, is an-
other piece of future work. Additionally, a real-time modulation is also promising
development for the need of on-line processing.
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