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Abstract— While the problem of facial landmark detection
is getting big attention in the computer vision community
recently, most of the methods deal only with near-frontal
views and there is only a few really multi-view detectors
available, that are capable of detection in a wide range of yaw
angle (e.g. φ ∈ (−90◦, 90◦)). We describe a multi-view facial
landmark detector based on the Deformable Part Models, which
treats the problem of the simultaneous landmark detection
and the viewing angle estimation within a structured output
classification framework. We present an easily extensible and
flexible framework which provides a real-time performance on
the “in the wild” images, evaluated on a challenging “Annotated
Facial Landmarks in the Wild” database. We show that our
detector achieves better results than the current state of the
art in terms of the localization error.

I. INTRODUCTION

The face recognition is one of the most successful appli-
cations of image analysis and pattern recognition. The facial
landmark detection is a crucial step of the face recognition
pipeline (by face recognition, we refer to an arbitrary al-
gorithm like identity recognition, gender detection or age
estimation), since the correct face alignment has substantial
impact on the overall accuracy of the face recognition system
(e.g. [19], [6]).

Apart from the facial recognition pipeline, the facial
landmark detection can be used also as a pre-processing step
to some stand-alone application, to mention a few, e.g. head-
pose estimation [29], 3D face reconstruction, face tracking,
facial expression analysis or Human-Computer Interaction
(HCI).

Recently, there is increasing interest in the facial landmark
detection field, However, most of available methods work
only on the near-frontal face poses or on the very limited
yaw range, requiring all detected landmarks to be visible
and not allowing self-occlusions [18],[33], [32], [27] or work
on the profile poses only [23]. We believe, that one of the
reasons which contributes to this state is a lack of a properly
annotated databases with a large range of face poses.

We describe a multi-view facial landmark detector based
on deformable part models (DPM) which simultaneously
treats landmark detection and viewing angle estimation
within a structured output classification framework. We
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Fig. 1. The exemplary output of our proposed detector. The yellow boxes
are detections provided by the face detector. The red dots represents the
landmark, the blue lines shows the organization of the underlying graph for
a detected view (i.e. the discretized yaw angle), which is written on the top
of the detected face bounding box in magenta.

present an easily extensible and flexible framework and
report settings leading to a real-time performance on a real-
life images, evaluated on a challenging “Annotated Facial
Landmarks in the Wild” (AFLW) database [17]. We show
that the proposed detector has a smaller localization error
than the state of the art methods [34], [3]. The Figure 1
depicts the exemplary output of the proposed detector.

The contributions of this paper are as follows: first, we
model the multi-view facial landmark detection problem
within the structured output classification framework which
allows us to directly optimize the detector’s evaluation met-
ric, i.e. the average localization error, during the learning
phase. This is the main difference between the proposed
method and the work of [34] where the objective is to learn
an accurate face detector while the accuracy of the estimated
landmark position is not optimized in contrast to our work.
Second, we deal with the problem of self-occlusions by using
view-specific DPM for different range of yaw angles, where
the actual yaw angle is simultaneously estimated with the
landmark positions. In contrast, the detector of [34] uses
different DPMs only for frontal and non-frontal faces. Third,



we empirically evaluate the localization accuracy of the
proposed detector and two state-of-the-art methods [34], [3]
on a very challenging AFLW [17] dataset and on the Multi-
PIE [15] dataset. Four, we manually corrected imprecisely
annotated examples from AFLW dataset [17] and provide
the corrected annotation to the community.

We provide an open-source implementation of the pro-
posed detector.

The paper is organized as follows. Section II summarizes
the related work. The proposed method is described in Sec-
tion III. The experimental evaluation is given in Section IV.
Finally, Section V concludes the paper.

II. RELATED WORK

In this section, we briefly summarize existing methods and
describe works most related to the proposed approach.

The existing methods can be categorized depending on
whether they use a strong or weak shape model and whether
they use generatively or discriminatively learned appearance
models.

