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Abstract Fitting geometric models such as lines, circles or planes is an essential task in
image analysis and computer vision. This paper deals with the problem of fitting a discrete
polynomial curve to given 2D integer points in the presence of outliers. A 2D discrete poly-
nomial curve is defined as a set of integer points lying between two polynomial curves. We
formulate the problem as a discrete optimization problem in which the number of points
included in the discrete polynomial curve, i.e., the number of inliers, is maximized. We then
propose a robust method that effectively achieves a solution guaranteeing local maximal-
ity by using a local search, called rock climbing, with a seed obtained by RANSAC. We
also extend our method to deal with a 3D discrete polynomial surface. Experimental results
demonstrate the effectiveness of our proposed method.

Keywords Curve fitting · Surface fitting · Discrete polynomial curve · Discrete
polynomial surface · Local optimal · Outliers

1 Introduction

Fitting geometric models such as lines, planes or circles is an essential task in image analysis
and computer vision. It can be used in many procedures such as object recognition, shape
approximation, and image segmentation. Though many methods exist for model fitting, in
most cases they use continuous models even in a discrete environment.

F. Sekiya (�)
Graduate School of Advanced Integration Science, Chiba University, Chiba, Japan
e-mail: sekiya@nii.ac.jp

Present Address:
F. Sekiya
Graduate University for Advanced Studies SOKENDAI, Hayama, Japan

A. Sugimoto
National Institute of Informatics, Tokyo, Japan
e-mail: sugimoto@nii.ac.jp

mailto:sekiya@nii.ac.jp
mailto:sugimoto@nii.ac.jp


136 F. Sekiya, A. Sugimoto

The method of least squares is most commonly used for model fitting. This method
estimates model parameters by minimizing the sum of squared residuals from all data, where
the solution can be analytically obtained. This method is, however, fatally susceptible to the
presence of outliers: just one outlier can bring a great impact on estimation results. In order
to enhance robustness, minimizing other criteria has been proposed (for details, see Chapter
1 of [25]). For example, the method of least absolute value (also known as least absolute
deviation or L1 regression) [19] minimizes the sum of absolute residuals from all data. The
method of least median of squares [24] minimizes the median of squared residuals, resulting
in tolerating up to half the data being outliers; it does not work in the presence of more
outliers. With these method, the solution cannot be obtained analytically (i.e., in a closed
form). Therefore, some optimization techniques are required for obtaining the solution as
learned in [27].

In computer vision and image analysis, on the other hand, RANdom SAmple Consen-
sus (RANSAC) [14] is widely used. This method aims at maximizing the number of inliers
(i.e., data points consistent with a given model with allowing some error threshold), and it
works regardless of the fraction of outliers. There exist many variants of RANSAC such
as [11, 23, 28]. However, their random approach takes long time to ensure high accu-
racy, in particular, optimality. Moreover, most of them do not characterize any deterministic
property such as local optimality on its obtained results. Another popular method in these
fields is the one using the Hough transform [13, 16]. This method finds model parame-
ters consistent with a large number of data points in the discretized space of the model
parameters. It works regardless of outlier ratio, and is commonly used for detecting simple
models with a small number of parameters, such as lines and circles. However, its output
depends on a resolution of the parameter space determined by a user in an ad-hoc manner.
In case the number of model parameters becomes large, the required time complexity and
space complexity are both significantly expensive. Though randomized Hough transform
[30] reduces the complexity in time and space, optimality of the obtained solution is not
guaranteed.

In discrete spaces, it is preferable to use discrete models rather than continuous ones.
An example is illustrated in Fig. 1, where we consider line fitting in a 2D discrete space.
Figure 1(a) shows how discrete data are obtained from an original continuous object, i.e.,
discretization of a continuous line: the dark blue line is discretized into the light blue unit
squares (pixels) intersecting with the line. They are represented by the coordinates of their
centers (the red points). However, there exists no continuous line explaining all these points.
Thus, a discretized object generally cannot be represented by a continuous model. This is
why discrete models are introduced.

A discrete model is classically defined as the result of discretization locally applied to
a continuous model, such as Bresenham’s algorithms [6, 7]. A more recent approach [3, 4,
15, 29] is to use global analytical description, in which a discrete model is defined as the
integer coordinate solutions of a finite set of inequalities. Such global description allows
to know easily if an arbitrary point is explained by a given discrete model. A (analytical)
discrete line in 2D is defined, for example, as the set of discrete points (x, y) ∈ Z

2 satisfying
0 ≤ y − (ax + b) ≤ w where w is a non-negative constant. This model can represent a
discretized line by collecting discrete points lying between two parallel lines as shown in
Fig. 1(b), where the two green lines depict y = ax + b and y = ax + b + w. Therefore, it
is reasonable to use a discrete model for fitting in a discrete spaces.

Fitting of analytical discrete models is studied for lines [1, 8, 9, 12, 22, 31], annuluses
(circles) [17, 18, 20, 32], and polynomial curves [21] in 2D, and for planes [2, 8–10, 12,
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Fig. 1 Advantage of fitting a discrete model to discrete data. Consider line fitting in a 2D discrete space
as an example. (a) shows discretization of a continuous line; no continuous line can represent the obtained
set of discrete points (the red points). On the other hand, a discrete line can represent the discretization by
collecting discrete points lying between two parallel lines, as shown in (b).

22, 31] and polynomial surfaces [21] in 3D. In particular, [17, 18, 31, 32] guarantee the
optimality of an obtained set of inliers by using discrete models. For discrete line fitting
and discrete annulus fitting in 2D, and for discrete plane fitting in 3D, methods that work
for a data set that include outliers, i.e., points that do not describe the model, have been
developed. However, such a method that deals with outliers for discrete polynomial curves
and surfaces remains to be reported. This paper aims at developing a method for discrete
polynomial curve and surface fitting to a given set of discrete points in the presence of
outliers.

We formulate the 2D discrete polynomial curve fitting problem as a discrete optimization
problem where the number of inliers is maximized. We then propose a method that guar-
antees its output to achieve local optimal. Our proposed method combines RANSAC and
a local search, named rock climbing. Namely, starting with a seed obtained by RANSAC,
our method iteratively and locally searches for equivalent or better solutions to increase the
number of inliers. Our method guarantees the obtained set of inliers is local maximum in
the sense of the set inclusion. It works regardless of the fraction of outliers. We also show
that the rock climbing can be directly applied to the 3D discrete polynomial surface fitting
problem. Experimental results demonstrate the robustness and efficiency of our method for
our fitting problems. We remark that a part of this work was presented in [26].

