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Abstract. Human visual attention can be modulated not only by visual stimuli
but also by ones from other modalities such as audition. Hence, incorporating
auditory information into a human visual attention model would be a key issue
for building more sophisticated models. However, the way of integrating multiple
pieces of information arising from audio-visual domains still remains a challeng-
ing problem. This paper proposes a novel computational model of human visual
attention driven by auditory cues. Founded on the Bayesian surprise model that
is considered to be promising in the literature, our model uses surprising audi-
tory events to serve as a clue for selecting synchronized visual features and then
emphasizes the selected features to form the final surprise map. Our approach to
audio-visual integration focuses on using effective visual features alone but not
all available features for simulating visual attention with the help of auditory in-
formation. Experiments using several video clips show that our proposed model
can better simulate eye movements of human subjects than other existing models
in spite that our model uses a smaller number of visual features.

Keywords: Visual attention, auditory cues, Bayesian surprise, synchronization,
feature selection.

1 Introduction

Human beings have capability of detecting various kinds of objects without any thought
or effort. Visual attention is considered to play a significant role in achieving this func-
tion. In fact, visual attention is one of the built-in mechanisms of the human visual
system that quickly selects regions most likely to attract human interest in a visual
scene. Such a pre-selection mechanism focusing only on relevant data would be essen-
tial in enabling computers to undertake subsequent processing such as generic object
recognition or scene understanding.

With this background, many researches have been reported to simulate visual at-
tention in several research fields including psychophysics, neuroscience and computer
vision (see extensive survey papers, e.g. [2,3,11] for details). These researches usually
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take a bottom-up approach, meaning that a given video signal is the only resource for
simulating visual attention. Nevertheless, they have enabled us to investigate in detail
the process of visual search and simulate its performance.

A large amount of effort for developing computational models of human visual atten-
tion has ever been devoted to only visual processing. Human visual attention, however,
can be easily modulated by other modalities. As an intuitive example, when we hear
something interest or strange we tend to look at the direction of sounds even if that di-
rection is not so visually salient. As such, sounds are often strongly related to events that
draw human visual attention. We will be able to further augment computational models
of human visual attention if we incorporate auditory information into them. However,
the way of integrating information arising from both audio and visual domains still
remains a challenging problem.

This paper proposes a novel model of human visual attention driven by auditory
cues. In our model, auditory information plays a supportive role in simulating visual
attention, in contrast to standard multi-modal fusion approaches [21,18,19,5,14]. More
concretely, we take an approach that detects visual features in synchronization with
surprising auditory events. Our strategy is built on two recent psychophysical studies:

1. Audio-visual temporal alignment leads to benefits in visual attention if changes in
the component signals are both synchronized and transient [4].

2. Auditory attention modulates visual attention in a feature-specific manner [1].

Following these findings, our model first detects transient events using the Bayesian
surprise model in visual [8] and auditory [20] domains separately, and then looks for
visual features in synchronization with detected auditory events. Surprise maps are then
modulated by the selected features, in a similar manner to the guided search [23], one
of well-founded psychophysical models that explicitly implements characteristics of
target stimuli.

2 Related Work

Building computational models of human visual attention has attracted much attention
especially in the last decade. Here we briefly review just a couple of related studies due
to the space limitation. Extensive surveys can be found in e.g. [2,3,11] which include
the history, detailed taxonomies and related psychophysical findings.

A seminal work as regards bottom-up models of human visual attention is the saliency
map model proposed by Itti, Koch and Niebur [9]. In this model, the concept of saliency
as a measure of attractiveness of human visual attention was first introduced into a com-
putational model. Since it is simple, easy to implement and produces reasonable output
for various kinds of images, it has had a considerable impact on broader research ar-
eas such as image processing, pattern recognition, computer vision, robotics and neuro-
science [3].

The saliency map model has been further extended by Itti and Baldi to develop the
Bayesian surprise model [8] that incorporates temporal dynamics of the human visual
system. In this model, saliency is formulated by the Kullback-Leibler divergence be-
tween probabilistic density functions (PDFs) of expected and obtained visual features.
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Therefore, continuously similar visual features give low saliency values, while unex-
pected visual features such as sudden changes provide high saliency values. Bayesian
inference methods have been introduced also in several other computational models
[24,16,6,13]. Such a probabilistic model enables us to handle various types of fea-
tures with different characteristics into a unified framework. This is why we adopt the
Bayesian surprise model as the basis of our new model.

