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   Hand-held consumer depth cameras have become a commodity tool for constructing 3D models of 

indoor environments in real time. Recently, much work has been done in developing methods to fuse low 

quality depth images into a single dense and high fidelity global 3D model. However, most techniques 

have difficulties in scaling up to large-scale scenes. These difficulties arise due to the need to manipulate 

a large amount of data. For example, parts of the 3D model often need to be re-positioned to close loops 

and keep consistency of the 3D model. The low level 3D representations (e.g. point-based or voxel-based) 

allow reasoning at the point-based or pixel-based level only and offer low flexibility for manipulating the 

3D model that is being built live. Such representations are thus not convenient for large-scale 

reconstruction. In this paper, we present our recent work on object-based level 3D representation using 

planar patches with geometric textures (Bump images), confidence texture and color texture. We also 

present an algorithm to build such a representation in real-time using RGB-D cameras, even for 

large-scale scenes. We show that our 3D representation allows for detailed, compact and consistent 3D 

reconstruction of large-scale indoor scenes. 

 

1. Introduction 
In the computer vision community, the task of 

constructing a 3D model of a real object (i.e. a 

mathematical representation of its 3D surface) from 

images has attracted an ever-growing interest in a last 

few decades. Constructing such detailed 3D models of 

real objects is of great interest for many applications 

such as scientific simulations, digitization of cultural 

heritage or entertainment (e.g. special effects in movies). 

In general, the process consists of (1) generating multiple 

2.5D views of the target scene, (2) registering (i.e. 

aligning) all different views into a common coordinate 

system, (3) integrating (i.e. fusing) all measurements into 

a single mathematical 3D representation and (4) 

correcting possible deformations (due to error 

propagation for example) and refining the output 3D 

model (e.g. filling holes). 

To obtain depth measurements of a target scene (i.e. 

2.5D views), many strategies exist, which can be 

classified into either passive sensing or active sensing. A 

popular example for passive sensing is stereo vision. On 

the other hand, structured light and time of flight are the 

most popular techniques for active sensing. Consumer 

depth cameras such as the Microsoft Kinect camera or 

the Asus Xtion pro camera are emerging active sensors 

that produce low quality depth images at video rate and 

at low cost. These sensors have raised much interest for 

many applications in computer vision, and in particular 

for the task of automatic 3D modeling. 

The video frame rate provided by consumer depth 

cameras brings several advantages for 3D modeling. One 

distinguished advantage is that it simplifies the 

registration problem. This is because the transformation 

between two successive frames can be assumed to be 

small. As a consequence, well-known standard 

registration algorithms such as the variants of the 

Iterative Closest Point (ICP) [2] can be used efficiently. 

Moreover many measurements available for each point 

of the scene can be accumulated and merged to 

compensate for the low quality of a single depth image. 

A popular example of a system that takes advantage of 

consumer depth cameras for 3D modeling is 

KinectFusion [8]. In this system, a linearized version of 

GICP [10] is used in the frame-to-global-model 

registration framework to align successive depth images, 

which are accumulated into a Volumetric Truncated 

Signed Distance Function (TSDF) [5] using the running 

average. With using rather simple, well-established tools, 

impressive 3D reconstructions at interactive rate could be 

obtained, which demonstrates the potential of Kinect-like 

cameras for fine 3D modeling. 

Another new interesting property of consumer depth 

cameras is that they can be held by hand and thus they 

allow users to move freely. As a consequence, users can 

easily capture long sequences of RGB-D images and aim 

at reconstructing large-scale scenes. With this new 

possibility, new challenges also arise: how to deal with 

error propagation and large amount of data. In other 

words, how can we minimize deformations of the 

produced 3D model while keeping fine details, even at 

large-scale? 

In the last three years, there has been a lot of research 

on extending previous work to allow large-scale 3D 

reconstruction [4, 6, 7, 9, 13, 14, 15, 16]. Noticeable 

works employ hash tables for efficient storage of 

volumetric data [7], patch volumes to close loops on the 

fly [6] and non-rigid registration of sub-models to reduce 

deformations [16]. Though recent work considerably 
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improved the scale and quality of 3D reconstruction 

using consumer depth cameras, existing methods still 

offer little flexibility for manipulating the 3D model that 

is being built. This is because most of existing works 

reason at the pixel level (voxels with volumetric TSDF 

or 3D vertices with meshes). Modifying the whole 3D 

model then becomes difficult. The work by Henry et.al. 

