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Abstract. Predicting human attention for video is requires exploiting
temporal knowledge included in the video. We propose a novel hierar-
chical spatial-temporal saliency model for video based on the center-
surround framework using both static features and temporal features.
Saliency cues are analyzed through a hierarchical segmentation model,
and fused across multiple levels, yielding the spatial-temporal saliency
map. An adaptive temporal window using motion information is also
developed to combine saliency values of consecutive frames in order to
keep temporal consistency across frames. Performance evaluation on sev-
eral popular benchmark datasets validates that our method outperforms
existing state-of-the-arts.

1 Introduction

Predicting human attention plays a significant part in computer vision, mobile
robotics, and cognitive systems [1]. Saliency detection aims to simulate human
attention by focusing on the most informative and interesting regions in a scene.
Several computational models are developed for human gaze fixation prediction
[2,3], which is important for understanding human attention; while others are
proposed for salient object detection [4,5], which is useful for high-level vision
tasks. In this work, although we focus on the salient object detection aspect, our
proposed saliency model also achieves high performance in predicting human
gaze fixation.

In the real world, visual information is usually composed of dynamic entities
caused by egocentric movements or dynamics of the world. Particularly, in a
dynamic scene, background always changes; different parts corresponding to dif-
ferent elements or objects can move in different directions with different speed
independently. Therefore, predicting human attention for video is challenging
because we have to incorporate a relationship of dynamics between consecutive
frames. Attention models should have ability to fuse current static informa-
tion and accumulated knowledge on dynamics from the past to deal with the
dynamic nature of scenes including two properties: dynamic background and
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entities’ independent motion. Several spatial-temporal saliency methods based
on motion analysis are proposed for video [4,6]. Some of them can capture scene
regions that are important in a spatial-temporal manner [4,7]. However, most of
existing methods do not fully exploit the nature of dynamics in a scene. Temporal
features expressing motion dynamics of objects in a scene between consecutive
frames are not utilized in saliency detection process, either.

In order to effectively use knowledge on dynamics of background and objects
in a video, we propose a flexible framework where pixel-based features and
region-based features are fused to create a saliency detection method (c.f.
Table 1). In this framework, static features and temporal features computed
from pixel-based and region-based features are combined together in order to
utilize both low-level features of each frame and consistency between consecutive
frames. We also present a novel metric for motion information by estimating the
number of referenced frames for each single object to keep temporal consistency
across frames. Our method overcomes the limitation of the existing method [4]
which uses a fixed number of referenced frames and does not concern motion of
objects within a scene.

Table 1. Feature classification

pixel-based feature region-based feature

static feature

- color

- intensity

- orientation

- location

- objectness

temporal feature
- flow magnitude

- flow orientation
- movement

In our method, firstly, we execute a hierarchical segmentation. Saliency map
for each segmentation level is then calculated via combination of contrast infor-
mation and regional characteristics among segmented regions at the same scale
level. Our feature maps are combinations of pixel-based features and region-
based features. Particularly, pixel-based features consist of low-level image fea-
tures such as color, intensity, or orientation as well as temporal features such as
flow magnitude or flow orientation; while region-based features include spatial
features such as location of an object or foreground object as well as movement
of an object (c.f. Table 1). An adaptive sliding window in the temporal domain
is proposed to relate salient values of frame sequences by exploiting motion
information of a segmented region in each frame. Each region in each frame
has a different number of referenced frames depending on its motion distribu-
tion. Experimental results using two public standard datasets i.e., the Weizmann
standard dataset [8] and the SFU dataset [9], show that our proposed method
outperforms the state-of-the-arts. Examples of generated saliency maps using
our method are shown in Fig. 1.
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Fig. 1. Examples of our spatial-temporal saliency model. Top row images are original
images. Bottom row images are the corresponding saliency maps using our method.

Our key contributions lie in twofold:

– The first one is that we show the framework, which integrates the contrast
information together with regional properties. Although the proposed saliency
model is developed based on a contrast based method presented by Zhou et al.
[4], it significantly improves performance of the original work.

– The other is that we introduce a novel metric using motion information in
order to keep temporal consistency between consecutive frames of each entity
in a video. Our method also exploits the dynamic nature of the scene in term
of independent motion of entities.