The strong shape models like the Point Distribution Mod-
els [7] provide generally a better prior on the landmark
configuration. However, the strong shape model is usually
represented by a highly non-convex function binding all
landmark coordinates. In turn, the estimation leads to a non-
convex optimization problem typically solved by a local
method. Such detectors are thus inherently sensitive to a good
initialization. The main representatives of this category are
methods like the Active Shape Models (ASM) [8], Active
Appearance Models (AAM) [7] and their derivatives like
e.g. the STASM [20] or the Constrained Local Models
(CLM) [9]. In contrast, the weak shape models are less strict
in penalizing unlikely landmark configurations. On the other
hand, the weak shape model is typically represented by a
set of simple functions which in turn allows to solve the
estimation problem globally. Hence using the weak shape
model avoids the problem of getting stuck in a local optima.
A prominent representative are variants of the Deformable
Part Models (also called Pictorial Structures) [14], [12], [11]
which have been applied to the landmark detection problem
e.g. in [10], [34], [27], [33].

A local appearance is either represented by a generative
models or by a disriminatively learned local detectors. An
example of the method with a generative appearance model
is the AAM [7], where the appearance is captured by the
PCA model of the pixel intensities (or colors) in a trian-
gulated net of image patches. The discriminatively learned
local detectors have been used e.g. in the ASM [8] and
the DPM [11]. The local detector is usually fed with a
feature description of a rectangular patch cropped around the
landmark position. A large variety of features have been used
for landmark detection, e.g. the Gabor features in [30], [16],
[2], [4], SIFT [20], SURF [22], HOG [34] or the LBP [27].
The local detectors are typically learned independently by
methods like the AdaBoost algorithm (e.g. [10], [25]) or the
Support Vector Regression algorithm [28].

The proposed detector belongs to the category of dis-
criminatively learned DPM. We use the Structured Output
SVM algorithm [26] to simultaneously learn parameters of
the shape model and the local detectors. In contrast, learning
of the shape model and the local detectors is in most existing
works done independently, which is computationally simpler
but has an impact on the accuracy.

The most related to our work are the methods of [34]
and [27]. The authors of [34] propose a multi-view DPM
based detector which simultaneously estimates the face loca-
tion, the landmark positions and the viewing angle. The main
difference if compared to our paper is in the learning objec-
tive. Their learning algorithm optimizes the detection rate of
the resulting face detector while the landmark localization
error is not taken into account. The proposed method in
contrast optimizes directly the average landmark localization
error, being the evaluation metric of the landmark detector.
The work of [27] uses a similar learning algorithm, however,
it is a single view detector working only on near-frontal
faces.

III. MULTI-VIEW DETECTOR LEARNED BY THE
STRUCTURED OUTPUT SVM

In this section, we describe the multi-view DPM based
facial landmark detector learned by the Structured Output
SVM (SO-SVM) algorithm.

A. Multi-view detector Based on Deformable Part Models

The DPM approach [14] translates estimation of the
landmark positions into an energy minimization problem.
We follow this scheme by introducing a scoring function
which is to be maximized w.r.t. the landmark positions and
the viewing angle. The shape model is represented by an
undirected graph G = (V,E) where V is a finite set of
vertices representing the landmarks and E ⊂

(
V
2

)
is a set

of edges between pairs of landmarks whose positions are
related. Examples of particular graphs used in the proposed
detector are shown in Figure 4.

Let I ∈ IH×W be an image of a fixed-size (we call it
normalized frame in the sequel), let φ ∈ Φ be a discretized
yaw angle (i.e. it corresponds to a particular view defined by
a range of yaw angle), let s = (s1, . . . , s|V |−1) be a config-
uration of landmark locations (i.e. the x, y coordinates of
landmarks, si = (xi, yi)) and, finally, let w be the vector of
parameters composed of parameters wφq

i and wφg
ij associated

with the unary and pair-wise potentials, respectively. Then,
the scoring function and the proposed detector are defined
as follows:

f(I, φ, s; w) =
∑
i∈V

qφi (si, I; wφq
i ) +

∑
(i,j)∈E

gφij(si, sj ; wφg
ij )

(φ̂, ŝ) = arg max
φ∈Φ,s∈S

f(I, φ, s; w). (1)

The first part of the scoring function, denoted as the appear-
ance model, is composed of unary potentials qφi (si, I; wφq

i )
which measure quality of the fit of individual landmarks to
the image. The second part, denoted as the deformation cost,



Fig. 2. The acquisition of the Normalized Frame (NF). Blue box is a
detection as provided by the face detector, red box is the detection box
enlarged by a defined margin. The similarity transformation (removing the
possible in-plane rotation and scaling the image to a fixed size) is applied
on the red box and the NF is obtained.

is composed of pair-wise potentials gφij(si, sj ; wφg
ij ) which

correspond to the likeliness of the mutual position of the
connected pair of landmarks.

