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Abstract. We address the problem of Structure from Motion (SfM)
with rolling shutter cameras. We first show that many common cam-
era configurations, e.g. cameras with parallel readout directions, become
critical and allow for a large class of ambiguities in multi-view reconstruc-
tion. We provide mathematical analysis for one, two and some multi-
view cases and verify it by synthetic experiments. Next, we demonstrate
that bundle adjustment with rolling shutter cameras, which are close
to critical configurations, may still produce drastically deformed recon-
structions. Finally, we provide practical recipes how to photograph with
rolling shutter cameras to avoid scene deformations in SfM. We evaluate
the recipes and provide a quantitative analysis of their performance in
real experiments. Our results show how to reconstruct correct 3D models
with rolling shutter cameras.

Keywords: Structure from motion · Rolling shutter · Degeneracy ·
Non-perspective cameras

1 Introduction

Structure from Motion (SfM) reconstructs geometry of scenes from their images
while simultaneously estimating camera poses and (some of) their internal para-
meters [5]. SfM has many practical applications in scene modelling, 3D mapping,
and visual odometry [12,16,18]. Typical SfM considers perspective cameras, incre-
mentally performs [16] and includes relative and absolute camera pose computa-
tion and bundle adjustment (BA) [17]. Recently, rolling shutter cameras became
very important [11] since the rolling shutter is present in vast majority of cur-
rent CMOS image sensors in consumer cameras and smart-phones. In rolling shut-
ter cameras, images are not captured at once. They are scanned either along
image rows or columns [13]. Since different image lines are exposed at different
times, camera movement during the exposure produces image distortions. It has
been shown that rolling shutter distortion can severely influence SfM computa-
tion [6,14] and that special care has to be taken to achieve sensible results.

Authors of [6] addressed the problem of SfM from video sequences and pre-
sented specially adapted BA algorithm for rolling shutter videos [7]. In [9] a SfM
pipeline for cellphone videos is presented using video sequences and fusion with
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Fig. 1. SfM with rolling shutter model can deliver undesired results. (Left) A recon-
struction from forward camera translation with vertical readout direction. (Middle)
A reconstruction of the same scene from forward moving camera horizontal readout
direction. In both cases, the scene collapses into a plane that is perpendicular to the
readout direction. (Right) When both image directions are combined a correct recon-
struction is obtained with rolling shutter (RS) projection model, which is close to a
reconstruction with global shutter (GS) model.

inertial measurements. These works rely on the fact, that video sequences con-
tain images separated closely in time and space and therefore we can interpolate
between camera poses. Authors of [1] presented a technique for simultaneously
estimating shape and motion of an object with rolling shutter stereo pair and
pointed out a degenerate case.

Recently, techniques for computing absolute camera pose have been pre-
sented. In [10] authors estimate the camera pose using global optimization.
A general minimal solution viable for incremental SfM is presented in [3].
Another minimal solution for translational movements has been shown in [15].
All of these works present camera models that improve the precision of camera
pose estimation under rolling shutter image distortions and which are viable
candidates for BA optimization in SfM reconstruction.

1.1 Motivation

Although state-of-the-art algorithms for rolling shutter absolute camera pose
and BA have shown promising results, to our best knowledge, no one has yet
addressed the task of running a complete RS SfM pipeline on general unordered
sets of images. This is an important topic since almost all images taken today,
even the still ones, can be affected with rolling shutter distortion. Also video
sequences, where rolling shutter is most apparent, are often not desirable to
be processed frame by frame, because that is a heavy computational load for
longer sequences. The framerate available also could not be high enough for
the interpolation used by [7]. Another issue is when combining data from dif-
ferent sources, where it is hard or impossible to enforce relationships between
the camera poses and their motion. For these reasons, having SfM pipeline for
rolling shutter images with no explicit constraints on the camera movement and
temporal displacement is desirable.
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Rolling shutter camera models describe the camera motion during image
capture by various number of additional parameters. This introduces additional
dimensions of freedom to the model. For bundle adjustment, a key component
of SfM, this can introduce new and undesired local minimum. We observed in
practice that the optimization tends to collapse into a degenerate solution which
does not correspond to correct reconstruction in most of the cases (see Fig. 1).
Although degenerate solutions have been studied for the case of perspective
cameras, there has been no study for any of the rolling shutter camera models
used today.

1.2 Contribution

The main purpose of this paper is to show the degeneracies introduced by rolling
shutter camera models and to study them. The case of planar degeneracy which
occurs most often in practice is explained and the reason why bundle adjustment
always prefers this solution is given.