This paper is organized as follows. In Section 2, we formulate the 2D discrete polyno-
mial curve fitting problem. We first define a discrete polynomial curve and formulate the
fitting problem. We then reformulate the problem in the parameter space. After stating the
properties of discrete polynomial curves in Section 3, we propose rock climbing that itera-
tively and locally improves the solution in Section 4. Section 5 discusses the computational
complexity of our proposed method. The extension to the case of 3D discrete polynomial
surface fitting problem is addressed in Section 6. In Section 7, we show some experimen-
tal results that demonstrate the efficiency of our method both for 2D discrete polynomial
curves and 3D discrete polynomial surfaces.
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2 Discrete polynomial curve fitting problem

2.1 Definitions of notions

A (continuous) polynomial curve of degree k in the Euclidean plane is defined by

P = {(x, y) ∈ R
2 : y =

k∑

i=0

aix
i, ak �= 0} , (1)

where a0, . . . , ak ∈ R. We define a discretization of (1), namely, a discrete polynomial
curve, by

D = {(x, y) ∈ Z
2 : 0 ≤ y − f (x) ≤ w} , (2)

where f (x) = ∑k
i=0 aix

i , and w is a constant uniquely determined as the absolute differ-
ence between the y-coordinates of two adjacent points in the discrete space (in other words,
w corresponds to the resolution of the discrete space). In this paper, we identify a 2D dis-
crete space as Z2, and therefore w = 1. ai , k and w are respectively called the coefficient,
the degree, and the width of the discrete polynomial curve (i = 0, . . . , k). Geometrically, D

is a set of integer points lying between two polynomial curves y = f (x) and y = f (x)+w,
and w is the vertical distance between them. We remark that D. is called a Digital Level
Layer (DLL) [15].

We define several notions for a discrete polynomial curve. For a finite set of discrete
points (data)

S = {pj ∈ Z
2 : j = 1, 2, . . . , n} ,

with the coordinates of pj being finite, and a discrete polynomial curve D, pj ∈ D is called
an inlier, and pj /∈ D is called an outlier of D. The set of inliers is called the consensus set
of D which is denoted by C. We remark that C = S ∩D. Two polynomial curves y = f (x)

and y = f (x) + w are called the support lines of D. In particular, we call y = f (x) the
lower support line, and y = f (x)+w the upper support line. Points on the support lines are
called critical points of D. In particular, a point on the lower support line is called a lower
critical point, while that on the upper support line is an upper critical point.

2.2 Description of the discrete polynomial curve fitting problem

Let Dk,w be the set of all discrete polynomial curves of degree up to k with width w. The
problem of discrete polynomial curve fitting is described as follows:

Input A set of discrete points S, a degree k, and a width w.
Output A (k + 1)-tuple of coefficients (a0, . . . , ak) of D ∈ Dk,w having the

maximum number of inliers.
A consensus set of the maximum number of inliers, denoted by Cmax, is called the

maximum consensus set. We remark that not less than one optimal solution can exist.

2.3 Discrete polynomial curve fitting in the parameter space

A discrete polynomial curve of Dk,w is identified as a point in the parameter space
(a0, . . . , ak) = R

k+1. We formulate the problem of discrete polynomial curve fitting as an
optimization problem in the parameter space to obtain the maximum consensus set.
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Given a point (x′, y′) ∈ S, (a0, . . . , ak) of D ∈ Dk,w such that D � (x′, y′) satisfies

0 ≤ −
k∑

i=0

x′iai + y′ ≤ w . (3)

We call the set of such points in the parameter space the feasible region for (x′, y′). In par-
ticular, we call the set of points satisfying one of the two equalities the feasible boundaries;
we call the one corresponding to the left-hand-side equality the lower feasible boundaries,
and the other the upper feasible boundaries. (x′, y′) is a lower (upper resp.) critical point
of the discrete polynomial curve corresponding to a point on the lower (upper resp.) feasi-
ble boundary. For a consensus set C = {(x1, x1), . . . , (xm, ym)}, we have (a0, . . . , ak) that
satisfies

⎧
⎪⎨

⎪⎩

0 ≤ −∑k
i=0 xi

1ai + y1 ≤ w ,
...

0 ≤ −∑k
i=0 xi

mai + ym ≤ w .

(4)

Letting PC be the region defined by (4) (the intersection of these feasible regions). We
remark that the region is a convex polytope if it is bounded. PC is the set of (a0, . . . , ak)

determining D ∈ Dk,w such that S ∩ D ⊇ C. Note that S ∩ D = C does not always hold.
Therefore, D determined by (a0, . . . , ak) in PC contains at least |C| inliers. For an arbitrary
consensus set C′ such that C′ ⊃ C, PC′ ⊂ PC since PC′ is the intersection of PC and the
feasible regions for the points in C′\C.

Finding Cmax is equivalent to finding the region for Cmax in the parameter space. Figure 2
shows an example of correspondence between the parameter space and the primal space
in the case of k = 1. Note that an intersection of feasible regions in this case is a convex
polygon as long as it is bounded.

Fig. 2 Examples of the parameter space (a) and the corresponding primal space (b) in the case of k = 1 and
w = 1. Correspondence between the feasible regions in the parameter space and the points in the primal space
are indicated by the same colors. The three points numbered from 1 to 3 in the parameter space determine
the three discrete polynomial curves with the same numbers in the primal space (they are represented by
their support lines). Note that the darkness of a region in the parameter space is proportional to the number
of inliers.
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If we denote by F(a0, . . . , ak) the number of inliers of D determined by (a0, . . . , ak),
then the discrete polynomial curve fitting problem is equivalent to seeking

arg max
(a0,...,ak)

F (a0, . . . , ak) (5)

for given S, k, and w.

3 Properties of discrete polynomial curves

A polynomial curve of degree k is uniquely determined by k + 1 different points on the
curve. Theorem 1 states that a discrete polynomial curve also has a similar property.