The normalized frame (NF) can be obtained from an
arbitrary image by specifying a bounding box around the
face. Such input is usually acquired by a face detector. To
improve the scale invariance of the used face detector, there
is a possibility to extend or shrink the bounding box by a
pre-defined margin. Then the similarity transformation to
compensate the scale change and the in-plane rotation is
used to obtain the NF (see Figure 2). The restriction of the
input image size is crucial due to the real-time performance
requirement.

The configuration of landmarks s is restricted to be from
a predefined area, i.e. s ∈ S = S0 × · · · × S|V−1|, where Si
is the search space of the i-th landmark Si ⊂ {1, . . . ,H}×
{1, . . . ,W} serving as a hard constraint on its positions.

Appearance Models

The appearance model is a linearly parameterized function

qφi (si, I; wφq
i ) = 〈wφq

i ,Ψ
φq
i (I, si)〉 , (2)

where Ψφq
i (I, si) : I × Si → Rn

φ
iq is a feature descriptor of

a patch cropped from the image I around the position si.
Our approach allows to use arbitrary feature descriptor. In
particular, in the experiments we use the Sparse Local Binary
Pattern (S-LBP) pyramid proposed in [27]. The vector wφq

i ∈
Rn

φ
iq is a weight vector which we learn from examples.
To speed up evaluation of the appearance model, we

propose a different strategy to compute the features than was
originally used in [27]. We propose to pre-compute the parts
of the S-LBP features for the whole NF and to store them
in a form of a mipmap [31] covering the whole scale space.
The final features can be then computed on the fly when
needed. The scheme is depicted in Figure 3. This approach
makes the feature computation independent of the number of
sought landmarks (the computational demand of compilation
of features is negligible) leading to a speedup about 40%

in our particular setting. More importantly this also allows
us to share the pre-computed features among different yaw
angles φ making the final classifier only sub-linearly slower
if compared to the naı̈ve strategy using an individual detector
for each view.

Deformation Costs

The deformation cost is also a linearly parametrized func-
tion

gφij(si, sj ; wφg
ij ) = 〈wφg

ij ,Ψ
φg
ij (si, sj)〉 , (3)

where Ψφg
ij (si, sj) : Si×Sj → Rn

φ
ig which, following [11],

is defined as a quadratic function of the displacement vector,
i.e,

Ψφg
ij (si, sj) = (dx, dy, dx2, dy2), where (4)

(dx, dy) = (xj , yj)− (xi, yi),

The vector wφg
ij ∈ Rn

φ
ig are parameters which we learn

examples.
The main advantage of having the deformation cost in

the form of separable quadratic function is the possibility to
use the distance transform (DT) [13] to solve the max-sum
problem (1). The only requirement needed for application of
the DT is the concavity of the functions gφij . By examining
the principal minors of the matrix form of gφij , we see that
this can be enforced by adding additional constraints on wφg

ij .
In particular, we need all wφgij (3) and wφgij (4) to be negative
(i.e. the 3rd and 4th coordinates of wφg

ij < 0, ∀(i, j) ∈ E).

B. Learning of the Parameters by the SO-SVM algorithm

The proposed DPM detector (1) is an instance of a linear
classifier. Therefore we can learn the parameters by the SO-
SVM framework [26]. Note that the joint parameter vector
w to be learned is given by a concatenation of the parameter
vectors of the individual appearance models wφq

i as well as
parameters vectors of all deformation costs wg

ij . We define a
joint feature map Ψ(I, φ, s) as a concatenation of the feature
maps Ψφq

i (I, si) and Ψφg
ij (si, sj). It can be seen that with

these definitions, the scoring function can be written as a dot
product of the joint parameter vector and the joint feature
map, i.e. f(I, φ, s; w) = 〈w,Ψ(I, φ, s)〉.