We show that the presence of the degenerate solution is dependent on the
relative alignment of the input images. Cases where the scene can collapse into
a plane for any number of cameras are shown as well as situations where it is
not possible.

Our findings are backed by a number of both synthetic and real experiments
that confirm the theory. We suggest a way to capture the images in practice
such that the scene is reconstructed without any deformation. Again we verify
the method on real data.

1.3 Notation and Concepts

A similarity transformation S is a composition of rotation R, translation T and
uniform scaling s, i.e. S(X) = s RX + T, where R is a rotation matrix, T is a
translation vector and s is a scalar. Image j is a set of vectors uj

i ∈ R
3 \ {0}

with i = 1, . . . , n, j = 1, . . . , m. Scene is a set of vectors Xi ∈ R
3. We consider

only finite scenes for simplicity.
Scene points are projected to image points by cameras as αj

iu
j
i = π(Pj ,Xi),

where Pj defines a particular camera projection model used and its parameters,
and αj

j are appropriate non-zero scales. For instance, when projecting by inter-
nally calibrated perspective cameras, the projection becomes αj

iu
j
i = RjXi +Cj ,

with rotation Rj and camera center Cj .
A collection {Xi, Pj ,uj

i} such that αj
iu

j
i = π(Pj ,Xi) for some αj

i is called
a configuration. We say that configuration {Xi, Pj ,uj

i} explains images uj
i .

We say that configuration {Xi, Pj ,uj
i} is related to configuration {Yi, Qj ,uj

i}
by a similarity transformation when there is a similarity transformation of
points Yi = S(Xi) and camera projection models Qj = S(Pj) such that
βj

i u
j
i = π(Qj ,Yi) for some βj

i . For instance, for internally calibrated per-
spective cameras with Pj = (Rj ,Cj), S(Pj) = (RjR�, sCj − RjR�T) since
π(S(Pj),S(Xi)) = RjR�(sRXi + T) + sCj − RjR�T = sRjXi + sCj = sαj

iu
j
i .
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The goal of 3D reconstruction is to explain images uj
i by a configuration

{Xi, Pj ,uj
i} with scene points Xi measured in a Cartesian coordinate system.

Different choices of Cartesian coordinate systems and different choices of mea-
surement units produce configurations that are related by similarity transforma-
tions. Moreover, it is well-known that internally calibrated perspective images
of a generic scene can be explained by a set S of configurations that with every
element C of S contains also all configurations related to C by a similarity
transformation [5], i.e. scene points can be reconstructed only up to a similarity
transformation.

Therefore, every two configurations related by a similarity transformation will
be considered equivalent. This equivalence relation partitions the set of all con-
figurations into equivalence classes. Two configurations in one class are related
by a similarity while two configurations in different classes are not related by a
similarity. The equivalence class containing all configurations with scene points
measured in a Cartesian coordinate system will be termed correct reconstruction.
All other equivalence classes will be termed incorrect reconstructions.

We say that images uj
i are critical if they can be explained by two configu-

rations that are not equivalent, i.e., by at least one configuration that is in the
incorrect reconstruction. Notice that our concept of criticality is somewhat dif-
ferent from concepts used in [4,8], where they studied which scenes and cameras
produce critical configurations for perspective images. Here we are interested in
analyzing when images may be critical when using a rolling shutter models and
we therefore modify the concept accordingly for that purpose.

2 Rolling Shutter Camera Model

In this paper, we consider internally calibrated rolling shutter (RS) camera mod-
els, which describe RS cameras that are realized as internally calibrated perspec-
tive cameras (K = I) with the row readout speed equal to one. To simplify the
exposition, we will, hereafter, drop the adjective “internally calibrated”. There-
fore, “perspective model” means “internally calibrated perspective model” and
“RS model” means “internally calibrated RS model”. Calibrated perspective
projection can be described by αiui = RXi +C where R ∈ SO(3) and C ∈ R

3 is
the rotation and the translation transforming a 3D point Xi ∈ R

3 from a world
coordinate system to the camera coordinate system with ui = [ci, ri, 1]�, and
αi ∈ R \ {0}.