Theorem 1 A discrete polynomial curve D ∈ Dk,w is uniquely determined by k+ 1 critical
points having k + 1 different x-coordinates where each of them is specified whether it is an
upper or a lower critical point.

Proof If a discrete polynomial curve D ∈ Dk,w has k + 1 critical points (s1, t1), . . .,
(sk+1, tk+1) such that si �= sj for all i �= j , then the coefficients of D must satisfy

⎧
⎪⎨

⎪⎩

−∑k
i=0 si

1ai + t1 = c1 ,
...

−∑k
i=0 si

k+1ai + tk+1 = ck+1 ,

(6)

where

cj =
{

0 if (sj , tj ) is a lower critical point
w if (sj , tj ) is an upper critical point

(j = 1, . . . , k + 1) .

(6) can be rewritten as
⎛

⎜⎜⎜⎝

1 s1 s2
1 · · · sk

1
1 s2 s2

2 · · · sk
2

...
...

...
...

1 sk+1 s2
k+1 · · · sk

k+1

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

a0
a1
...

ak

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

t1 − c1
t2 − c2

...

tk+1 − ck+1

⎞

⎟⎟⎟⎠ . (7)

The (k + 1) × (k + 1) matrix in the left-hand side is a Vandermonde matrix. Therefore, its
determinant equals to

∏
1≤i<j≤k+1(si − sj ), and cannot be zero since si �= sj for all i �= j

(i, j = 1, . . . , k + 1). This means that D is uniquely determined.

We remark that in general (6) does not have a solution if si = sj for ∃i, j (i �= j ).
Theorem 1 indicates that the set of all discrete polynomial curves in Dk,w generated from

k+1 points in S is finite where the k+1 points are used as critical points (note that different
specifications for the k+1 critical points whether they are lower or upper generate different
discrete polynomial curves). The set is denoted by GS,k,w. GS,k,w is not empty iff the points
in S have at least k + 1 different x-coordinates.

Assume that GS,k,w is not empty. To identify a discrete polynomial curve in GS,k,w,
we consider 2n hyperplanes that are the feasible boundaries for all the points in a given
S = {(x1, y1), . . . , (xn, yn)},

−∑k
i=0 xi

j ai + yj = 0

−∑k
i=0 xi

j ai + yj = w
(j = 1, . . . , n) . (8)
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Fig. 3 Discrete polynomial curves in GS,k,w in the parameter space (k = 1, w = 1). They are the intersection
points of the feasible boundaries; the black points represent them.

Note that the feasible boundaries for (x ′
1, y

′
1) ∈ S and (x ′

2, y
′
2) ∈ S are parallel iff x ′

1 = x ′
2.

Since D ∈ GS,k,w has at least k + 1 critical points with k + 1 different x-coordinates,
(a0, . . . , ak) determining D satisfies at least k + 1 independent equations in (8). There-
fore, D is an intersection point of the feasible boundaries identified by these equations.
Figure 3 shows an example of discrete polynomial curves of GS,k,w in the parameter space.
We remark that for an arbitrary consensus set C, any discrete polynomial curve of Dk,w

determined by a vertex of PC is an element of GS,k,w.
Since GS,k,w is a finite set, if it contains an element having the maximum consensus set,

then we can find the optimal (a0, . . . , ak) (in the sense that it maximizes the number of
inliers) by a brute-force search in GS,k,w.

Theorem 2 If GS,k,w is not empty, then there exists D ∈ GS,k,w such that S ∩ D = Cmax.

To prove Theorem 2, we need the following lemma.

Lemma 1 If GS,k,w is not empty, then the points in Cmax have at least k + 1 different
x-coordinates.

Proof We show that a consensus set C whose points have m ≤ k different x-coordinates is
not maximum. Let X1, . . . , Xm be these x-coordinates. Then, PC is written by

⎧
⎪⎨

⎪⎩

Y 1 − w ≤ ∑k
i=0 Xi

1ai ≤ Y 1 ,
...

Ym − w ≤ ∑k
i=0 Xi

mai ≤ Y m ,

(9)

where Y j is the maximum y-coordinate among the points in C on x = Xj , while Y j is
the minimum y-coordinate among them (j = 1, . . . ,m). Since the points in S have at least
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k + 1 different x-coordinates (because GS,k,w is assumed not to be empty), there exists a
point (X, Y ) ∈ S\C such that X �= Xj for j = 1, . . . , m. The feasible region for (X, Y ) is

0 ≤ −
k∑

i=0

Xiai + Y ≤ w . (10)

By combining (9) and (10), and introducing hj and h such that Y j − w ≤ hj ≤ Y j for
j = 1, . . . , m and Y − w ≤ h ≤ Y , we obtain

⎛

⎜⎜⎜⎝

1 X1 X2
1 · · · Xk

1
...

...
...

. . .
...

1 Xm X2
m · · · Xk

m

1 X X2 · · · Xk

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

a0
a1
...

ak

⎞

⎟⎟⎟⎠ =

⎛

⎜⎜⎜⎝

h1
...

hm

h

⎞

⎟⎟⎟⎠ . (11)

(11) has at least one solution in (a0, . . . , ak), from the same discussion used for (7) in the
proof of Theorem 1. Therefore, there exists at least one discrete polynomial curve D′ ∈
Dk,w such that D′ ⊃ C ∪ {(X, Y )}, which concludes that C is not maximum.

Lemma 1 states that a consensus set whose points have less than k + 1 different x-
coordinates is not maximum. Figure 4 illustrates Lemma 1 in the primal space. Therefore,
we need not consider such consensus sets in proving Theorem 2. We now give the proof of
Theorem 2.

Proof If PCmax is bounded, then each of its vertices corresponds to an element of GS,k,w,
from which Theorem 2 is immediately obtained. Therefore, we only have to show that PCmax

is bounded.

Fig. 4 Illustration of Lemma 1 in the primal space. Assume k = 2. The consensus set C (red points) in (a)
is not maximum since it has only two (< k + 1) x-coordinates; there exists a possible consensus set C′ ⊃ C

having not less than k + 1 x-coordinates as shown in (b).
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Since GS,k,w is not empty, there exist at least k + 1 points (u1, v1), . . . , (uk+1,

vk+1) ∈ Cmax such that ui �= uj for all i �= j thanks to Lemma 1. Any (a0, . . . , ak) in
PCmax satisfies ⎧

⎪⎨

⎪⎩

0 ≤ − ∑k
i=0 ui

1ai + v1 ≤ w ,
...