We are interested in the parameter vector w∗ defined as a
solution of the following convex program

w∗ = arg min
w∈Rn

[λ
2
‖w‖2 +R(w)

]
, (5)

s.t. li ≤ wi ≤ ui, i = 1, . . . , n

where R(w) is the training risk and λ
2 ‖w‖

2 is a quadratic
regularizer introduced to prevent over-fitting. The box con-
straints allow to set a prior on the parameter vector. In
particular, we use the box constraints to enforce that the
deformation cost to be concave.



Fig. 3. Features are pre-computed on the whole normalized frame and stored in form of a mipmap. The final feature vector Ψφqi (I, s) (in this case
S-LBP) is compiled on the fly when needed from the mipmap, by stacking features from the template window of the corresponding level of the scale space
pyramid.

The risk R(w) is defined as

R(w)=
1

m

m∑
i=1

max
φ∈Φ,s∈S

[
∆φ,s(φ, s, φ′, s′)+

〈
w,Ψ(Ii, φ, s)

〉 ]
− 1

m

∑
i=1

〈
w,Ψ(Ii, φi, si

〉
, (6)

which is a convex upper bound of the true training risk
defined as an average of the loss function ∆φ,s(φ, s, φ′, s′)
described in the following paragraph.

Note that the first maximization term in (6) corresponds to
solving the estimation problem (1) with the scoring function
augmented by the values of the loss function.

We solve the problem (5) approximately by the Projected
Stochastic Gradient Descent (P-SGD) algorithm [24] out-
lined in Algorithm 1. The function P : Rn → Rn denotes
the orthogonal projector on the box-constraints defined as

P (w) = [P1(w1), . . . , Pn(wn)]>,where

Pi(wi) = max{li,min{ui, wi}} .

The scalar α > 0 is a constant step-size of the inner SGD
loop and its value is estimated on the 10% subset of the
training examples. The concavity of functions gφij is enforced
by setting upper bounds ua < C, ∀a ∈ A, where C is a
small negative number and A represents the set of indices
pointing to the 3rd and 4th coordinates of wg

ij of the joint
parameter vector w. The rest of variables in w is unbounded,
i.e. the box constraints (la, lb) = −∞, ub =∞, a ∈ A, b /∈
A) are used. The sub-gradient r′i(wt) can be computed by
Danskin’s theorem [5, Proposition B.25] as follows:

ri(wt) = Ψ(Ii, φ̂, ŝ)−Ψ(Ii, φi, si), where (7)

(φ̂, ŝ) = arg max
φ∈Φ,s∈S

[
∆φ,s(φ, s, φ′, s′)+

〈
w,Ψ(Ii, φ, s)

〉 ]
Loss Function

The learning algorithm (5) optimizes a convex surrogate of
the loss function ∆φ,s(φ, s, φ′, s′) which measures discrep-
ancy between the true and the estimated landmark positions
on a given training example. We define the loss function as
follows:

∆φ,s(φ, s, φ′, s′) =

{
κ(s) 1

|V |
∑|V |
j=1 ‖sj − s′j‖, if φ = φ′

1, otherwise
(8)

Algorithm 1 Projected SGD with averaging
Require: λ > 0, α > 0, (li ≤ ui), i = 1, . . . , n

1: set w0 := 0, v0 = 0, t := 0
2: repeat
3: for i in randperm(m) do
4: compute sub-gradient r′i(wt) of i-th example at wt

5: gt = λ
mwt + 1

mr′i(wt)
6: wt+1 = P (wt − αgt)
7: vt+1 = t−1

t vt + 1
twt+1

8: end for
9: until convergence

where the normalization constant κ(s) is a reciprocal to the
size of the face. The face size if defined to be the length
between a segment connecting the center of eyes with the
chin which we compute from the ground truth landmark
positions. The penalty for confusing the viewing angle is
set to 1 which is larger than common localization error due
to the use of the normalization constant κ(s). In turn, the
loss function penalizes more mistakes in the viewing angle.

Note also that the loss ∆φ,s : Φ×S×Φ′×S ′ → R is non-
negative and 0 iff (φ, s) = (φ′, s′) as commonly required by
the SO-SVM framework.

Max-sum problem

The max-sum optimization task (1) requires a solver
depending on the structure of the graph G. We limit the
structure of the graph to a tree, since this allows us to
find the global solution in a reasonable time (the solution
is organized in terms of a Dynamic Programming with
DT [13]). However, we should point out that this is not the
limitation of our framework, since it can be easily extended
by a solver capable of solving more complicated structures
(e.g. by applying some approximations).

