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ABSTRACT

This paper presents analysis of a previously recorded multi-
modal interaction dataset. The primary purpose of that
dataset is to explore patterns in the focus of visual atten-
tion of humans under three different conditions - two hu-
mans involved in task-based interaction with a robot; the
same two humans involved in task-based interaction where
the robot is replaced by a third human, and a free three-
party human interaction. The paper presents a data-driven
methodology for automatic visual identification of the active
speaker based on facial action units (AUs). The paper also
presents an evaluation of the proposed methodology on 12
different interactions with an approximate length of 4 hours.
The methodology will be implemented on a robot and used
to generate natural focus of visual attention behavior during
multi-party human-robot interactions.

CCS Concepts

eHuman-centered computing — Human computer
interaction (HCI); eComputing methodologies — Ac-
tivity recognition and understanding; Machine learn-
ing;
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1. INTRODUCTION

Successful multi-party human-robot interaction requires
keeping track of the active speaker. In this paper we de-
scribe a methodology of detecting who is speaking based
solely on visual features. For the purpose of efficient real
world human-robot interaction, we have two main require-
ments. The first one is that we should be able to make
decisions in real-time (possibly with a short lag), which in
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practice means that the system should not require any fu-
ture information beyond a limited fixed lookahead window.
In a spoken human-robot interaction system, in practice, it
is sufficient if the system can classify each detected utter-
ance as coming from a particular speaker by the time it is
recognized by the speech recognition module. The second
requirement is that the classification should be independent
of the speaker.

The basic problem of identifying the source speaker in a
video is a recurring one in the area of multi-modal inter-
faces, and different applications place different requirements
on the solutions. An information theoretical approach ex-
ploiting mutual correlations to associate an audio source
with regions of a video stream was demonstrated by [5],
while [10] showed that audiovisual correlation may be used
to automatically find the correct temporal synchronization
between audio and a talking face. A general pattern recog-
nition framework was used by [3]. The above approaches
are all evaluated on small amounts of data, and usability
in real world scenarios has not been demonstrated. Real
world applications where visual speaker identification has
been mostly explored, include speaker diarization ([2],[8] and
[6]) and video conference management [14]. [7] applied vi-
sual activity (the amount of movement) and focus of visual
attention as features to determine who is the current speaker
on real meeting room corpus data, however the results were
lower than audio-only diarization. Most methods primarily
use visual features from the lower half face, often directly
calculated from pixel values, but body movement has also
been shown to increase recognition rates, [12] and [1]. We
believe that the challenge of identifying the active speaker
in more dynamic and cluttered environments remains. We
would like to derive an approach that can handle such type of
interactions. For example, we do not want to impose limita-
tions such as specific hardware arrangement or participants’
location in the environment.

Since one main requirement of our application is that it
should be speaker independent, it is convenient to use de-
rived features in the form of speaker independent facial pa-
rameters (AUs) as input features, in contrast to the meth-
ods referenced above, which typically use pixel-based feature
representations of some form. In addition, AU features are
efficiently calculated which is important for the real-time
applicability of the system.

The rest of the paper is structured as follows; Section 2
briefly introduces the dataset used for evaluation of the pro-
posed methodology, and Section 3 provides a description of



the methodology. We then describe two main experiments
conducted and the results obtained in Section 4. Finally, we
conclude and discuss directions for future work in Section 5.

2. DATASET

The analysis presented in this paper is based on a newly
recorded multi-modal, multi-party dataset [11]. The main
purpose of that dataset is to explore patterns in the focus
of visual attention of humans under three different condi-
tions: two humans involved in task-based interaction with
a robot; the same two humans involved in task-based inter-
action where the robot is replaced by a third human, and
a free three-party human interaction. The dataset contains
two parts: 6 sessions, each of which is with duration of ap-
proximately 30 minutes, and 9 sessions, each of which is
with duration of approximately 40 minutes. Both parts of
the dataset are rich in modalities and recorded data streams.
They include the streams of three Kinect v2 devices (color,
depth, infrared, body and face data), three high quality
audio streams, three high resolution GoPro video streams,
touch data for the task-based interactions and the system
state of the robot. In addition, the second part of the dataset
introduces the data streams from three Tobii Pro Glasses 2
eye trackers. The language of all interactions is English and
all data streams are spatially and temporally aligned. All
interactions in the dataset occur around a round table and
the participants are seated. Figure 1 illustrates the spatial
configuration of the setup.