2 Related Work

Many computational models have been recently proposed for saliency detection.
The majority of existing visual attention methods are developed using bottom-
up computational algorithms, where low-level stimuli in scenes such as color,
intensity, or edge are utilized in the center-surround contrast framework. For
videos, several spatial-temporal saliency methods based on the center-surround
framework are proposed. These methods measure the saliency of a pixel based on
its contrast within a local context or the entire image. For instance, the frame-
work proposed by Seo et al. [10] relies on center-surround differences between a
local spatial-temporal cube and its neighboring cubes in space-time coordinates.
In several center-surround schemes, motion between a pair of frames (e.g. optical
flow), which is considered as a low-level feature channel, is used to compute local
discrimination of the flow in a spatial neighborhood [4,11].

However, such contrast based saliency models may be ineffective when objects
contain small-scale salient patterns; thus saliency could generally be misled by
their complexity. Multi-level analysis and hierarchical models are developed to
deal with salient small scale structure [4,5]. Some saliency models employ tempo-
ral coherence to principles of multi-scale processing to enhance performance [4].

Comparing with the previous work, our saliency method combines vari-
ous features including primitive pixel-based features (color, intensity, orienta-
tion, and flow information) and region-based features (location, objectness and
object’s movement) through a hierarchical contrast calculation.
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Saliency detection for video originates from applying an attention model to
each frame of the video separately [12]. However, this kind of process does not
achieve high effectiveness because temporal information across frames in the
video is disregarded. The problem is even more challenging when dealing with
dynamic scenes, where not only objects but also background always changes
over time. Dynamics in a video is caused by different dynamic entities of nat-
ural scenes or by ego-motion of imaging sensors. Therefore, dynamic textures
are integrated into discriminant center-surround saliency detection method to
deal with scenes with highly dynamic backgrounds and moving cameras [13].
Accuracy for human egocentric visual attention prediction is also enhanced by
adding information of camera’s rotation, velocity and direction of movement
into the bottom-up saliency model [6]. Differently from existing methods, our
spatial-temporal saliency model uses motion information in order to keep tem-
poral consistency across frames.

3 Hierarchical Spatial-Temporal Saliency Model

Figure 2 illustrates the process of our spatial-temporal saliency detection
method. First of all, the streaming hierarchical method [14], which runs on
arbitrarily long videos with constant, low memory consumption, is executed to
hierarchically segment a video into spatial-temporal regions. In order to obtain
regions at different scales, we initially construct a 5-level segmentation pyra-
mid. Motion information as well as used features for each frame are extracted in
each scale level. From these features, we build feature maps, including contrast
information between regions and regional characteristics, in order to calculate
saliency entities for regions in each scale level. After that, an Adaptive Tem-
poral Window (ATW) is individually applied to each region to smooth saliency
entities between frames by exploiting the motion information, yielding hierar-
chical saliency maps for each frame. Finally, a spatial-temporal saliency map is
generated for each frame by fusing its hierarchical saliency maps.

Video Frame

Motion Information

Video Hierarchical
Segmentation 

Contrast 
information

Regional 
characteristics

Spatial-Temporal
Saliency Map

ATW

…

Feature Maps

Flow information Motion distribution

Fig. 2. Pipeline of the proposed spatial-temporal saliency method.
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3.1 Saliency Entity Construction

Contrast Information. Human vision reacts to image regions with discrim-
inative features such as unique color, high contrast, different orientation, or
complex texture. To estimate attractiveness of regions in a video, contrast met-
ric is usually used to evaluate sensitivity of elements in each frame. The con-
trast information is based on pixel-based features including static information
such as color, intensity, or texture, and dynamic information such as magni-
tude or orientation of motion. A region with a high level of contrast against
surrounding regions can attract human attention and is perceptually more
important.

For the i-th region at the l-th scale of the segmentation pyramid at a frame,
denoted by ri,l, we compute its normalized color histogram in CIE Lab color
space, denoted by χpfcol

i,l , and distribution of lightness χ
pflig

i,l . Gabor filter [15] is
used to calculate orientation representation statistics χpfori

i,l of the region ri,l.
Since human visual system is more sensitive to moving objects than still

objects, temporal features are also compared between regions at the same seg-
mentation level. Pixel-wise optical flow [16] is used to analyze motion between
consecutive frames. Motion distribution of region ri,l is encoded in two descrip-
tors: χ

pffmag

i,l is a normalized distribution of flow magnitude and χ
pffori

i,l is a
normalized histogram of flow orientation.