Meanwhile, several mechanisms developed in visual attention models have also been
introduced into auditory attention models, for example, the saliency map model [10],
SUN (Saliency Using Natural statistics) [22] and Bayesian surprise [20].

However, human visual attention models with the help of auditory information has
not been well studied. This might be because solid psychophysical findings about
characteristics of audio information in human visual perception have been recently de-
veloped. In turn, most existing methods took multi-modal fusion approaches and con-
centrated on improving application performances, and thus the compatibility with the
human visual perception is rather out of focus. Video summarization [12,15,5] is one
of the popular applications of audio-visual saliency. Robotics [21,18,19] has also been
an attracting application for last several years.

To the best of our knowledge, this is the first work that explicitly incorporates solid
psychophysical findings of auditory-based attention modulation into a computational
model of human visual attention.

3 Proposed Model

3.1 Framework

Figure 1 depicts the framework of the proposed model. As shown in this figure, our
proposed model consists of four main steps.

(1) Bayesian surprise. The first step extracts surprising events in visual and audi-
tory domains individually where image and audio signals are separately applied to the
Bayesian surprise model. For a given input video, 360 visual surprise maps with differ-
ent types of features and a single auditory surprise signal are extracted. The details will
be described in Section 3.2.

(2) Synchronization detector. The second step evaluates synchronization of each vi-
sual surprise map with the auditory surprise signal. For this purpose, synchronization
detectors are attached to every location in each of the 360 visual surprise maps and the
auditory surprise signals, resulting in 360 maps. Every map is averaged over pixels to
create a sequence describing how synchronized the corresponding visual surprise map
is with the auditory surprise. The details will be described in Section 3.3.

(3) Features selection. The third step is devoted to selecting visual features that well
synchronize with the auditory surprise. Counting the number of samples with a suffi-
cient level of synchronization for every sequence, we obtain a histogram representing
the degree of synchronization for every visual surprise map with the auditory surprise.
Remembering that every visual surprise map corresponds to a specific type of features,
feature selection based on audio-visual synchronization can be implemented by bina-
rizing the histogram. The details will be described in Section 3.4.
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Fig. 1. Framework of the proposed model

(4) Final surprise map. The last step is for forming the final surprise map composed
of visual surprise maps with the selected visual features. The details will be described
in Section 3.4.

Our proposed model detects transient auditory events, and then selects visual features
in synchronization with detected auditory events to modulate the final saliency maps.
Note that the proposed model is built on a two-pass algorithm, where the first 3 steps
are devoted to selecting visual features that describe major audio-visual events in the
input video to produce the final map in the last step.

3.2 Bayesian Surprise Model

Here, we briefly review the Bayesian surprise model proposed by Itti and Baldi [8]. We
introduce it to obtain visual surprise maps.

Center-surround feature maps are first generated. They are extracted in parallel over
12 feature channels (intensity, 2 color opponents, 4 orientations, temporal onset and 4
directed motion energies) and 6 spatial scales, yielding 12 × 6 = 72 feature maps in
total.

Local surprise detectors are then attached to every location in each of the 72 feature
maps. Suppose that every pixel value f(t,x) received from feature map f at location
x and time t obeys a Poisson distribution and it holds a conjugate Gamma prior γ( · ;
α, β) with parameters (α, β). Once f(t,x) is observed, the posterior γ( · ; α′, β′) can
be obtained using the Bayes rule. Namely, at each time step t, the posterior γ(f(t −
1,x);αV (t − 1,x), βV (t − 1,x)) at the previous step can be used as a prior to obtain
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the current posterior γ(f(t,x); αV (t,x), βV (t,x)). In addition, 5 cascade detectors are
implemented at every pixel in every feature map so that the model can detect surprises
at several temporal scales. In summary, the update rule of parameters (α, β) at feature
map f , time t and cascade level d is described as follows:

αV (t; d) = ξαV (t− 1; d) + αV (t; d− 1)/βV (t; d− 1),

αV (t; 0) = f(t), βV (t; d) = ξβV (t− 1; d) + 1,

where 0 < ξ < 1 is a forgetting factor and indices f and x are omitted for simplicity.
Local temporal surprise SV,T (t; f, d) at feature map f , time t and cascade level d is

determined as the Kullback-Leibler (KL) divergence between the prior and posterior,
while spatial surprise SV,S(t; f, d) is as that between the neighborhood prior (modeled
as a weighted sum of distributions over neighborhoods at the previous cascade level)
and the posterior. The total visual surprise SV (t; f, d) is determined according to the
original paper [8] as

SV (t; f, d) = (SV,T (t; f, d) + SV,S(t; f, d)/20)
1/3.

As we see, we have in total 72(feature maps) ×5(cascade levels) = 360 visual surprise
maps.

Auditory surprise is derived in a similar manner [20], where a spectrogram F (t, ω)
extracted via short-time Fourier transform (STFT) is used as an observation. Following
the same update rule as the visual surprise, we can obtain parameters (α, β) of the
posterior at time t and frequency ω as

αA(t;ω) = ξαA(t− 1;ω) + F (t, ω), βA(t;ω) = ξβA(t− 1;ω) + 1.

Auditory surprise SA(t;ω) at time t and frequency ω is determined as the KL diver-
gence between the prior and posterior. The final auditory surprise SA(t) is obtained as
the mean over all the frequencies. As a result, we have a single auditory surprise signal.

3.3 Synchronization Detector

Following the recent psychophysical insight that audio-visual temporal alignment af-
fects visual attention if changes of component signals are synchronized and transient
[4], our model detects synchronized audio-visual events in videos from the output of
Bayesian surprise models. Since both audio and visual signals have been converted into
the ”surprise” domain under the same logic, we can adopt a simple approach based on
cross correlation.

A synchronization detector comprises the following 3 steps: Detecting surprising
auditory events, pixel-wise cross correlations, and averaging over frames.

(1) Segments of surprising auditory events are first extracted from the auditory sur-
prise signal SA(t). We exploit a simple approach that extracts segments with a surprise
value SA(t) greater than a predefined threshold θs, resulting a set of segments TS,i

(i, 1, 2, . . .).
(2) For every segment TS,i normalized cross correlation (NCC) is calculated between

the auditory surprise signal SA(t) and visual surprises at every location x in each of the
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Table 1. Details of video clips

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6
clip name advert bbc4 bees advert bbc4 library sports kendo basketball of sports documentary adrenaline BBC wildlife eagle

# frames 246 246 101 246 195 107
fps 30 30 30 30 30 30

360 visual surprise maps SV (t; f, d). A window width for computing NCC depends on
the length of an auditory event, namely the length |TS,i| of the segment. Through this
process, 360 maps are obtained, each representing how synchronized every pixel in the
corresponding visual surprise map is with the auditory surprise signal.

(3) Every synchronization map is finally averaged over pixels to obtain a sequence
c(t; f, d) that describes how synchronized the visual surprise map SV (t; f, d) is with
the auditory surprise SA(t).

3.4 Features Selection

Once we have detected visual events synchronized with auditory events, the next step is
to find dominant visual features in the detected events and to emphasize them to com-
pute the final surprise map. This harmonizes our model with the finding that auditory
attention modulates visual attention in a feature-specific manner [1].

First, the number of samples greater than a pre-specified threshold θc is counted
in every sequence c(t; f, d) to create a histogram with 360 (= the number of visual
features) bins. Since every visual surprise map corresponds to a specific pair of feature
type f and cascade level d (cf. Section 3.2), the histogram represents how dominant
each feature is in synchronized audio-visual events. We do not accumulate c(t; f, d)
over time t to create a histogram because surprise values (accordingly, cross correlation
values as well) at different frames cannot be compared in principle. We instead evaluate
at each time t whether c(t; f, d) is greater than a threshold or not, and if it is we vote
for the corresponding visual feature.