IV. EXPERIMENTS

In this section we describe the implementation details of
the proposed landmark detector (sec IV-A), the evaluation
protocol (sec IV-B), the competing methods (sec IV-C) and,
finally, we report the achieved results (sec IV-D).



TABLE I
THE DISCRETIZATION OF THE VIEWING ANGLE (YAW).

Viewing angle names (φ ∈ Φ)
−profile −half-profile frontal half-profile profile

Viewing angle ranges
(−110◦,−60◦ > (−60◦,−15◦ > (−15◦, 15◦) < 15◦, 60◦) < 60◦, 110◦)

Number of landmarks detected in φ
13 19 21 19 13

A. Implementation details of the proposed detector

The proposed detector is described in Section III. Here
we summarize the implementation details of the particular
instance of the multi-view landmark detector which was used
in our experiments.

We discretized the viewing angle (yaw angle) as follows
Φ = {−profile,−half-profile, frontal, half-profile, profile}.
For each view, we detect a different number of landmarks
since the actual number of visible landmarks varies due to the
self-occlusions. The precise ranges of the yaw angle defining
the views φ ∈ Φ together with the number of landmarks to
be detected are listed in Table I.

The graphs Gφ = (V,E) for individual views are depicted
in Figure 4. Each node is denoted by its ID and name of
the corresponding landmark. We show only pictures of the
positive viewing angles, since −half-profile and −profile are
just mirrored versions of half-profile and profile.

The internal settings of individual detectors are as follows.
The normalized frame is set to 60× 60 pixels, enlargement
factor of the face box provided by our in-house face detector
is 1.5 in both width and height. We use the Sparse LBP
features for the appearance models (2) of each landmark with
a template window of size 9 × 9 pixels for all landmarks
except of the root (tip of the nose), which has a bigger
template 15×15 pixels. For the deformation cost (3) we use
a separable quadratic function of the displacement vector as
defined in (4).

B. Datasets and the evaluation protocol

In this section we describe the evaluation protocol. We
use the AFLW [17] database for both training and evaluation
and Multi-PIE [15] database just for evaluation. We divided
the AFLW database into training (approx. 80%) and testing
(20%) parts. Since we need to tune the regularized parameter
λ, we further split the training part into a subset (approx.
80%) used to learn the joint parameter vector w and a part
(approx. 20%) used to tune λ.

We found some inconsistency both in the viewing angle
and the landmark positions in the annotation of the AFLW
dataset. We used the 3D landmark detector [29] initialized
from the original manual annotation to make the annotation
consistent. However, the imprecision in the viewing angle
remained in some examples large. Since the proposed model
is sensitive to the yaw angle more than to landmark positions
by definition, we manually selected just approximately 700
examples per view, removing the badly annotated examples.
In the end, we use just 3, 398 examples to train the detector.
This is not optimal, since we use a very high-dimensional
features (dim(w) = 1, 335, 360) and our detector would

certainly benefit from using more training examples. Despite
this limitation we obtained a very good results as shown
below.

Once the joint parameter vector w is learned, we evaluate
the detector on the testing examples. For the evaluation we
use the following approach. When the detector’s estimate of
the viewing angle matches the ground truth annotation, then
we compute the average localization error by

Lmean = κ(s)
1

|V |

|V |∑
j=1

‖sj − s∗j‖ (9)

otherwise the localization error is set to infinity.
To remove the dependency on the particular face detector

in the comparison with other methods, we cropped the
images around the face bounding boxes found by our in-
house face detector and enlarged them by 30% in both width
and height.

In the case that the number of landmarks provided by the
competing method is different than in our setting (i.e. 21
landmarks), we select the maximally overlapping set of the
landmarks and in the error evaluation we consider only the
matching subset.

C. Competing Methods

This section summarizes all methods compared with the
proposed detector.

1) Baseline — Independent Detectors: To show the bene-
fits of the multi-view detector, we use the following baseline
approach. We create a multi-view detector, where for each
φ ∈ Φ we use an independently trained single-view DPM
detector. The particular single-view detector is selected based
on the response of the face-detector which provides a rough
estimate of the viewing angle φ. The individual detectors
have the same settings as the proposed multi-view detector
and they are trained as described in [27].

