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Abstract

In computer vision research, a texton is a representative dense visual word for the bag-of-keypoints
method. It has proven its effectiveness in categorizing materials and in generic object classes. De-
spite its success and popularity, no report describes a study that has tackled the problem of its scale
optimization for given image data and associated object categories. We propose scale-optimized tex-
tons to learn the best scale for each object in a scene. We incorporate them into image categorization
and semantic segmentation. Our textonization module produces a scale-optimized codebook of vi-
sual words. We approach the scale-optimization problem of textons using the scene-context scale
in each image, which is the effective scale of local context to classify an image pixel in a scene.
We perform the textonization process using a randomized decision forest, which is a powerful tool
with high computational efficiency in vision applications. Results of our experiments using MSRC
and VOC 2007 segmentation datasets demonstrate that our scale-optimized textons improve image
categorization and segmentation performance.
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1 Introduction

Automatically categorizing images has become increasingly important for image retrieval systems such
as those for photo-sharing on web-sites. Current search engines offer meta-tags based on simple charac-
teristics of images in a given large dataset. Smart devices and systems for image retrieval would become
radically more intelligent and easy to use if a set of text labels to an image based on its visual con-
tent could be provided automatically. Image categorization is a means to perform image retrieval and
it can be helpful in semantic segmentation and object recognition tasks. Additionally, it can enhance
understanding of visual contents for easy browsing of web-sites. Moreover, it can develop convergence
technologies for databases, data mining, and artificial intelligence applications.

Recently, image categorization frameworks have shown that dense sampling of visual words [19]
and their combinations with image cues [5] can improve their performance significantly [21]. Textons
[11] are promising representative dense visual words. Although early texton studies were limited to
their exclusive emphasis on artificial texture patterns instead of natural images [35], recent studies have
proven the effectiveness of textons for categorizing materials [27], various scenes [1], and generic object
classes[32]. Using a bag-of-features model [5, 25], the framework for using textons as visual words has
become popular and has demonstrated its success in recent years [34]. Textons, unlike sparse image
features such as SIFT [17] or HOG [6], are useful in both object segmentation and recognition because
of their high density [22].
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Figure 1: Example images of the ’cow’ category on MSRC dataset. The objects have different scales
in a large dataset such as large scale (a), middle scale (b), and small scale (c). Darker pixels correspond
to the smaller scale. Because, scale-optimized textons include both scale and textural context in each
image pixel, we can produce more discriminative features to recognize the object in a scene.

The major shortcoming of the bag-of-features model is that it discards the scale and the spatial
layout of visual words, which engenders a daunting problem hindering segmentation and recognition.
When a texton is used as a visual word, incorporation of the scale and the spatial layout becomes an
important issue. First, many works have been presented to overcome the problem of the spatial layout
[15, 31, 9, 28, 29]. To learn the model of object classes with incorporating texture, spatial layout, and
context information, Shotton et al. proposed a texture-layout filter in TextonBoost algorithm [23]. Their
filter can capture a textural context between texture and spatial layout using a boosted combination of
texton features. The filter markedly improved the accuracy of segmentation and recognition.

Nevertheless, little attention has been devoted to discarded scale information for given image data
and associated object categories. A large dataset has numerous scales of objects that are present in an
image. As shown in Fig. 1, although objects might fall into the same category such as ’cow’, they have
different scales in a scene. Scale information of an object can be an important cue for recognizing the
object in a scene, but report in the literature describes the incorporation of scale information into textons.

To address scale information and textons, we propose scale-optimized textons for image catego-
rization and semantic segmentation. We use more discriminative bag-of-features by extracting scale-
optimized textons in the textonization process. The scale-optimized texton can incorporate a texture-
layout filter to capture the scale and textural context of the objects in a scene. We approach the scale-
optimization problem of textons using the scene-context scale in each image pixel, i.e., the effective scale
of local context to classify an image pixel in a scene [12]. Our textonization process is first conducted
using random forests [3], which have been shown to be computationally highly efficient, to generate base
textons. We then extend the random forests into multi-scale texton forests to generate various textons
with different scales. Furthermore, we estimate a scene-context scale using the proposed multi-scale
texton forests[13]. Finally, it is possible to extract the scale-optimized texton. In other words, a scale-
optimized texton is a discriminative feature extracted from each image pixel in the best scale for the local
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context, accordingly, the scale-optimized texton includes both semantic and scale information for local
textural context.