Feature selection can be achieved by just binarizing the histogram, where a threshold
for the binarization is adaptively chosen so that its slight change significantly impacts on
the number of selected features. Only the visual surprise maps of the selected features
(with active in the binarized histogram) are accumulated to form the final surprise map.
In this way, our proposed model uses a smaller number of visual features than 360 for
forming the final map.

4 Experiments

We experimentally evaluated our proposed model. We selected 6 video clips (ad-
vert bbc4 bees, advert bbc4 library, sports kendo, basketball of sports, documentary
adrenaline, BBC wildlife eagle), all of which are provided by the DIEM project1. Table
1 illustrates the details of the video clips. We showed them to 15 human subjects. While

1 http://thediemproject.wordpress.com

http://thediemproject.wordpress.com
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Table 2. NSS with optimal threshold values (bold letters: highest NSS for each video)

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6
baseline (Itti2009 [8]) 0.299 1.524 0.636 2.763 1.275 0.450
proposed (θs, θc: optimal) 0.935 1.842 0.801 2.763 1.287 0.621
proposed (θs = 0, θc: optimal) 0.605 1.543 0.801 2.485 1.275 0.589

Table 3. Selected features using the optimal thresholds

Baseline Video 1 Video 2 Video 3 Video 4 Video 5 Video 6
Intensity 30 0 8 8 30 0 6

Color 60 4 17 27 60 8 23
Orientation 120 0 46 39 120 0 7

Onset 30 0 0 0 30 1 0
Motion 120 0 0 0 120 14 0
Total 360 4 71 74 360 23 36

the subjects were watching the video clips, their eye movements were recorded using
an eye tracker Tobii TX300. Note that we showed all the video clips to the subjects
together with audio signals and originally collected their eye movements rather than di-
rectly exploiting the accompanying eye traces by the DIEM project. We extracted gaze
points from the eye movements by removing micro-saccades. Namely, we removed all
the eye movements greater than 2.12 pixels per millisecond, and identified all the re-
mainings as gaze points (ground truths for the evaluation). As a metric to quantify how
well a model predicts actual human eye movements, we used the normalized scan-path
saliency (NSS) [8] calculated from the gaze points.

We first evaluated how two thresholds, i.e., auditory surprise threshold θs and cor-
relation threshold θc, have impact on NSS. We changed the two threshold values inde-
pendently and averaged NSS scores over frames for each video. Fig. 2 visualizes the
averaged NSS scores for each video in terms of the heat map. In this visualization, red
areas indicate threshold pairs with better performance than the Bayesian surprise model
[8] (we call this the baseline model) and blue ones are the opposite. Table 2 shows the
optimal values for θs and θc found in Fig. 2 where the optimal values mean the values
that produce best NSS in our model. We remark that we also show the optimal value for
θc under the condition that2 θs = 0.

From Fig. 2, we see that for Videos 1, 2 and 6, the proposed model is in most cases
superior to or compatible with the baseline model and that for Videos 3 and 4 the pro-
posed models is almost compatible with the baseline model for any threshold values. In
contrast, for Video 5 our model could not achieve the compatible level with the base-
line in most cases. Table 2 shows that our model with optimal threshold values produced
higher NSS scores than the baseline model except for Video 4. NSS scores for Video 4
are fairly high themselves and, moreover, the ball is the only moving object and almost
all image features are similar over frames in the video; these bring difficulty in selecting

2 θs = 0 is equivalent to computing correlation between audio and visual surprises for all the
frames in the video.
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Fig. 2. NSS scores under different threshold values (horizontal axis: auditory surprise threshold
θs; vertical axis: correlation threshold θc). Red areas indicate thresholds with better performance
than the baseline and blue ones are the opposite.

features synchronized with auditory events, which results in failure of further improve-
ment of NSS scores. We also observe in Table 2 that we have better NSS scores by
restricting the correlation computation only to the frames where auditory events occur
than by correlation computation using all the frames in the video.