0 ≤ − ∑k
i=0 ui

k+1ai + vk+1 ≤ w ,

(12)

which can be rewritten as
⎧
⎪⎨

⎪⎩

− ∑k
i=0 ui

1ai + v1 = b1 ,
...

− ∑k
i=0 ui

k+1ai + vk+1 = bk+1 ,
(13)

where 0 ≤ bj ≤ w (j = 1, . . . , k + 1). We thus obtain

⎛

⎜⎝
a0
...

ak

⎞

⎟⎠ =

⎛

⎜⎜⎜⎝

1 u1 · · · uk
1

...
...

. . .
...

1 uk · · · uk
k

1 uk+1 · · · uk
k+1

⎞

⎟⎟⎟⎠

−1 ⎛

⎜⎜⎜⎝

v1 − b1
...

vk − bk

vk+1 − bk+1

⎞

⎟⎟⎟⎠ . (14)

We remark that the inverse matrix always exists. Denoting the (i, j) entry of the inverse
matrix by mij allows (14) to be written as

ai−1 =
k+1∑

j=1

mij (vj − bj ) (i = 1, . . . , k + 1) . (15)

(15) shows that ai is linear in b1, . . . , bk+1. Therefore, the set of (a0, . . . , ak) satisfying (12)
is bounded since 0 ≤ bj ≤ w. PCmax is its subset, and consequently is bounded.

Theorem 2 states that the consensus sets {S ∩ D : D ∈ GS,k,w} contain all the max-
imum consensus sets. Therefore, if GS,k,w is not empty, then all the maximum consensus
sets (optimal solutions to our problem) are found by a brute-force search. We remark that
such maximality cannot be guaranteed with a continuous model. Hereafter, we assume that
GS,k,w is not empty, which almost always holds.

4 Discrete polynomial curve fitting algorithm

RANSAC iteratively generates model parameters by randomly sampling points from a given
set to find the ones describing a largest number of points in the set. Finding all the maximum
consensus sets by RANSAC requires to compute the consensus sets for all the discrete
polynomial curves of GS,k,w, which is computationally expensive and impractical. In fact,
the brute-force search requires up to 2k+1

( |S|
k+1

)
iterations. So the number of iterations is

usually fixed with a sufficiently large number. RANSAC, however, does not guarantee any
property on its obtained result after such iterations. In this section, we propose a method that
effectively achieves a solution guaranteeing local optimality in the sense of the set inclusion
by introducing a local search.

We define neighbors in GS,k,w for our local search. When D ∈ GS,k,w is given, we define
neighbors of D denoted by ND as the discrete polynomial curves of GS,k,w having k upper
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Fig. 5 An example of neighbors (k = 1). The neighbors of the dotted-circle point are depicted with solid-
circle points. They are on the neighboring lines, i.e., dotted lines passing through the dotted-circle point.

and lower critical points all of which are identical with those of D where the x-coordinates
of the critical points are different from each other. Note that D /∈ ND . Then, (a0, . . . , ak) of
D′ ∈ ND satisfies the same k independent equations as that of D among the 2n equations in
(8). We remark that a neighbor can be easily computed by solving in (a0, . . . , ak) the system
consisting of these k equations and another equations in (8). Therefore, (a0, . . . , ak) of D′
is on the intersection line of the k hyperplanes that are the feasible boundaries identified
by these equations. Thus, the neighboring relations are determined by the intersection lines
of k feasible boundaries. We call these lines neighboring lines. Figure 5 shows an example
of neighbors in the parameter space when k = 1. In this case, the neighboring lines are
identical to the feasible boundaries themselves. We call D′ having at least the same number
of inliers a good neighbor of D.

Our method consists of two steps (Algorithm 1). In the first step, we use RANSAC to
obtain a seed for the second step. In the second step, we introduce a local search, called
rock climbing, to increase the number of inliers. Given an initial seed (discrete polynomial
curve) obtained by RANSAC, rock climbing searches the discrete polynomial curves having
a largest number of inliers among the seed and its neighbors, and then iterates this procedure
using the obtained curves as new seeds. We remark that if there is more than one discrete
polynomial curve with the same largest number of inliers, then rock climbing uses all of
them as new seeds in the next iteration (this is where rock climbing differs from the method
of gradient ascent). Algorithm 2 describes the concrete procedure of rock climbing. We
remark that rock climbing searches discrete polynomial curves of degree up to k.

Algorithm 1 Our method

Input: A set of discrete points S, a degree k, a width w, a number of iterations t

for RANSAC.
Output: A set of discrete polynomial curves.

Run RANSAC with t iterations.
Run rock climbing using a seed obtained by RANSAC.
return The output of rock climbing.
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Algorithm 2 Rock climbing

Input: S, k, w, an initial discrete polynomial curve Dinit ∈ GS,k,w.
Output: A set A of discrete polynomial curves.

A := {Dinit}
loop

A′ :=A set of discrete polynomial curves in

(
A ∪

⋃

D∈A

ND

)
having a largest number

of inliers
if A = A′

Break out of the loop
else
A := A′

end if
end loop
return A

Proof Let C be the consensus set of the current discrete polynomial curve (∈ GS,k,w).
We first consider the case of C = Clocal. Any two vertices of a convex polytope are

reachable with each other by tracing edges of the polytope. This means that we can obtain
all the vertices of PClocal by propagating the neighboring relation from the current vertex,
since each edge of PC is a part of a neighboring line. Furthermore, any (a0, . . . , ak) in PClocal

satisfies F(a0, . . . , ak) = |Clocal|. Consequently, we can obtain all the vertices of PClocal by
iteratively searching good neighbors.