Our scale-optimized textons can be combined with texture-layout filters to improve segmentation
accuracy further. For image categorization, a histogram of the class distributions of scale-optimized
textons is computed over the whole image. The histogram is combined with texture-layout filters for
semantic segmentation. To assess our framework, we compare the accuracy of categorization and seg-
mentation with that of the state-of-the-art [22] using MSRC21 and VOC 2007 segmentation datasets.
Our results show that our method achieves better categorization and segmentation accuracy than those
of the state-of-the-art using scale-optimized textons. The contribution of this work is the incorporation
of scale information into textons as the textural context of the object to make them more discriminative.
This report is the first describing method incorporates scale context into the textonization process.

This paper is organized as follows. In Section 2, we review related works on segmentation and recog-
nition related to the spatial layout and scale information. Section 3 explains the textonization process
to find the best scale of objects using scene-context scale. Section 4 describes how to combine scale-
optimized textons of each category into the image categorization and segmentation module. Section 5
presents experimentally obtained results related to performance. The salient conclusions are presented
in the final section.

2 Related work

Texton [11, 18, 27] is an efficient image representation used for both object segmentation and recognition.
Densely discriminative textons facilitate pixel-wise segmentation [24] and image labeling [33]. Malik
et al. [18] analyzed images into texton channels for image segmentation by mapping each pixel to the
texton nearest to its vector of bank filter responses. They established a typical textonization process
such as computing filter-banks, performing k-means clustering, and nearest-neighbor assignment, but it
is quite time-consuming. To avoid time-consuming computations, Shotton et al. [22] proposed a fast and
efficient textonization process using randomized decision trees.

These textonization processes can produce efficient and powerful textons for segmentation and recog-
nition. When objects in the same category have various scales in a dataset, however, scale becomes an
important factor to be considered. The multi-scale framework is commonly used to include scale infor-
mation.

Grauman and Darrell [10] proposed a fast kernel function called the pyramid match using multi-
resolution histograms. The pyramid match hierarchically measures similarity between histograms, which
consist of sets of features extracted from the finest resolution to the coarsest one. The proposed kernel
approximates the optimal partial matching by computing a weighted intersection over multi-resolution
histograms for classification and regression tasks.

Wang and Wang [30] proposed a multiple scale learning framework to learn the best weights for each
scale in the spatial pyramid matching [15]. The multiple-scale learning method can ascertain the optimal
combination of base kernels constructed in different image scales for visual categorization.

Kivinen et al. [14] proposed a multi-scale graphical model for categorization of natural scenes. They
developed a nonparametric Bayesian model, which captures an interesting qualitative structure in novel
images using a multi-scale representation. The model based on a tree structure engenders a fast and
accurate categorization performance.

As explained above, existing multi-scale approaches are developed in kernel-based learning or in a
graphical model. Their focus is how to incorporate multi-scale information into the learning process
using extracted image features. In contrast, our method directly incorporates scale information into the
feature extraction module, i.e., the textonization process. Our scale-optimized textons have scale context
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Figure 2: Dilatation of a region of interest according to scale space k and multi-scale texton forest.
Various sizes of image patches are used for node split function in the multi-scale texton forests (left).
The multi-scale texton forest consists of several semantic texton forests [22] with various scale levels.
Each semantic texton forest consists of randomized decision trees with the same scale level (right).

in themselves.

3 Scale-Optimized Textonization

Scale-optimized textons are obtainable using the scene-context scale in each image pixel. In this section,
we explain our textonization process and how to optimize textons to include the best scale using multi-
scale texton forests.

3.1 Multi-scale Texton Forests

We perform textonization processing using randomized decision trees to formulate multi-scale texton
forests. The semantic texton forests proposed by Shotton et al. [22] are used to generate different scale
levels to obtain multi-scale texton forests.

The multi-scale texton forests F consist of several semantic texton forests with various scale levels
F = {F1,F2, ...,Fs} as shown in Fig. 2, where the scale level is k = (1,2,3, ...,s). Each semantic
texton forest is a combination of randomized decision trees, each of which has a different set of image
patches for its nodes. Split node functions for a randomized decision tree compute the values of raw
pixels within an image patch p. By increasing the size of image patches for split node functions, we can
expand a semantic texton forest to multi-scale texton forests with different scales.

In the first scale level k = 1, an image patch p1 covers whole pixels within a (d× d) size on which
the split node functions for the first semantic texton forest F1 act. In the next scale level k = 2, the
increased image patch p2 covers the pixels within a (2d×2d) size excluding the former image patch p1.
Therefore, the size of image patch pk is increased to (kd× kd) pixels excluding the image patch p(k−1)
for the former scale level (k−1) as shown in Fig. 2.