Figure 1: Spatial configuration of the setup and the
location of different sensors used in the dataset.

3. METHODOLOGY

Our goal is to model two distinct behaviors during face-
to-face interactions - speaking and not speaking and build
an efficient and accurate classifier which can distinguish the
current state of the participant given features extracted in
real time. The information used for classification will vary
both in space and time, therefore we use a spatio-temporal
approach to modeling. One such approach is the Hidden
Markov Model (HMM), [9] and [13], which is a double stochas-
tic process governed by:

e an underlying Markov chain with a finite number of
states;

e a set of random functions, each associated with one
state.

In discrete time instants, the process is in one of the states
and generates an observation symbol according to random
function corresponding to that state. Each transition be-
tween the states has a pair of probabilities, defined as fol-
lows:

e transition probability, which provides the probability
for undergoing transition;

e output probability, which defines the conditional prob-
ability of emitting an output symbol from a finite al-
phabet when given the state.

For the classification problem, the goal is to classify the
unknown class of an observation sequence O into one of C'
classes. If we denote C different models by A;, 1 < ¢ <
C, then the observation sequence is classified into class ¢*,
where ¢* = argmax . P(O|Ac).

The generalized topology of an HMM is a fully connected
structure, known as an ergodic model, where any state can
be reached from any other state. We employ an 8 state
fully connected HMM, as depicted in Figure 2, to model 2
different classes - speaking and not speaking.

Figure 2: An 8 state fully connected HMM.

The requirement to be able to identify the active speaker
in real time imposes limitation on the features that we can
use to build the models. We use features that can be ef-
ficiently extracted during the interaction, specifically, the
results presented in this paper are based on facial anima-
tion units (AUs), which are automatically calculated by the
Kinect v2 SDK. The exact features from the Facial Action
Coding System (FACS) [4] are,



e JawOpen, JawSlideRight;

e LipPucker, LipStretcherRight, LipStretcherLeft, Lip-
CornerPullerLeft, LipCornerPullerRight, LipCornerDe-
pressorLeft, LipCornerDepressorRight, LowerlipDepres-
sorLeft, LowerlipDepressorRight;

e LeftcheekPuff, RightcheekPuff;

e LefteyeClosed, RighteyeClosed, RighteyebrowLowerer,
LefteyebrowLowerer.

For training and testing the models we use 51 dimensional
feature vector with 17 raw AU feature values, 17 first order
AU differences (the difference between the feature value at
time step ¢ and at time step t—1) and 17 second order AU dif-
ferences (the differences between the first order differences).
The observations are modeled as multivariate Gaussian dis-
tribution with the full covariance matrix. We have tested
the diagonal covariance matrix which results in significantly
lower performance (assuming feature independence in this
case is not justifiable). The number of hidden states is mo-
tivated by experiments on the data and was chosen to be 8
with accuracy and efficiency in mind. We remark that the
number of AUs is 17 because this is the total number de-
tected by Kinect. Furthermore, we remark that we do not
assume only one active speaker (or speaker at all), the mod-
els are meant to be used on all visible faces when speech is
detected, therefore we also allow overlaps.

4. EXPERIMENTS

‘We have conducted two main experiments to test our mod-
eling approach - speaker dependent and speaker independent
experiments. The acoustic signal is passed through an au-
tomatic voice activity detector (VAD) which produces in-
tervals of speech and no speech. The silence threshold for
the VAD is fixed to 200ms. We then use a window with a
fixed length to extract the observation sequences from the
synchronized Kinect data for both classes. The presented
results are based on three different window lengths - 200ms,
500ms and 1s. The data for the AUs in the first three ses-
sions of the dataset is missing, therefore the results presented
next are based on 12 interactions (not all 15).