If C �= Clocal, then a consensus set C′ = C ∪ (x′, y′) exists where (x′, y′) ∈ S\C.
PC′ is the intersection of PC and the feasible region for (x′, y′). Therefore, each vertex
of PC′ is on an edge or a vertex of PC as illustrated in Fig. 6. This means that we can
obtain all the vertices of PC′ by propagating the neighboring relation from the current

Remark 1 The coefficients of a discrete polynomial curve are obtained by solving the lin-
ear equation system in eq. (7). The condition number of a Vandermonde matrix, however,
exponentially increases with the size of the matrix [5]. In theory, therefore, a numeri-
cal solution obtained by our method is not necessarily stable, i.e., a small change in sj
(j = 1, . . . , k + 1) may cause a significant change in ai (i = 0, . . . , k), when k is large.
Though the numerical evaluation in stability of obtained solutions is beyond the scope of
this paper, we experimentally observe that the solution obtained by our method is numer-
ically stable for degrees k = 2, 3 and 4. Accordingly, our method is effective from the
practical point of view because fitting polynomial curves of high degrees is not in a great
demand.

A consensus set C is called local maximum when no consensus set exists that is a superset
of C. We denote a local maximum consensus set by Clocal.

Theorem 3 Rock climbing outputs discrete polynomial curves that correspond to all the
vertices of a PClocal , and therefore we can generate all (a0, . . . , ak)’s of D such that S∩D =
Clocal from those obtained vertices.
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Fig. 6 PC (black) and PC′ (blue). Note that the two parallel planes are feasible boundaries. Each vertex of
PC′ is on an edge or a vertex of PC . Suppose that the black point corresponds to the current polynomial
curve. Then the white points are the neighbors in PC .

vertex of PC . Furthermore, any (a0, . . . , ak) in PC satisfies F(a0, . . . , ak) ≥ |C|. Con-
sequently, we can obtain all the vertices of PC′ by iteratively searching good neighbors.
This discussion holds as long as C �= Clocal. By repeating this procedure, we finally obtain
C′ = Clocal.

From Theorem 3, rock climbing guarantees local maximality of an obtained consensus
set in the sense of set inclusion. It should be noted that our method does not always terminate
immediately at a local optimal consensus set. Rock climbing examines every neighbor to
seek good ones, and does not terminate as long as good neighbors exist.

Rock climbing has possibilities of not achieving a global optimum. Its output depends on
an initial seed. Having a “good” seed will be preferable. That is why we use RANSAC to
obtain an initial seed having as many inliers as possible. We will experimentally demonstrate
this issue in Section 7.
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Fig. 7 An example of S for which every element of GS,k,w has only k + 1 inliers (k = 1, w = 1). (a)
shows the S in the primal space, while (b) shows the corresponding feasible regions in the parameter space.
The black points in the parameter space correspond to the discrete polynomial curves in GS,k,w . We can see
that they all have only two inliers. For such S, rock climbing evaluates all the discrete polynomial curves in
GS,k,w .
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Fig. 8 Examples of input sets S ∈ S2 (k = 2).

Table 1 Average value of
|Cinitial|/|Ctrue| for each seed
quality level (k = 2).

seed quality |Cinitial|/|Ctrue|

3/3 0.29

2/3 0.0047

1/3 0.0035

0/3 0.0035

5 Computational complexity of rock climbing

The computational complexity of rock climbing is given by the following theorem.

Theorem 4 For a given k, rock climbing has the computational complexity of O(|S|k+2).

Proof As indicated in Theorem 3, rock climbing does not terminate as long as a good
neighbor exists. This means that rock climbing evaluates all the discrete polynomial curves
in GS,k,w when a given S has a property such that for any k + 1 points in S, no other
inliers exists for the discrete polynomial curve uniquely determined by the k+ 1 points (the
k + 1 points are critical points). Figure 7 shows an example of such S in the case of k = 1.
We remark that any two elements of GS,k,w are reachable from each other (by applying
the neighboring relation at most k + 1 times, i.e., by exchanging at most k + 1 critical
points). Therefore, the computational cost for rock climbing is proportional to the product
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of |GS,k,w| and the cost of counting the number of inliers for one discrete polynomial curve.
In general |GS,k,w| = 2k+1

( |S|
k+1

)
, since to determine one discrete polynomial curve requires

selecting k + 1 points among S with specifying whether each point is a lower or an upper
critical point. The cost of counting the number of inliers, on the other hand, is O(|S|),
because for each point (x′, y′) ∈ S we need to verify whether 0 ≤ y′ − ∑k

i=0 x′iai ≤ w is
satisfied. Accordingly, the computational complexity of rock climbing is

O (|S|) · |GS,k,w| = O
(

|S| × 2k+1
( |S|

k + 1

))

= O(|S|k+2).

Theorem 4 states that rock climbing itself has the same computational complexity as
a brute-force search. However, the worst case cost is rarely achieved in practice. This is
because rock climbing searches for only good neighbors. A discrete polynomial curve
D ∈ GS,k,w has |ND| = (k + 1) (2|S| − (k + 1)) neighbors in general. This is because
k + 1 neighboring lines pass through (a0, . . . , ak) determining D and each of them has
at most 2|S| − (k + 1) intersections with other feasible boundaries. Therefore, for one
current seed, the computational cost required to evaluate its neighbors is O(|S|) × (k +
1) (2|S| − (k + 1)) = O(|S|2). The seed pool of rock climbing contains a single solution
when it starts, and the pool is iteratively updated by equivalent or better solutions. If M

denotes the number of discrete polynomial curves stored once in the pool while rock climb-
ing is running, the computational cost practically required for rock climbing is O(M · |S|2).
This indicates that the practical efficiency of rock climbing depends on M . Note that M

depends on the property of input data and a given initial seed. This practical efficiency of
rock climbing is demonstrated in the experiments in Section 7.

Table 2 Percentage of acquiring
Ctruefor each pair of seed quality
level and outlier ratio (k = 2).

seed quality outlier ratio (%) percentage of

acquiring Ctrue (%)

3/3 10 100

30 100

50 100

70 100

2/3 10 100

30 100

50 100

70 100

1/3 10 99.3

30 99.3

50 96.7

70 95.3

0/3 10 92.0

30 94.7

50 89.7

70 95.7
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Fig. 9 Average time until rock climbing converges at Ctrue for each seed quality level (k = 2).

6 Extension to surface fitting

Our proposed method for 2D discrete polynomial curve fitting can be straightforwardly used
even for 3D discrete polynomial surface fitting. This section discusses the extension to 3D
discrete polynomial surface fitting.