The combinations of raw pixels within image patches pk for split node functions are generated ran-
domly. We also increase the number of the candidates quadratically with respect to the scale level k.

Randomized decision forests have been used in classifiers [2, 16] or clustering [20] with fast and
powerful performance. Semantic texton forests [22] are used for both clustering and local classification.
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Figure 3: The scene context scale (left) and the histogram for the bag-of-features model (right). Left
: In the scene-context scale image, darker pixels correspond to a smaller scale, so black pixels represent
the first scale level k = 1 and white pixels represent the largest scale level k = s. The most likely category
image can be obtained by computing the class distributions of scale-optimized textons. Right : For image
categorization and segmentation, we produce a histogram using scale-optimized textons. The dimension
of a histogram is the number of grid windows times the number of categories times all scale levels.

To textonize an image, an image patch pk is passed down the multi-scale texton forest according to their
scale level. We can obtain the class distributions Pk(c|Lk) by averaging the local distributions over the
leaf nodes Lk = (l1, l2, ..., lT ) at scale k as

Pk(c|Lk) =
1
T

T

∑
t=1

Pk(c|lt), (1)

where c is a category label of a pixel and T is the number of randomized decision trees in Fk. Several
class distributions in multi-scale texton forests exist as

P(c|L) = {(P1(c|L1),P2(c|L2), ...,Ps(c|Ls))}. (2)

3.2 Scene-Context Scale

Scene-context plays an important role in segmentation and recognition [7]. When the scene-context
is used on a per-pixel level, we can capture the local context in which image pixels carry semantic
information within a region of interest. Some image pixels, however, have ambiguous features at a very
local scale, because the color and texture of the local level have no capability of identifying the pixel
class. Therefore, every image pixel has its available range to search for a local context in a scene.

The effective region size for a local context is designated as the scene-context scale [12]. Given
the object presence and location in a scene, its scale is related to this range. It can be a strong cue for
recognizing the objects in the scene. We can estimate the scene-context per image pixel and use the
scene-context scale to find textons with the best scale using multi-scale texton forests.

The scene-context scale of each image pixel is obtained by computing the entropies of an image
patch in the leaf nodes of each randomized decision forest. The confidence of each semantic texton
forest is therefore computed by the entropies of the class distribution over the leaf nodes in Fk. We
regard the confidence as the criterion to find the scene-context scale. Because an object has different
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4: Clustering and classification results on MSRC segmentation dataset using multi-scale
texton forests. The multi-scale texton forest can generate different textons according to scale levels. (a)
Input images. (b) Ground-truth images. (c) – (h) Clustering and classification results according to scale
levels k = (1,2,3,4,5,6). The results correspond to each scale level : k = 1:(c), k = 2:(d), k = 3:(e),
k = 4:(f), k = 5:(g), and k = 6:(h).

scales depending on a scene, and because the scale of background/foreground appearing together in a
scene might be independent of the object, we estimate the scene-context scale per pixel.

The scale level of the semantic textons forest with minimum entropy of the class distribution is
chosen as the scene-context scale at each image pixel i. We compute the entropy Ek(i) of image pixel i
from the class distribution Pk(c|Lk) in Fk as

Ek(i) =−Pk(c|Lk)× logPk(c|Lk). (3)

Among all scale levels k = (1,2,3, ...,s), the best level k∗ is chosen with minimum entropy as

k∗ = argmink(Fk{Ek(i)}). (4)

The scene-context scale of an image pixel i is the instance k∗ of the most likely scale among all scale
levels.

3.3 Scale-Optimized Texton

Given an image pixel i, the image patches p centered at pixel i are classified by descending each ran-
domized decision tree. A randomized decision tree provides both a hierarchical tree structure such as a
path from the root to a leaf and the node class distributions at the leaf. Based on training data, the class
distributions can be estimated by averaging the local distributions in randomized decision trees.
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A scale-optimized texton can be generated by computing the scene-context scale of each image
pixel from multi-scale texton forests. Among multi-scale texton forests, a semantic texton forest Fk∗

is selected in the textonization process. The semantic texton forest Fk∗ has the instance k∗ of the most
likely scene-context scale. We can define the texton generated by the semantic texton forest Fk∗ as our
scale-optimized texton.