[6] is exceptional. Namely, it reasons at the level of 

objects, which allows simpler modifications of the 

overall structure of the 3D scene. Our work push forward 

in this direction by using a new 3D representation that 

allows easy reasoning at the object level while 

maintaining fine details, real-time performance and 

efficient storage. 

This paper gives our recent work on flexible 3D scene 

representation based on planar patches with attributes, 

and an algorithm to build such a representation [11, 12]. 

In real-time, we track the camera and accumulate depth 

images into a semi-global 3D model that consists of a 

pair of RGB-D and Mask images. From this semi-global 

model, we segment at run time the target scene both in 

time and space. The input sequence of RGB-D images is 

uniformly segmented in time to build multiple accurate 

and un-deformed local 3D models. Each local 3D model 

is segmented in space by fitting multiple planes to which 

attributes such as bounding box, Bump image, color 

image and confidence image are attached. Each planar 

patch represents an object in the scene and our closing 

loops reduces to re-organizing all the objects in the scene 

(without re-computing their local geometry). As a side 

effect, our representation allows easy and interactive 

editing and 3D rendering at multiple levels of details. 

2. Parametric 3D scene representation 
We reason that parametric surfaces can be used to 

describe a 3D scene and thus represent an indoor scene 

as a set of planar patches having attributes. To each 

planar patch detected in the scene, we attach as its 

attributes three 2D images in addition to information that 

identifies the planar patch.  

The three images are a three-channel Bump image, a 

one-channel Mask image and a three-channel Color 

image; these three images encode geometric and color 

details of the scene. The Bump image encodes the local 

geometry around the planar patch. For each pixel, we 

record in the three channels the displacement of the 3D 

point corresponding to the pixel from the lower left 

corner of the pixel. The Mask image encodes the 

confidence for accumulated data at a point and the Color 

image encodes the color of each point.  

The Bump image encodes the local geometry, which 

allows us to accurately represent the geometry of the 3D  

Fig.1. 3D representation for an indoor scene [11]. 

The target scene is segmented into multiple 

coplanar parts. Each segment S is modeled by the 

equation of the plane P that best fits the set of 3D 

points in S, the 2D bounding box of the projection of 

all 3D points in S into the plane P, and three 2D 

images that encode local geometry (Bump), color 

(Color) and confidence of measurements (Mask). 

scene while using less memory. In addition, adding, 

removing or updating points is executed easily and 

efficiently in our representation, because we are 

manipulating 2D images. Figure 1 illustrates our 

proposed 3D representation for an indoor scene. Details 

on the 3D representation can be found in [11]. 

3. A two-stage algorithm for 3D scene modeling 
We build a large-scale 3D model by breaking the 

whole sequence of RGB-D images into short 

subsequences (in our experiments we used subsequences 

of 100 frames) and taking a two-stage strategy (Fig. 2). 

The two stages are called local mapping and global 

mapping. Details of this algorithm can be found in [12]. 

3.1. Local Mapping 
We use our 3D scene representation to build local 3D 

models of a target scene. To build local 3D models from 

short subsequences of RGB-D images in real-time we 

employ the frame-to-global-model framework. Rather 

than using the set of planar patches for the global model, 

we employ an additional semi-global model, which 

consists of a pair of RGB-D and Mask images. This is 

because (1) planar patches representation may not be as 

dense as the input RGB-D images (non co-planar parts of 

the scene are not represented), and (2) rendering all 

planar patches at every incoming frame is time 

consuming and inefficient (as many points on a patch 

may disappear from the current viewing frustum and 

rendering such points is useless). 

Plane #0 

Bump Mask Color 

Plane #1 Bump Mask Color 

Plane #2 

Bump Mask Color 

Bump Mask Color 

Plane #3 

Plane #4 

Bump Mask Color 
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Fig.2. Overview of our two-stage strategy [12]. The 

first stage generates local structured 3D models 

with geometric constraints from short subsequences 

of RGB-D images. The second stage organizes all 

local 3D models into a single common global model 

in a geometrically consistent manner to minimize 

deformations. 

The attributes of all planar patches (i.e. Bump image, 

Color image and Mask image) are then built on-line from 

the semi-global model. This allows us to keep real-time 

performance with state-of-the-art accuracy.  

The semi-global model is initialized with the first 

frame of the whole RGB-D image sequence. To generate 

predicted RGB-D and Mask images, we use OpenGL 

capability with the natural quadrangulation given by the 

organization of points in the 2D image. At every input 

frame, attributes of each planar patch are updated using 

the semi-global model as follows. Each point p of the 

semi-global model is projected into its corresponding 

planar patch. The values of Bump, Color and Mask 

images at the projected pixel are all replaced by those of 

p if the mask value of p is higher than that at the 

projected pixel.  