The contrast of each region is measured as the sum of its feature distances to
other regions at the same scale level in the segmentation pyramid with different
weight factors:

SCIi,l
=

∑

pf

wpf

∑

j �=i

|rj,l| ω (ri,l, rj,l)
∥∥∥χpf

i,l − χpf
j,l

∥∥∥, (1)

where |rj,l| denotes the number of pixels in region rj,l.
∥∥∥χpf

i,l − χpf
j,l

∥∥∥ is the
Chi-Square distance [17] between two histograms, pf ∈ {pfcol, pflig, pfori,
pffmag, pffori} denotes one of the five features with corresponding weight wpf .
In this work, we use the same weights for all features. Regions with more pixels
contribute higher contrast weight factors than those containing smaller number
of pixels. ω (ri,l, rj,l) controls spatial distance influence between two regions ri,l

and rj,l:

ω (ri,l, rj,l) = e
−D(ri,l,rj,l)2

σ2 ,

where D(ri,l, rj,l) is the Euclidean distance between region centers and para-
meter σ controls how large the neighbors are. Finally, SCIi,l

is normalized to
range [0, 1].

Regional Characteristics. In addition to the contrast between regions, we also
compute characteristics of each region based on region-based features. Human
vision is biased toward specific spatial information of video such as center of the
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frame or foreground objects, as well as movements of objects over time. There-
fore, our region-based features are based on location, objectness, and movement
metrics.

Human eye-tracking studies show that human attention favors the center of
natural scenes when watching videos [18]. So, pixels close to the screen center
could be salient in many cases. Our location feature is defined as:

χi,l
rf loc =

1
|ri,l|

∑

j∈ri,l

e
−D(pj,p̄)2

σ2 ,

where |ri,l| denotes the number of pixels in region ri,l and D (pj , p̄) is the Euclid-
ean distance from each pixel pj in the region to the image center p̄.

The second characteristic is objectness of regions, which is based on dif-
ferences of spatial layout of image regions [19]. Object regions are much less
connected to image boundaries than background ones. In contrast, a region cor-
responding to background tends to be heavily connected to image boundary. In
order to compute objectness of each region, each segmented image is first built
as an undirected weighted graph by connecting all adjacent regions and assign-
ing their weights as the Euclidean distance between their average colors in the
CIE-Lab color space. The objectness feature of region ri,l is written as:

χi,l
rfobj = exp

(
−BndCon2 (ri,l)

2σ2
BndCo

)
,

where BndCon (ri,l) is the boundary connectivity of region ri,l, which is calcu-
lated as the ratio of the length along the boundary of region ri,l to the square
root of its spanning area. The length along the boundary of region ri,l is the sum
of the Geodesic distance [19] from it to regions on the image boundary whereas
its spanning area is the sum of the Geodesic distances from it to all regions in
the image. σBndCo is a parameter and we set σBndCo = 1 like [19].

Moreover, to encode movement of objects, we capture any sudden speed
change in motion of regions. Movement of a region is calculated as displacement
of its spatial center over time:

χ
rfmov

i,l = eλΔ(ri,l),

where Δ (ri,l) is the Euclidean distance between the centers of region ri,l in two
consecutive frames.

The characteristics of the region ri,l are computed as the sum of its attribute
values with different weight factors:

SRCi,l
=

∑

rf

wrfχrf
i,l , (2)

where rf ∈ {
rf loc, rfobj , rfmov

}
denotes one of the three features, with cor-

responding weight factor wrf . In this work, we use the same weights for all
features. Finally, SRCi,l

is normalized to range [0, 1].
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Feature Map Combination. Combining the contrast information and the
regional characteristics, we obtain initial saliency entities for all segmentation
levels separately:

Si,l = SCIi,l
SRCi,l

. (3)

Finally, the saliency entities are linearly normalized to fixed range [0, 1] in order
to guarantee that pixel with value 1 is the maxima of saliency.

3.2 Exploiting Motion Information

Differently from still images, video scenes include both spatial information and
temporal information, which is considered as motion information of objects in
the scenes. In addition, motion information plays an important role for human
perception. Therefore, it is necessary to include motion information into the
saliency map for video. To calculate motion information, we first use the pixel-
wise optical flow proposed by C. Liu [16] to compute motion magnitude of each
pixel in a frame, and then exploit distribution of motion magnitude in each
region (c.f. Fig. 3).