Our scale-optimized textonization process exploits the class distributions Pk∗(c|Lk∗) in the semantic
texton forest Fk∗ with the scene-context scale k∗. These scale and textural information are used in the
statistics of scale-optimized textons. By classifying a histogram consisting of the statistics of scale-
optimized textons, we can obtain good performance for pixel-level classification. Additionally, we can
improve the estimation of class distributions from training data, even if the training data perform no
geometrical transformation in terms of scale and orientation.

4 Categorization and Segmentation

Scale-optimized textons are used in the bag-of-features model for image categorization and semantic
segmentation. Once a scale-optimized texton is determined, we can calculate the class distributions of
each image pixel using the scale-optimized texton. We produce a histogram consisting of class distri-
butions computed across the whole image for image categorization. The histogram contains the scale
and textural context using both the most likely category ci∗ = argmaxci

Pk∗(ci|Lk∗), and the most likely
scene-context scale k∗ = argmink(Fk{Ek(i)}).

However, because the bag-of-features model discards spatial layout, we use a simple grid window
to learn the layout of scale and textural context automatically, as shown in the middle of Fig. 3. The
grid window consists of nine sub-grids as shown in the right of Fig. 3 : Top-Left (TL), Top-Center (TC),
Top-Right (TR), Center-Left (CL), Center-Center (CC), Center-Right (CR), Bottom-Left (BL), Bottom-
Center (BC), and Bottom-Right (BR). We concatenated the histograms from TL to BR. The histogram is
used as input to a classifier to recognize object categories.

We adopt the non-linear support vector machine (SVM) to classify each category. Multi-class clas-
sification is performed with LibSVM [4] trained using the one-versus-all rule: a classifier is learned to
separate each class from the rest, and a test image is assigned the label of the classifier with the highest
response.

When a histogram is created over a region of interest for each pixel, it is useful in pixel-wise seman-
tic segmentation. To obtain more accurate segmentation performance, it is possible to combine with the
texture layout file instead of our simple grid window. However, because the class distributions are ex-
tracted from scale-optimized textons, the results of the first clustering and classification guarantee good
performance. We present the performance of clustering and classification in Section 5.1.

5 Experimental Results

This section presents experimentally obtained results for image categorization and segmentation using
scale-optimized textons. We evaluated our algorithm using MSRC [24] and challenging VOC 2007 [8]
segmentation datasets that include various objects such as building, cow, sheep, water, face, cat, road,
and sky.

The MSRC dataset has 256 images for training, 257 images for test, and remaining 59 images for
validation. The VOC 2007 segmentation dataset has 209 images for training, 210 images for test, and
remaining 213 images for validation. We used standard training/validation data for training and used test
data for our test.
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Figure 5: Clustering and classification results obtained using scale-optimized textons. Above: (a)
Classification results with using scale-optimized textons. (b) Classification results without using scale-
optimized textons [22]. Below: Classification accuracies (percent) over the whole dataset, without-(b),
and with-(a), the scale-optimized textons. Our new highly efficient scale-optimized textons achieved
marked improvement over that of a previously reported method (b) in terms of the class average.

5.1 Scale-Optimized Textonization

To assess the efficiency of the proposed scale-optimized textons, we compared the class classification
accuracy with that achieved by the conventional semantic texton forests method [22] without using the
scale-optimized texton.

We separately trained the semantic texton forests at different scale levels. To train the multi-scale
texton forest, we prepared six scale levels k = (1,2,3,4,5,6). The initial image patch size was (15×15).
Therefore, the size of image patches p for the split function is (15k× 15k) at each scale level k. Each
semantic texton forest Fk had the following parameters, T = 5 trees, maximum depth D = 10, 400×2k
feature and 10k threshold tests per split function, and 0.25 of the data per tree. Training a semantic texton
forest took approximately 30×2k min on the MSRC dataset and 60×2k min on the VOC 2007 at each
scale step.
MSRC Dataset [24] Fig. 4 presents results of clustering and class classification based on multi-scale
texton forests. We visualized the most likely categories of each pixel. As shown in Fig. 4, a semantic
texton forest has different local class distributions according to its scale. Regarding results of the first
and second rows of Fig. 4, we notice that the more the scale level increases, the more the performance
also increases. The image of the third row shows the roughest result in the largest scale level. Most
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Figure 6: Image categorization ((a),(b), and (c)) and segmentation ((d) and (e)) results on the MSRC
dataset. Categorization and segmentation accuracies (percent) over the whole dataset. The proposed
scale-optimized texton achieves marked improvement of image categorization on that described in pre-
vious reports.

intriguingly of all, the fourth row’s image has different performance among categories according to the
scale level : the ’face’ is classified at the smallest scale, but the ’body’ is classified at a larger scale. The
image of the last row, shows good performance in the smallest scale as we expected. Results show that
the scene-context scale is estimated per image pixel.