A (continuous) polynomial surface of degree k in the 3D Euclidean space is defined by

P 3D =
⎧
⎨

⎩(x, y, z) ∈ R
3 : z =

k∑

i=0

k−i∑

j=0

aij x
iyj , ai(k−i) �= 0 for ∃i

⎫
⎬

⎭ , (16)

where aij ∈ R. As is the case of a discrete polynomial curve, a discrete polynomial surface
in 3D, a discretization of (16), is described by

D3D = {(x, y, z) ∈ Z
3 : 0 ≤ z − g(x, y) ≤ w}, (17)

where g(x, y) = ∑k
i=0

∑k−i
j=0 aij x

iyj , and w is a constant uniquely determined as the
absolute difference between the z-coordinates of two adjacent points in the discrete space.

We align coefficients aij in (16) and rename them to have a0, a1, . . . , adk−1 , where dk is
the number of aij ’s. Let D3D

k,w be the set of all 3D discrete polynomial surfaces of degree k

with a width w. Then the discrete polynomial surface fitting problem is given below.

Input A set of discrete points S ⊂ Z
3, a degree k, and a width w.
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Table 3 Variance of convergence time (sec.) of rock climbing for each seed level (k = 2).

S seed quality

#point outlier ratio (%) 3/3 2/3 1/3 0/3

500 10 0.10 0.12 0.20 0.23

30 0.13 0.13 0.18 0.38

50 0.11 0.12 0.34 0.41

70 0.11 0.11 0.41 0.54

1000 10 0.46 0.60 0.58 2.72

30 0.59 0.62 0.72 2.69

50 0.53 0.55 1.90 2.74

70 0.55 0.49 1.20 2.64

1500 10 1.21 1.40 1.65 5.43

30 1.63 1.60 3.17 6.30

50 0.93 1.58 2.04 2.11

70 0.89 1.20 2.78 3.51

2000 10 2.21 2.28 2.89 3.17

30 2.72 1.88 2.23 3.48

50 2.87 2.95 3.46 7.14

70 1.95 2.92 5.16 7.98

2500 10 4.31 4.22 3.60 23.29

30 3.03 4.17 3.24 5.69

50 3.12 4.87 6.17 8.82

70 3.79 4.24 7.13 12.14

3000 10 5.04 4.59 6.00 8.19

30 3.79 5.59 8.87 10.20

50 5.19 6.16 6.26 8.94

70 4.03 5.72 10.73 15.46

3500 10 6.87 6.56 7.28 11.77

30 6.84 7.11 9.50 14.04

50 8.07 6.74 7.08 18.69

70 4.80 7.08 8.04 24.82

4000 10 8.88 11.29 7.20 12.05

30 11.05 9.72 12.89 15.43

50 11.44 8.36 11.52 16.53

70 7.99 7.77 33.22 31.09

4500 10 11.03 13.34 24.02 12.68

30 12.22 13.28 14.71 22.14

50 13.06 12.90 12.38 23.80

70 11.62 11.85 18.87 49.25

5000 10 15.63 13.62 15.09 24.75

30 14.09 15.28 18.63 17.07

50 17.33 15.73 25.34 28.80

70 15.18 14.28 34.79 44.96
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Fig. 10 Examples of input sets S ∈ S3 (k = 3).

Output A dk-tuple (a0, a1 . . . , adk−1) of coefficients of D3D ∈ D
3D
k,w having the maxi-

mum number of inliers.

In the case of 3D discrete polynomial surface fitting, input points are in 3D and the sur-
face to be searched runs over the xy-plane. This seems more complex and difficult than
2D discrete polynomial curve fitting where input points are in 2D and the curve runs over
the x-axis; however, it is not true. Indeed, (17) is linear with respect to parameters like
(2). This indicates that we can completely have the same discussion on 3D discrete poly-
nomial surface fitting as 2D discrete polynomial curve fitting (the only difference is the
number of parameters involved). Rock climbing can thus be directly applied to the 3D dis-
cretely polynomial surface fitting problem. As the counterparts of Theorems 2, 3 and 4, we

Table 4 Average value of
|Cinitial|/|Ctrue|for each quality of
initial seeds (k = 3).

seed quality |Cinitial|/|Ctrue|

4/4 0.25

3/4 0.0069

2/4 0.0050

1/4 0.0047

0/4 0.0046
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Table 5 Percentage of acquiring
Ctruefor each pair of seed quality
level and outlier ratio (k = 3).

seed quality outlier ratio (%) percentage of

acquiring Ctrue (%)

4/4 10 100

30 100

50 100

70 100

3/4 10 100

30 100

50 99.7

70 100

2/4 10 99.3

30 99.3

50 99.0

70 96.3

1/4 10 98.3

30 97.7

50 96.7

70 96.0

0/4 10 99.0

30 98.7

50 95.3

70 92.0

have straightforwardly the following corollaries. Let G
3D
S,k,w be the set of all D3D ∈ D

3D
k,w

generated from dk points in S where the dk points are used as critical points.

Corollary 1 If G
3D
S,k,w is not empty, then there exists D3D ∈ GS,k,w such that S ∩ D3D =

Cmax.

Corollary 2 Rock climbing, when applied to 3D discrete polynomial surface fitting, outputs
3D discrete polynomial surfaces that correspond to all the vertices of a PClocal .

Corollary 3 Rock climbing, when applied to 3D discrete polynomial surface fitting, has the
computational complexity of O(|S|dk+1).

7 Experiments

In this section, we apply rock climbing to synthesized data-sets. We first evaluate the perfor-
mance of rock climbing (Algorithm 2) depending on the quality of an initial seed. We next
evaluate the computational speed of our method using initial seeds obtained by RANSAC
(Algorithm 1).
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Table 6 Variance of convergence time (sec.) of rock climbing for each seed quality level (k = 3).