We see in Fig. 2 that for the same auditory surprise threshold value, a larger correla-
tion threshold value tends to achieve better NSS for several videos while for the same
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Fig. 3. NSS scores with the optimal thresholds and auditory surprises (horizontal axis: frame;
vertical axis: NSS or normalized auditory surprise; light blue frame: surprising auditory events).

correlation threshold value, the auditory surprise threshold does not affect significant
difference on NSS. This observation indicates that image features that have stronger
correlation with the audio signal contribute to increase NSS more for any level of audi-
tory surprise. This is consistent with the psychophysical finding that audio-visual tem-
poral alignment leads to benefits in visual attention if changes in the component signals
are both synchronized and transient [4]. We should note that two thresholds, in partic-
ular the correlation threshold, should be carefully chosen depending on the video for
better performance.
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To each video, we used the optimal threshold values shown in Table 2 to compute
NSS scores for frames in the video. We illustrated in Fig. 3 detailed time trends of NSS
scores for each video where the blue and red lines represent NSS scores for baseline
and proposed models respectively. Note that in Video 4, the NSS score with the opti-
mal threshold values was the same as that by the baseline model; blue and red lines are
identical. Time trends of normalized auditory surprise are also shown in Fig. 3 using
green lines. We see that in many frames of all the videos, the proposed model outper-
formed the baseline model. This is remarkable for Video 1. For Video 6, which model
has a better NSS score heavily depends on the frame though the averaged NSS for our
model is better. This is because Video 6 has several sudden changes in the scene and
thus image features that are synchronized with auditory events also easily change.

Table 3 shows the number of selected visual features by the our model with the
optimal threshold values. We can see that only a small fraction of 360 types of features
were selected. We also observe that categories such as intensity or color of selected
features highly depend on each input video. This is reasonable because what image
features are closely correlated with auditory events depends on the video. This also
justifies our implementation with a two-pass algorithm.

In order to show the effectiveness of our proposed model, we compared perfor-
mances with the state-of-the-art models in addition to the baseline model [8]. They
are the saliency map model [7], and the audio-visual attention model using the sound
localization [14]. We also compared our model with the model, hereafter called the
random feature selection model, in which we randomly selected a given number of im-
age features among all image features used in [8], where the number of features to be
selected was set in accordance with the number of image features determined by the
optimal threshold values (see Table 2). We remark that NSS of the random feature se-
lection model was computed as the average of NSS scores over 20 trials in random
feature selections because selected image features vary at each iteration and produce a
different NSS score.

Figure 4 illustrates averages of NSS scores over frames for each video and for each
model. Note that the random feature selection model has error bars representing the
standard deviation over 20 trials. We remark that all the image features (360 features)
are selected for Video 4 and thus three models (the random feature selection model, the
baseline model and our model) produce the same NSS score.

We see in Fig. 4 that our proposed model produced best NSS scores for all the video,
outperforming the other models. The audio-visual attention model using the sound lo-
calization [14] did not achieve a good level in spite that it additionally uses auditory
signals. This will be because it could not detect the sound source location accurately. In-
terestingly, the random feature selection model tends to outperform the baseline model.
This indicates that using all the image features does not necessarily perform better.
Using a smaller number of image features may be better. The number of selected fea-
tures in our model may suggest such numbers though further investigation on required
number of features is left for future work.
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5 Concluding Remarks

This paper proposed a novel computational model of human visual attention driven by
auditory cues. Our model first detects synchronized and transient audio-visual events
using a framework of Bayesian surprise and then selects dominant visual features in
the detected events to form the final output. Our approach stands on using auditory
features as a synchrony cue for selecting visual features. Differently from just fusing
audio-visual information, our approach boosts the ability of visual information by se-
lecting visual features synchronized with surprising auditory events. We remark that
our approach is in line with recent psychophysical findings as well. The experimen-
tal evaluation with human eye movements demonstrated that our model outperformed
the state-of-the-art models, in particular, the baseline model [8] in spite that we used a
smaller number of visual features.

We used correlation to evaluate synchronization between audio and visual surprises.
Mutual information can be also used as a measure for synchronization [17]. We are
currently working for using mutual information instead of correlation. Our proposed
model provides just one way to incorporate auditory cues into a computational model
of human visual attention. We can thus improve our model into several directions in fu-
ture, e.g. the introduction to adaptive image feature selection depending on the auditory
event or the location in the image and machine learning strategies for capturing generic
structures of audio-visual events.
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