In the RS [11] model, when the camera is moving during the image capture,
every image row or image column is captured at a different time and hence at
a different position. Here we assume that image is captured row by row and
therefore the rotation R and the translation C are functions of the image row ri:
αiui = αi [ci, ri, 1]� = R(ri)Xi +C(ri). Various models for R(ri) and C(ri) have
been considered [2,3,7,11]. All of them used a linearized translational motion
with constant velocity and direction C(ri) = C0 + rit. This approximation can
be justified by the fact that the readout times of one frame are short (tens
of milliseconds) and there is not much acceleration over this period of time.
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The same justification is used for camera rotational velocity, which is considered
constant during the frame capture. Rotation R(ri) was often modeled as a com-
position R(r) = Rr(ri)R0 of a static part R0 and a motion part Rr(ri). The motion
part Rr(ri) has been parameterized by SLERP [6,7], Rodriguez formula [2,10] or
was linearized by the first order Taylor expansion [2,10,11]. Here we will concen-
trate on the linearized model of rotation [2,10,11], which approximates rotation
Rr(ri) as

Rr(ri) =

⎡
⎣

1 −riωz riωy

riωz 1 −riωx

−riωy riωx 1

⎤
⎦ . (1)

Putting all the above together, brings us to the following RS camera model

αiui = αi [ci, ri, 1]� = Rr(ri)R0Xi + C0 + rit (2)

with P(r) = [Rr(r), R0,C0, t].

3 Bundle Adjustment with Independent RS Models

In this paper we consider Bundle Adjustment (BA) with independent RS models.
This is more general than BA developed in [7] for (video) sequences of regularly
spaced cameras where the camera motion during the image capture was con-
strained to be along the global camera trajectory. Our approach is necessary
when reconstructing scenes from unorganized RS images.

Bundle adjustment [17] minimizes the sum of squares of reprojection errors
which are, in our case, expressed as

ej
i = ũj

i − μ(π(Pj(r̃i),Xi)), (3)

where ũj
i =

[
c̃j
i , r̃

j
i

]�
is the measured image point, μ([x, y, z]�) = [x/z, y/z]� is

the perspective division and Pj(r̃i) is an RS projection model of the j-th camera.
Non-linear least squares methods are used to find a solution (Pj∗,X∗

i ) that
(locally) minimizes the error over all the visible projections (i, j)

(Pj∗,X∗
i ) = arg min

∑
(i,j)

‖ej
i‖2.

When the set of images uj
i is critical, it might happen that the bundle adjustment

algorithm finds a local minimum producing an incorrect reconstruction. We will
see that this indeed often happens.

4 Ambiguities in 3D Reconstruction with RS
Camera Models

Ambiguities in 3D reconstruction with the perspective projection model have
been extensively studied in [8]. It has been found there that two perspective
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cameras and any number of scene points on certain ruled quadrics containing
the cameras centers are in a critical configuration, as well as that for three
perspective cameras, there is always a quartic curve of scene points such that
they are in a critical configuration. Hence, there are situations when a set of
perspective images become critical. However, the critical perspective images are
very special and therefore do not in general pose problems for 3D reconstruction
in practical situations with many points in generic scenes.

RS models are more general than the perspective model and therefore we
expect to see more critical image sets when reconstructing with RS models. In
particular, every perspective image can be explained by an RS model (2) with
t = 0 and Rr(ri) = I. Therefore, every set of images that is critical for the
perspective projection model is also critical for RS model (2).

RS cameras produce images with large variation of RS effects. Photographing
static scenes with static RS cameras produces perspective images while images
taken by RS cameras on a fast train exhibit pronounced RS effects. It is therefore
desirable to look for RS SfM that can deal with all levels of RS effects. In
particular, it is important that any practical RS SfM can handle perspective
images.

When RS images are not truly perspective, it is often possible to treat the
rolling shutter effect as (perhaps systematic) image error and explain RS images
with perspective cameras, distorted scene, and somewhat higher image error.
Therefore, it is important to analyze when a set of perspective images become
critical w.r.t. RS model (2).

We will next show that, in many practical situations, images taken by per-
spective cameras become critical when reconstructed with RS model (2) and,
even worse, when image noise is present, images can be explained by incorrect
reconstructions with smaller error than is the smallest error of a correct recon-
struction. Hence, in such situations, BA often prefers incorrect reconstructions.

We will use the RS camera model (2) with the rotation parameterized by the
linearized model (1), which was used in [2,3,10,11], since it is simple to show
the ambiguities algebraically with this model. The linearized rotation model is
an approximation to all the other models used in the literature and therefore
images that are critical w.r.t. to model (2) will be close to critical for all other
models if a cameras make turns by a small angle during the image capture.. For
other models, the derivations we show will not hold exactly but they will be very
close for many practical situations. We have observed in experiments that BA
converges to incorrect reconstructions for all RS camera models in all the cases
we have tested.

4.1 Single Camera

We will start with showing how we can arbitrarily rotate the projection rays of
a single RS camera and even collapse them in a single plane.