S seed quality

#point outlier ratio (%) 4/4 3/4 2/4 1/4 0/4

500 10 0.26 0.44 0.37 0.54 0.73

30 0.38 0.42 0.49 0.76 1.36

50 0.37 0.28 0.63 0.96 0.99

70 0.31 0.31 2.68 1.29 2.20

1000 10 1.14 1.30 2.09 1.54 4.38

30 1.40 1.29 1.24 2.97 4.69

50 1.33 1.47 2.23 1.91 5.81

70 1.61 1.17 6.23 6.48 8.83

1500 10 2.98 2.47 3.94 4.57 6.75

30 1.99 4.06 22.77 7.18 7.75

50 3.27 2.23 5.40 5.02 8.97

70 2.39 2.97 4.35 11.43 8.80

2000 10 5.31 5.81 6.65 5.46 8.87

30 5.36 5.31 7.32 8.72 19.78

50 5.29 5.63 7.88 10.92 10.27

70 5.06 6.60 9.34 31.44 9.81

2500 10 6.96 8.01 9.23 10.32 15.65

30 8.65 9.89 14.04 13.66 27.26

50 8.57 9.69 10.06 9.78 24.70

70 7.70 7.67 18.80 48.01 37.15

3000 10 14.20 13.76 13.65 22.32 20.93

30 12.97 11.93 15.55 19.69 51.10

50 10.01 10.90 42.03 25.42 37.40

70 11.24 10.95 13.77 57.35 31.02

3500 10 13.14 16.45 26.78 16.21 20.72

30 12.22 14.70 19.51 18.48 56.71

50 16.53 17.25 27.39 34.43 38.90

70 15.30 16.00 30.06 53.16 53.77

4000 10 21.44 22.96 24.64 25.30 32.31

30 21.87 25.97 26.38 27.42 43.17

50 24.32 22.71 57.03 38.85 81.72

70 20.45 23.28 31.77 134.31 85.80

4500 10 29.43 29.79 22.05 42.51 64.77

30 29.54 30.91 31.77 38.36 52.20

50 25.43 29.19 61.94 53.52 53.37

70 24.95 29.63 46.17 60.12 51.46

5000 10 45.92 37.31 49.82 55.88 55.19

30 44.76 32.40 45.41 52.58 44.67

50 34.22 37.06 40.80 108.65 57.34

70 26.17 30.70 144.36 59.71 106.59
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7.1 Performance of rock climbing depending on initial seed quality

For 2D discrete polynomial curves, we first set k = 2, w = 1. We fixed the ratio of outliers
among input points to be 10 %, 30 %, 50 %, 70 %, and for each fixed ratio we generated
ten different input point sets S, where |S| was changed by 500 from 500 to 5000 (see Fig. 8
for examples). In each S, integer points satisfying 0 ≤ y − (1.0976 × 10−4x2 + 0.6840x −
8.4283 × 103) ≤ w (−10000 ≤ x ≤ 10000) were randomly generated and named as true
inliers, and integer points that do not satisfy this inequality were randomly generated within
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Fig. 11 Average time until convergence at Ctrue for each seed quality level (k = 3).
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Fig. 12 Examples of input sets S ∈ S3D
2 (3D, k = 2).

[−10000, 10000]×[−10000, 10000] and named as true outliers. We denote the set of these
input point sets by S2.

For applying rock climbing to these data, we generated initial seeds of different quali-
ties, to evaluate the effect of using a “good” initial seed. We define the quality of an initial
seed by the number of true inliers used for generating it. For example, an initial seed of
the highest quality is generated only from true inliers, while an initial seed of the low-
est quality is generated only from true outliers. We denote the quality level by a fraction
�(true inliers)/(k + 1), where the denominator is the number of points required for deter-
mining a discrete polynomial curve of GS,k,w. For k = 2, we have four quality levels of an
initial seed, namely, 3/3, 2/3, . . . , 0/3. For each S, we randomly generated 30 initial seeds
at each quality level. Table 1 compares the average ratio of inliers to all true inliers under
different quality levels. Note that Cinitial denotes the consensus set of an initial seed. We
can see that initial seeds of high quality have a large number of inliers, which justifies our
definition of seed quality in our used data-sets.

We then applied rock climbing to all S using the initial seeds generated above. Table 2
shows for each pair of seed quality level and outlier ratio, the percentage of acquiring all
the true inliers Ctrue over the whole trials. We can see that initial seeds of high quality
always obtained Ctrue regardless of outlier ratio, while initial seeds of low quality sometimes
converged at other Clocal.

Table 7 Average value of
|Cinitial|/|Ctrue| for each quality
of initial seeds (3D, k = 2).

seed quality |Cinitial|/|Ctrue|

6/6 0.23

5/6 0.029

4/6 0.017

3/6 0.014

2/6 0.013

1/6 0.013

0/6 0.013
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Table 8 Percentage of acquiring
Ctruefor each pair of seed quality
level and outlier ratio (k = 3).

seed quality outlier ratio (%) percentage of

acquiring Ctrue (%)

6/6 10 100

30 100

50 100

70 100

5/6 10 100

30 100

50 100

70 100

4/6 10 100

30 100

50 99.7

70 99.7

3/6 10 100

30 100

50 99.7

70 98.3

2/6 10 100

30 99.3

50 100

70 99.7

1/6 10 100

30 100

50 100

70 99.3

0/6 10 100

30 99.7

50 98.6

70 96.7

Figure 9 shows for each seed quality level, the relation between the number of input
points |S| and the average time required to converge at Ctrue. Note that convergence times
for other Clocal were not counted here. In each graph, we depicted the average convergence
times for the four different outlier ratios. For comparison, we also depicted the estimated
time assuming the worst case. The estimated time was computed as 1.4 × 10−8 × |S| ×
|GS,k,w| (= O(|S|k+2)

)
where k = 2. This is because that our computer 1 requires about

1.4 × 10−8 seconds to verify whether (x, y) ∈ S is an inlier of a given D ∈ GS,k,w

when k = 2. From these graphs, we can see that rock climbing is in practice efficient
regardless of outlier ratio, comparing with the estimated time. We can also see that using

1CPU: Intel Core i7-3930K Processor (3.2GHz, 6-Cores, 12-Threads), memory: 16GB.
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an better initial seed results in even more efficiency. Variances of the convergence time
under different seed-quality levels for each S are shown in Table 3. From Table 3, we can
see that the computational time required for a low-quality seed tends to be more unsta-
ble (has a larger variance) than that required for a high-quality seed. We can also see
that the computational time required for a low-quality seed tends to have a larger vari-
ance when the outlier ratio is high, while that required for a high-quality seed is less
affected by the outlier ratio. The variance becomes greater as the number of input points
increases.