2) Detector of Zhu & Ramanan [34] : We use the
code provided by the authors with the fully shared model
“p99”. Even though this is supposed to be the fastest model
available, the detection speed on the cropped AFLW images
was very slow (tens of second per cropped image). The drop
of accuracy by using the fully shared model was not reported
to be dramatic enough, so we have not tried the independent
model, which would require much more time to run.

3) CHEHRA [3]: We use the implementation of recent
state-of-the-art facial landmark detector provided by the
authors. The detector uses a discriminative 3D facial de-
formable shape model fitted to a 2D image by a cascade
of linear regressors. The detector was trained on the 300W
dataset [21].

D. Results

This section summarizes the achieved results. To have just
a single number comparison of the detector accuracy, we
introduce statistics E5 and E10 defined as the percentage of
the testing examples with the average localization error (9)
not higher than 5% and 10%, respectively. Table II shows
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Fig. 4. Graph representation of individual detectors for positive viewing angles. The nodes are represented by the red circles, edges by black lines
connecting them. Note that all graphs are in fact trees. The root node is represented by the blue square. Note that the core of all the graphs is the same
and just the self-occluded landmarks with its incident edges are removed in non-frontal cases.

the achieved results on both AFLW and Multi-PIE databases
expressed in terms of the E5 and E10. Note that Zhu &
Ramanan detector uses a part of the Multi-PIE database for
training hence these results are positively biased.

For more detailed evaluation we report the cumulative
histogram of the average localization error (9). In Figure 5
we show the cumulative histogram evaluated on the testing
subset of the AFLW 5(a) and Multi-PIE 5(b). In Figure 6
the cumulative histograms are shown for a subset of non-
frontal faces only. By non-frontal, we mean all faces with
the ground-truth viewing angle outside the (−15◦, 15◦)
interval. It is seen that the proposed detector outperforms
all competing methods on the AFLW dataset. The results
on the Multi-PIE dataset show that our detector achieves
smaller localization error, but has a slightly higher yaw
misclassification rate (2.36%) compared to the detector of
Zhu & Ramanan which was, in contrast to our detector,
trained on this database.

In Table III, we present the timing evaluation of the
proposed multi-view detector, the baseline method and the
detector of Zhu & Ramanan. The baseline method is fastest,
but it uses the estimate of the viewing angle provided by
the face detector. Common face detectors typically do not
provide such information in which case the proposed detector
has a clear advantage.

V. CONCLUSIONS

We have proposed a multi-view facial landmark detector
based on the DPM whose parameters are learned from
examples by the Structured Output SVM algorithm. The
experimental evaluation shows that the proposed detector
outperforms the current state-of-the-art methods in terms of
the detection accuracy on very challenging “in the wild”

TABLE II
THE LOCALIZATION ERROR ON THE AFLW AND MULTI-PIE.

AFLW
E10 [%] Yaw mis-classifications [%]

proposed 39.59 25.02
baseline 33.32 38.81
Zhu & Ramanan 7.89 57.18
CHEHRA 39.03 —

Multi-PIE
E5 [%] E10 [%] Yaw mis-classifications [%]

proposed 74.95 82.61 15.39
baseline 47.1 53.41 44.66
Zhu & Ramanan 70.99 86.76 13.03

TABLE III
THE AVERAGE TIME IN SECONDS SPENT ON SINGLE FACE DETECTION.

proposed baseline Zhu & Ramanan
time [s] time [s] time [s]

AFLW 0.011 0.0027 30
Multi-PIE 0.011 0.0027 9.9

images from the AFLW dataset. The detector runs in real
time on a standard PC.

The open-source implementation of the proposed detector
and the re-annotated AFLW [17] database can be downloaded
from the following link:

http://cmp.felk.cvut.cz/˜uricamic/clandmark/
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Fig. 5. Cumulative histograms of the average localization error measured on the testing subset of the AFLW 5(a) and Multi-PIE 5(b) datasets.

(a) (b)

Fig. 6. Cumulative histograms of the average localization error measured on the testing subset of non-frontal faces from the AFLW 5(a) and Multi-PIE5(b)
datasets.
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