Whenever all the process for a short subsequence of 

RGB-D images is finished, we record a generated local 

3D model, as well as the current keyframe (i.e. the first 

predicted RGB-D image) and geometric constraints 

between the planar patches. 

3.2. Global Mapping 
The objective of the second stage (i.e. global mapping) 

is to fuse all local 3D models generated in the first stage 

into a single geometrically consistent global 3D model 

with minimal deformations. The main problem here 

comes from the accumulation of registration errors.  

In order to compensate for the accumulation of 

registration errors, we build a graph where each vertex 

represents either a planar patch generated from the local 

mapping or a keyframe; and edges represent keyframe 

pose constrains [6], visibility constraints [6], geometric 

constraints, or identity constraints of patches over 

keyframes. The graph is maintained geometrically 

consistent with newly generated local 3D models, which 

allows us to build a global 3D model with minimal 

deformations (details can be found in [12]). 

The global mapping is capable of (1) always aligning 

new local 3D models to un-deformed subsets (called 

fragments) of the global model and (2) introducing new 

constraints (called identity constraints) at each successful 

rigid alignment, rather than merging planar patches 

representing the same object. This capability allows 

more flexibility in re-organizing the global 3D model. 

An identity constraint represents the relative position 

between planar patches representing the same object in 

the scene that come from different local 3D models. A 

graph optimization framework (namely, the g2o 

framework [4]) is then used to guarantee geometric 

consistency of the global model (thus reducing 

deformations).  

Note that the geometric constraints enable us to 

redistribute errors more coherently with respect to the 3D 

geometry of the scene. This is crucial because in general, 

drift errors derived from camera tracking do not 

uniformly arise. Geometric constraints are generated 

from the first frame of each short subsequence. This is 

because the exact relative positions between different 

objects in the scene are reliably estimated only from a 

single image (deformations usually arise after merging 

multiple RGB-D images). 

4. Experiments 
We evaluated our method in several situations using 

real data. All scenes were captured at 30 fps. We used a 

resolution of 0.4 cm for attribute images in all cases. The 

CPU we used was an Intel Xeon processor with 3.47 

GHz and the GPU was a NVIDIA GeForce GTX 580. 

Our method runs at about 28 fps with a live stream from 

a Kinect camera.  

Figures 3 and 4 show results obtained by our method 

using data COPYROOM and data LOUNGE, 

respectively, (captured with an Xtion Pro Live camera) 

available at [1]. We compared the results obtained by our 

method with results [16] on these two datasets. The 

dataset COPYROOM consists of 5490 RGB-D images 

and contains a loop while the dataset LOUNGE consists 

of 3000 RGB-D images and does not contain any loop. 

We displayed top-views of the obtained 3D models to 

attest the amount of deformations of the reconstructed 

scenes. From these results we can see that our method 

was able to reconstruct the 3D models in details at large 

scale without deformations, similarly as in [16]. We 

remark that our results were produced on-line, while 

those by [16] were off-line. Moreover, with our method 

we could generate textured 3D models while texture is 

not available in the results by [16]. 

Stage 2 

Stage 1 

Create 
accurate 
local 3D 
models 

Local 3D model 
(with constraints) 

Local 3D model 
(with constraints) 

Local 3D model 
(with constraints) 

Geometrically consistent global 3D model (i.e., no deformations) 

Subsequence #1 Subsequence #2 Subsequence #3 
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One interesting side effect of using our 3D scene 
representation is the capability of easily editing the 
generated 3D model (this reduces to editing 2D images) 
as well as the capability of performing rendering at 
multiple levels of details quite straightforwardly. Since 
we are manipulating texture images, it is possible to 
render the 3D model at multiple levels of details using 
normal and texture images in different resolutions 
mapped to a coarse 3D mesh. 

5. Conclusion 
We presented our recent work on parametric 3D scene 

representation based on planar patches with attributes. 
We also introduced an algorithm that allows building a 
3D model using our 3D scene representation in real-time. 
Our 3D reconstruction algorithm employs a two-stage 
strategy where local 3D models are build in the first 
stage (local mapping) from successive short-time 
subsequences of RGB-D images. To achieve real-time 
performance, an additional semi-global model is used. In 
the second stage (global mapping) all local 3D models 
are successively integrated into a global graph with 

constraints that allow repositioning all planar patches in 
a consistent geometric manner.  
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