Flow Information

Segmented Image

Source  Image

Motion Distribution

R4

R5

R6

R2

R3

R1 R5

R6

R4

R2

R3

R1

…

Fig. 3. Motion information calculation.

In a video, it is sometimes hard to distinguish objects from background
because every pixel value always changes over time regardless that it belongs to
an object or background. Moreover, motion analysis shows that different parts
of objects move with various speed and, furthermore, background motion also
changes with different speed and direction (c.f. flow information in Fig. 3). This
causes fluctuation of object appearances between frames. To reduce this negative
effect, saliency entities at each segmentation level at the current frame is com-
bined with neighboring frames, resulting in smoothing saliency values over time.
We propose to adaptively use a sliding window in the temporal domain for each
region at each frame to capture speed variation by exploiting motion information
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in the region. After this operation, salient values on contiguous frames become
similar, and this generates robust temporal saliency:

S̃t
i,l =

1
Ψ

t∑

t′=t−Φt
i,l

e

−D(t,t′)2

2Φt
i,l

2σ2
St

i,l, (4)

where St
i,l measures saliency entity of region ri,l at frame t, D(t, t′) denotes the

time difference between two frames, parameter σ controls how large the region
at previous frames is. Ψ is the normalization factor of saliency value:

Ψ =
t∑

t′=t−Φt
i,l

e

−D(t,t′)2

2Φt
i,l

2σ2
,

where Φt
i,l controls the number of participating frames in the operation,

expressed as:

Φt
i,l = Me

−μt
i,l

λ
βt

i,l , (5)

where M and λ are parameters. βt
i,l = σt

i,l

μt
i,l

is the coefficient variation measuring

dispersion of motion distribution of each region. μt
i,l and σt

i,l are the mean value
and the standard deviation of the motion distribution of region ri,l at frame t.

3.3 Spatial-Temporal Saliency Generation

Normalized hierarchical saliency maps of different scales are combined to create
a spatial-temporal saliency map SM by calculating the average over all hierar-
chical levels:

SM t
p =

1
L

L∑

l=1

S̃t
Ωl(p), l, (6)

where Ωl is a function that converts pixel p to the region at scale level l where it
belongs. Therefore, all operations are processed pixel-wisely. S̃t

Ωl(p), l measures
hierarchical saliency value of each pixel generated in the l-th scale of the seg-
mentation pyramid at frame t.

4 Experimental Setup

4.1 Dataset

We used Weizmann human action database [8] and SFU eye-tracking database
[9] for all experiments. The Weizmann dataset [8] contains 93 video sequences
with static background of nine people performing ten natural actions such as
running, walking, jacking, waving, etc. with the ground-truth foreground mask.
The SFU dataset [9] contains 12 standard video sequences which have dynamic
background and complex scenes with the first and second viewing gaze location
data by 15 independent viewers. Fixations of the first viewing in the SFU dataset
were used as the ground truth.
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4.2 Evaluation Metrics

Precision, Recall, and F-Measure. These metrics are used to evaluate per-
formance of the object location detection at a binarized threshold. Similarly
to [20], we used an adaptive threshold for each image, which is determined as
twice the mean value of salient values over the entire given image.

The F-measure [20] is the overall performance measure computed by the

weighted harmonic of precision and recall: Fβ = (1+β2)Precision×Recall

β2×Precision+Recall . Similarly
to [20], we chose β2 = 0.3 to weight precision more than recall.

Absolute Correlation Coefficients. The linear Correlation Coefficient (CC)
metric [21] focuses on saliency and gaze statistical distributions. To have advan-
tages when comparing average CC from videos, we use Absolute Correlation
Coefficient (ACC): ACC =

∣∣∣
∑

p ((SM(p)−μSM )(GT (p)−μGT ))

σSM σGT

∣∣∣ where SM is the
saliency map and GT is the ground truth; μSM , σSM , μGT , σGT are mean values
and standard deviation of SM and GT respectively.

Normalized Scanpath Saliency. The Normalized Scanpath Saliency (NSS)
metric [22] focuses on saliency map values at eye gaze positions. This metric
quantifies saliency map values at the ground truth locations and normalizes it
with saliency variance.