So far, we had experiments for quadratic curves (k = 2). In order to confirm our
observations for another degree case, we executed the same experiments under the condi-
tion of k = 3 and w = 1. As input sets, we randomly generated true inliers satisfying
0 ≤ y −(−1.6674×10−8x3 +1.0183×10−5x2 +2.1502x −477.58) ≤ w (−10000 ≤ x ≤
10000) and true outliers over [−10000, 10000] × [−10000, 10000] so that no true outlier
satisfies this inequality (see Fig. 10 for examples). We denote the set of these input point
sets by S3. The results are shown in Tables 4, 5, 6 and Fig. 11. Note that when k = 3, we
have five quality levels of an initial seed, namely, 4/4, 3/4, . . . , 0/4. The estimated time in
Fig. 11 was computed as 1.7 × 10−8 × |S| × |GS,k,w| (= O(|S|k+2)

)
where k = 3, since

our computer requires about 1.7 × 10−8 seconds to verify whether (x, y) ∈ S is an inlier of
a given D ∈ GS,k,w when k = 3. From these results, we have the same observation as the
quadratic curves case.

Table 9 Variance of convergence time (sec.) of rock climbing for each seed quality level (3D, k = 2).

S seed quality

#point outlier ratio (%) 6/6 5/6 4/6 3/6 2/6 1/6 0/6

500 10 3.10 3.01 2.99 2.90 2.42 3.05 2.75

30 2.23 2.76 1.98 2.18 2.49 4.61 3.83

50 2.11 2.00 2.65 2.47 4.05 3.55 5.80

70 2.47 2.03 1.90 3.75 3.37 9.51 5.33

1000 10 7.92 10.22 12.43 9.81 10.16 14.40 12.57

30 12.60 10.47 8.07 10.81 8.83 14.89 20.28

50 8.96 11.20 10.22 13.29 14.08 13.17 34.63

70 8.67 8.31 12.75 10.62 19.05 17.47 33.67

1500 10 24.76 25.40 26.48 21.28 23.28 17.85 32.70

30 24.69 31.08 25.24 35.63 25.36 33.15 33.79

50 23.56 18.35 25.44 22.90 32.34 34.69 45.17

70 20.46 22.76 23.41 43.10 73.41 50.19 93.03

2000 10 41.41 39.25 42.28 46.79 49.94 51.47 57.48

30 48.07 35.45 41.25 44.65 36.08 44.80 48.78

50 43.34 37.02 30.56 54.42 62.29 51.11 59.29

70 36.62 52.45 66.11 44.27 82.55 89.80 53.56

2500 10 64.83 77.25 72.26 101.12 56.91 110.46 81.35

30 52.27 67.35 66.57 87.29 77.60 106.30 75.10

50 76.50 48.78 60.37 65.89 94.13 101.09 121.42

70 52.31 48.70 71.14 72.12 85.91 195.22 314.81
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Fig. 13 Average time until convergence at Ctrue for each seed quality level (3D, k = 2).
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Fig. 14 Average time until our method converges at Ctrue (k = 2).

We finally executed the same experiments for a discrete polynomial surface to evaluate
the 3D case. We set k = 2 and w = 1. We generated five different input point sets S

for each fixed outlier ratio 10 %, 30 %, 50 % and 70 %, where |S| was changed by 500
from 500 to 2500 (see Fig. 12 for examples). In each S, we randomly generated true inliers
satisfying 0 ≤ z − (0.002x2 − 0.001xy + 0.002y2 + 0.25x − 0.25y − 150) ≤ w (−100 ≤
x, y ≤ 100) and true outliers over [−100, 100] × [−100, 100] × [−100, 100] so that no
true outlier satisfies this inequality. We denote the set of these input point sets by S3D

2 .
The results are shown in Tables 7, 8, 9 and Fig. 13. Note that we input k = 2, and for
a 3D discrete polynomial surface of degree 2, we have seven quality levels of an initial
seed, namely, 7/7, 6/7, . . . , 0/7. The estimated time in Fig. 13 is computed as 4.5 × 10−8 ×
|S| × |G3D

S,k,w| (= O(|S|dk+1)
)

where k = 2, since our computer requires about 4.5 × 10−8
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Fig. 15 Average time until our method converges at Ctrue (k = 3).
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seconds to verify whether (x, y, z) ∈ S is an inlier of a given D ∈ G
3D
S,k,w when k = 2. From

these results, we have the same observation as the 2D discrete polynomial curves cases.

7.2 Computational speed of our method

Now we evaluate the computational speed of our method, by applying rock climbing to all
S generated in the previous subsection using initial seeds obtained by RANSAC.

We first applied our method to each S ∈ S2 (Fig. 8, for examples) 100 times indepen-
dently, where for all S we input k = 2, w = 1 and t = 1000 (the number of iterations
for RANSAC). We obtained Ctrue in every trial for all S. The average convergence time for
each S is shown in Fig. 14, where the computational time required for RANSAC is included
(this is far smaller than that required for rock climbing). We can see that the computational
times are in general slightly shorter than those of rock climbing using the highest-quality
initial seeds in the previous subsection (see Fig. 9). This indicates that using RANSAC to
generate an initial seed for rock climbing is effective.

We next conducted the same experiments on S3, where for all S we input k = 3, w = 1
and t = 1000. We obtained Ctrue in every trial for all S. The average convergence time
for each S is shown in Fig. 15. From these results, we have the same observation as the
quadratic curves case.

We finally conducted the same experiments on S3D
2 , where for all S we input k = 2, w =

1 and t = 10000. We obtained Ctrue in every trial for all S. Figure 16 shows the average
convergence time for each S. From these results, we have the same observation as the 2D
discrete polynomial curves cases.

8 Conclusion

This paper dealt with the problem of fitting a discrete polynomial curve and surface to a
given set of discrete points in the presence of outliers. We formulated this problem as a dis-
crete optimization problem where the number of inliers is maximized. We then proposed a
method, called rock climbing, that iteratively improves a solution using local search. Our
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proposed method effectively searches solutions of the formulated problem by rock climbing
using an initial seed obtained by RANSAC. We showed that our method guarantees local
maximality of the obtained solution in the sense of the set inclusion. Our intensive exper-
iments demonstrated the effectiveness of our proposed method. In particular, we observed
that (i) with a good initial seed, rock climbing stably obtains a good solution even in the
presence of various levels of outliers, and (ii) the computational cost for rock climbing to
achieve the local optimal is cheap in practice.
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