Fig. 5 shows a several scene-context scale image of the MSRC test dataset. Using the scene-context
scale, we can obtain scale-optimized textons, and can infer the most likely category for each pixel as
shown in Fig. 5(a). Then Fig. 5(b) shows results of the state-of-the-art [22] based on single-scale semantic
texton forests. The single-scale semantic texton forest used the same parameter of the multi-scale texton
forests with the first scale level F1.

Clustering and class classification performance are measured as both the class average accuracy
(average proportion of pixels correct in each category) and the global accuracy (total proportion of pix-
els correct) as shown in the bottom table of Fig. 5. The global classification accuracy without scale-
optimized textons gives 50.2%, although that with using scale-optimized textons scale gives 53.0%.
Particularly significant improvement is visible in most classes. For some classes such as trees or water,
however, no improvement is apparent. This lack of benefit might derive from the fact that they have
no influence on scale-optimized textons because of their strong textural property. Across the whole
MSRC dataset, using the scale-optimized textons achieved a class average performance of 48.3%, which
is greater than the 38.4% of (b), as shown in Fig. 5.
VOC 2007 Segmentation Dataset [8] Fig. 7 shows the results of our scale-optimized textonization. As
presented in Fig. 7, a pixel-level classification based on the class distributions gives a good performance
(13.7%), even if it does not cooperate with any spatial-layout information. Therefore, we can confirm
that the proposed scale-optimized textons can be powerful and discriminative visual words for the bag-
of-features model.

5.2 Categorization and Segmentation

As a result of image categorization, we obtained the accuracy of VOC 2007 and MSRC categories, as
shown respectively in the last row of the table of Fig. 7 and the upper side of table in Fig. 6. For a
non-linear SVM classifier, we compared the class average using a radial basis function (RBF) kernel and
pyramid match kernel (PMK) [10] to the state-of-the-art [22]. We confirmed that the RBF kernel gives
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Figure 7: Result images of clustering and the class classification (upper) on VOC 2007. The VOC
2007 contains 21 challenging categories including the background. The bottom table shows the accuracy
of the clustering and the class classification and also image categorization (last row).

improved results than the PMK. As might be apparent, the proposed method using the scale-optimized
textons provides considerably better results than the selected state-of-the-art method. It shows improved
performance for all categories.

To demonstrate the power of the scale-optimized textons as features for segmentation, we employed
the joint boosting algorithm [26] to select discriminative features of the bag-of-features model. The
semantic segmentation results for MSRC test data are shown at the bottom of Fig. 6. As might be readily
apparent, the proposed segmentation algorithm improves the accuracy in the local classification process.
In particular, classes with the result of noisy clustering such as water, car, bicycle, sign and road, show
good performance in this process. We obtained segmentation results with global 65.2% and class average
59.8% using the bag-of-features model with scale-optimized textons.

We compared results obtained using the proposed method with those obtained using the state-of-the-
art method in the table of Fig. 6. In fact, the results obtained from the state-of-the-art method are better
than 58.6% in their paper [22], because they augmented the training data with image copies that are
artificially transformed geometrically and photometrically. However, our experiments use no geometric
transformations, or affine photometric transformations such as rotation, scaling, and left-right flipping.

Additionally, they separately run the categorization and segmentation algorithms and multiply the
distributions with image-level prior (ILP) to emphasize the likely categories and to discourage unlikely
categories using the results of image categorization. However, we exclude the ILP of image catego-
rization results for all experiments. Nevertheless, across the whole dataset under the same experimental
conditions, the proposed method achieved a class average performance of 59.8%, which is better than
the 58.6% that was obtained using the state-of-the-art method.
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6 Conclusion

This paper presented a method that incorporates scale information into textons as local textural context
of the object to make them more discriminative. Differently from existing methods, our method directly
incorporates scale information into the textonization process. By extending random forests into multi-
scale texton forests, our method generates different textons in scale. Then, using the scene-context scale,
it finds the scale-optimized texton, i.e., the texton with the best scale in each image pixel. Our experi-
ments showed that using our scale-optimized textons improves the performance of image categorization
and segmentation. It is expected that our scale-optimized textons will be combined with texture-layout
filters [24] to improve segmentation accuracy further.
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