4.1 Speaker Dependent

The speaker dependent experiment is designed as follows.
We use a 10-fold cross validation procedure to build 10x2
different subject specific models, 2 models (positive and neg-
ative) per subject with the same topology as depicted in Fig-
ure 2. We train the models using 90% of the subject’s data,
for speaking and not speaking classes, and use the rest of the
available data for that subject to test the models. Figure 3
illustrates the results of this experiment for 12 interactions,
3 subjects per interaction.

The confusion matrices for window length of 1s, included
in Table 1, show that in the speaker dependent case the neg-
ative (not speaking) class is modeled slightly better than the
positive (speaking) class by the 8 state HMM. Specifically,
77.3% of the negative instances are correctly classified and
75.6% of the positive instances are correctly classified.

The class distribution is skewed, with the negative (not
speaking) class having more instances. Specifically, the neg-
ative class for window length of 1s is 67.6%. The average
accuracy of the proposed methodology in this case is 76.8%

which is a significant improvement compared to choosing the
dominant class every time.

4.2 Speaker Independent

We designed the speaker independent experiment in the
following way. First we built 36x2 subject specific models
for each of the two classes. Then given all data for subject
n we made classification with the rest 35x2 models (exclud-
ing the two models for the current subject). The final class
assignment for the observation sequence is calculated by a
majority vote between all 35x2 models (the majority voter
takes the votes after argmax P(O|positive, O|negative) for
35x2 models). Figure 4 illustrates the results of this ex-
periment for 12 interactions, 3 subjects per interaction, for
window length of 1s.

The confusion matrices for window length of 1s, included
in Table 2, show that in the speaker independent case the
positive (speaking) class is modeled better than the negative
(not speaking) class by the 8 state HMM. Specifically, 43.6%
of the negative instances are correctly classified and 74.8%
of the positive instances are correctly classified.

The class distribution is skewed, with the negative (not
speaking) class having more instances. Specifically, the neg-
ative class for window length of 1s is 67.6%. The average
accuracy of the proposed methodology in this case is 53.7%
which is significantly lower compared to choosing the domi-
nant class every time.

5.  CONCLUSIONS

We have presented a methodology that attempts to iden-
tify the active speaker during different types of multi-party
interactions: collaborative task-based interactions with and
without a robot and free three-party human interactions.
This methodology involves efficient and automatic extrac-
tion of visual features, facial action units, and Hidden Markov
Models spatio-temporal modeling. The evaluation performed
shows that the not speaking class is more complex than the
speaking counterpart when expressed in the selected feature
space.

A desired property of the proposed approach is speaker
independence. The conducted experiments show that the
proposed methodology can exhibit an independence prop-
erty for one of the classes modeled - the performance for the
speaking class is the same for both experiments. However,
the performance in the speaker independent case for the not
speaking class considerably degraded from the one in the
speaker dependent case.

Future work will involve the definition of different topol-
ogy for the not speaking class (currently we use the same 8
state fully connected HMM for both classes), and investiga-
tion of other approaches to spatio-temporal data modeling.
Furthermore, we plan to implement an additional design of
the speaker independent experiment, where only two mod-
els are built from all data for n — 1 subjects and tested
on the data for the left out subject. We will also investi-
gate additional features from the acoustic channel, which
can be efficiently extracted during the interactions in order
to increase the overall system accuracy. The introduction of
new features will be accompanied with analysis of their in-
dividual contribution to the task of successful active speaker
identification.
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Figure 3: 10-fold cross validated results for the speaker dependent experiment. The accuracy is calculated

according to accuracy = for 10 different train/test iterations and averaged to produce the bar
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1: Confusion matrices for the speaker dependent experiment.
length is 1s, neg refers to the not speaking class and pos refers to the speaking class. The number in brackets
represents instance count.
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Table 2: Confusion matrices for the speaker independent experiment. The observation sequence window
length is 1s, neg refers to the not speaking class and pos refers to the speaking class. The number in brackets
represents instance count.
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