Area Under Curve. In Area Under the Curve (AUC), saliency map is treated
as a binary classifier on every pixel where pixels with larger values than a
threshold are classified as fixated while the rest of the pixels are classified as
non-fixated. To reduce influence of the border cut and the center-bias over
AUC, we adopted the shuffled-AUC [23], a standard evaluation method used
in many recent works. We used an implementation of the shuffled-AUC metric
by Z.Bylinskii [24].

5 Evaluation of the Proposed Method

5.1 Evaluation of Introduction to Regional Characteristics

In a video, each pixel value of each frame always changes over time regard-
less that it belongs to an object or background. Therefore, contrast information
using only pixel-based features cannot effectively highlight objects from dynamic
background. However, the combination of regional characteristics, derived from
region-based features, and contrast information can overcome this limitation
because region-based features reduce fluctuation of pixel values in a region.
Therefore, our method effectively predict human attention in videos.

To verify this, we conducted experiments to compare Precision, Recall,
F-measure values for salient object detection and ACC, NSS, AUC values for eye
fixation obtained from our method (denoted by “with RC”) with those without
regional characteristics (denoted by “without RC”). Results in Fig. 4 indicates
that our method outperforms the others in all metrics.
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(a) Salient object detection (b) Human eye fixation

ACC NSS AUC
0

0.6

0.5

0.4

0.3

0.2

0.1

0.7

0.8 with RC
without RC

Precision Recall F−measure
0.7

0.75

0.8

0.85

With RC 
Without RC

0.9

Fig. 4. Regional characteristic evaluation. (a) is experimental results for salient object
detection on the Weizmann dataset [8]; (b) is experimental results for human eye
fixation on the SFU dataset [9].

5.2 Evaluation of Adaptive Temporal Windows

Although combining saliency values of consecutive frames can have positive
effect, the employed window size should depend on motion and background.
In contrast to the method using a fixed window size, our method adapts the
window size to different motion regions in a video. Therefore, our method effi-
ciently utilizes information from consecutive frames to keep temporal consistency
between frames.

To verify this, we performed experiments to compare Precision, Recall,
F-measure values for salient object detection and ACC, NSS, AUC values for
eye fixation obtained from our method (denoted by ATW) with those from the

(a) Salient object detection (b) Human eye fixation

ACC NSS AUC
0.3

0.6

0.5

0.4

0.7

0.8 ATW 
NoTW 
TW1s 
TW2s 
TW3s

Precision Recall F−Measure

0.84

0.82

0.8

0.78

0.86

0.88
ATW 
NoTW 
TW1s 
TW2s 
TW3s

Fig. 5. Adaptive temporal window evaluation. (a) is experimental results for salient
object detection on the Weizmann dataset [8]; (b) is experimental results for human
eye fixation on the SFU dataset [9].
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method without using temporal window (denoted by NoTW), and using a tem-
poral window with the fixed size that corresponds to 1 s, 2 s, and 3 s (denoted
by TW1s, TW2s, and TW3s respectively).

Results in Fig. 5 illustrate that our method outperforms the others. Results
obtained by the temporal window with a fixed size also perform well, but they
can be worse than the ones not using the temporal window when a suitable
window size is not chosen.

6 Comparison with State-of-the-Art

6.1 Salient Object Detection

We compared performance of the proposed method with the most recent center-
surround contrast based methods using the Weizmann dataset [8]. They are HS
[5], LC [25], SAG [26], SO [19], and STS [4]. Among them, LC, SAG, STS are
spatial-temporal saliency detection methods, whereas HS and SO are pure spatial
methods. We remark that there are some other methods based on the center-
surround contrast framework whose results are mostly inferior to the above men-
tioned methods.

In the first experiment, we used a fixed threshold to binarize saliency maps.
In the second experiment, we performed image adaptive binarization of saliency
maps. We compared our method with the five methods mentioned above. To
evaluate these five methods, we used their publicly available source codes with
default configuration set by the authors. Some examples for visual comparison
of the methods are shown in Fig. 6, indicating that our method produces the
best results on these images.

Frame Gt Ours HS[5] LC[25] SAG[26] SO[19] STS[4]

Fig. 6. Visual comparison of our method to the state-of-the-art methods on the
Weizmann dataset [8]. From left to right, original images and ground truth are fol-
lowed by outputs obtained using our method, HS [5], LC [25], SAG [26], SO [19], and
STS [4]. Our method achieves the best results.

Image Binarization by a Fixed Threshold. In this experiment, each
saliency map is binarized into a binary mask using a saliency threshold θ (θ is
changed from 0 to 1). With each θ, the binalized mask is checked against the
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Frame Gt Ours BMS[27] DVA[12] RWR[28] SER[29] SR[30]

Fig. 7. Visual comparison of our method to the state-of-the-art methods on the SFU
dataset [9]. From left to right, original images and ground truth are followed by outputs
obtained using our method, BMS [27], DVA [12], RWR [28], SER [10], and SR [29].
Our method achieves the best results.

ground truth to evaluate the accuracy of the salient object detection to com-
pute Precision Recall Curve (PRC) (c.f. Fig. 8 (a)). The PRC is used to evaluate
performance of the object location detection because it captures behaviors of
both precision and recall under varying thresholds. Therefore, the PRC provides
a reliable comparison of how well various saliency maps can highlight salient
regions in images.

(a) Fixed threshold (b) Adaptive threshold

0 0.2 0.4 0.6 0.8 1
0

0.6

0.4

0.2

0.8

1

Recall

P
re

ci
si

on

Ours
HS
LC 
SAG
SO
STS

Ours HS LC SAG SO STS
0

0.6

0.4

0.2

0.8

1 Precision 
Recall 
F−Measure

Fig. 8. Salient object detection comparison on the Weizmann dataset [8]. (a) is Pre-
cision Recall Curves for fixed threshold; (b) is Precision, Recall, and F-Measure for
adaptive threshold.

In the PRC, the precision value corresponds to the ratio of salient pixels that
are correctly assigned with respect to all the pixels in extracted regions, while
the recall value is defined as the percentage of detected salient pixels in relation
to the number of salient pixels in the ground truth.gh recall is achieved at the
expense of reducing the precision and vice-versa. The results in Fig. 8 (a) show
that our method consistently produces saliency maps closer to the ground truth
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than the others.This is because the precision value of our method is higher than
the others at almost each recall value.

Image Adaptive Binarization. In this experiment, an adaptive threshold
depending on obtained saliency for each image is used instead of a fixed thresh-
old. Similarly to [20], the adaptive threshold value is determined as twice the
mean value of salient values over a given entire image. Figure 8 (b) shows the
Precision, Recall, and F-measure values of our method and the other five meth-
ods. Our method outperforms the other methods in all three metrics over the
Weizmann dataset.

6.2 Eye Fixation Prediction

We compared performance of our proposed method with dynamic saliency detec-
tion methods for human fixation such as BMS [27], DVA [12], RWR [28], SER
[10], and SR [29] using the SFU dataset. To evaluate these methods, we used their
publicly available source codes with default configuration set by the authors. In
order to produce eye fixation maps, our saliency maps are blurred by applying
Gaussian blur with zero mean and standard deviation σ (we set σ = 7). Some
examples for visual comparison of the methods are shown in Fig. 7, indicating
that our method produces the best results on these images. Figure 9 shows the
ACC, NSS, and AUC value comparisons of our method with the other methods.
As can be seen, our proposed method outperforms the other methods on all
metrics.

ACC NSS AUC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ours
BMS
DVA
RWR
SER
SR

Fig. 9. Eye fixation prediction comparison on the SFU dataset [9], using ACC, NSS,
and AUC metrics.

7 Conclusion

In this paper, we present a novel contrast based hierarchical spatial-temporal
saliency model for video. Our method effectively integrates pixel-based features
and region-based features into a flexible framework so that our method can
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utilize both static features and temporal features. Saliency values of consecutive
frames are combined by an adaptive temporal window to reduce influence of
different motion in a scene, thus the proposed method is robust to dynamic
scenes. By introducing region-based features and adaptive temporal window,
our method effectively incorporate the dynamic nature of scenes into saliency
computation. Experimental results show that our method outperforms state-of-
the-art methods on two standard benchmark datasets.

A drawback of the proposed method is not using high-level cues, such as
semantic features. Our future work will focus on integration of multiple features
and semantic knowledge for further improvement.
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