In order for a 3D point Xi to project into coordinate [ci, ri, 1]� in the image,
it has to lie on a plane defined by the row ri and the camera center. All points
that lie in such a plane can be therefore described as
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X(c, ri, α) = (Rr(ri) R0)
−1

(
α [c, ri, 1]� − C0 − rit

)
.

To obtain an equation representing the plane, we need three non-collinear
points, e.g.

X(1, ri, 0) = (Rr(ri) R0)
−1 (−C0 − rit) ,

X(1, ri, 1) = (Rr(ri) R0)
−1

(
[1, ri, 1]� − C0 − rit

)
,

X(0, ri, 1) = (Rr(ri) R0)
−1

(
[0, ri, 1]� − C0 − rit

)
.

The plane n(ri) determined by these three points is the solution of the following
homogeneous equation system:

⎡
⎢⎢⎢⎣

(−C0 − rit)
� (Rr(ri) R0)

−� 1(
[1, ri, 1]� − C0 − rit

)�
(Rr(ri) R0)

−� 1
(
[0, ri, 1]� − C0 − rit

)�
(Rr(ri) R0)

−� 1

⎤
⎥⎥⎥⎦n(ri) = A(ri)n(ri) = 0 (4)

The solution of this system always spans at least one dimensional space, which
is the null-space of A(ri), since the rank of A(ri) is at most three.

We set C0 = [0, 0, 0]� and R0 = I for simplicity and disregard the
translational motion t. We then set ωy = ωz = 0 to simulate the rotation
around the x-axis alone. The 3D point projected on a row ri is now writ-
ten as X(c, ri, α) = αRr(ri)−1 [c, ri, 1]�. We again choose the triplet X(1, ri, 0),
X(1, ri, 1) and X(0, ri, 1) to determine the plane n(ri), from which Eq. (4) yields

⎡
⎢⎣
0 0 0 1
1 0 0 0
0 ri(ωx+1)

r2
i ω2

x+1
− r2

i ωx−1

r2
i ω2

x+1
1

⎤
⎥⎦n(ri) = 0.

We see that n(ri) below is a solution:

n(ri) =
[
0, 1,

ri (ωx + 1)
r2i ωx − 1

, 0
]�

.

We can see that if we set ωx = −1 then n(ri) becomes the plane y = 0 for
any ri. This indicates that there exists a rotational motion (linearized) making
all the projected planes n(ri) coplanar (see Fig. 2).

We will now extend this example to a camera whose center lies in a plane
y = 0 and whose corresponding n(0) is also contained in this plane. Such a
camera has C = [Cx, 0, Cz]

� and can be rotated around the y-axis by angle
φ. We will now consider the translational motion t = [tx, ty, tz]

� as well. The
null-space of the matrix A(ri) then changes to

[
− sin(φ)(ωx + 1),

ωxr2i − 1
ri

, cos(φ)(ωx + 1), Cz − ty + ritz

]�
.
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Fig. 2. Changing the rotational velocity ωx around the x-axis for a rolling shutter
camera model changes the alignment of projection rays that correspond to each image
row. From left to right there is ωx = 0, ωx = −0.3, ωx = −0.6 and ωx = −1. For
ωx = −1 all projection rays collapse into a single plane and any image can be explained
by 3D points in a plane.

It is clear that by setting ωx = −1, tz = 0 and ty = Cz, we obtain again the plane
y = 0 for any ri. We remark that we need the non-zero ty which is dependent
on the camera position in the plane. The reason for this is that in this camera
model we express the camera center in the camera coordinate system, which is
changing for each ri due to ωx. We show that for the linearized rotation model the
rotational velocity ω = [ωx, 0, 0]� can be compensated by translational velocity
t = [0, Cz, 0]� to fix the camera center in the world coordinate system.

4.2 Two Cameras

Using the findings in the previous section, that arbitrary RS camera can be
collapsed in a plane, we will now argue that every two images can be explained
by two RS cameras and a planar scene such that the reprojection error (3) is
zero.

Since each image can be explained by a camera whose center lies in plane
y = 0 and this plane also contains all their projection rays, every two rays
must intersect at least in one point. We can show this algebraically by using the
equations for triangulating 3D points with known camera parameters. We can
write the projection matrix parameterized by ri as

Pj(ri) =
[
Rj(rj

i )R
j
0 Cj

0 + Cj
r(r

j
i )
]

=
[
pj
1(r

j
i ),p

j
2(r

j
i ),p

j
3(r

j
i )

]�
.

Then for a 3D point corresponding to two image measurements ũ1 =
[
c̃1i , r̃

1
i

]�

and ũ2 =
[
c̃2i , r̃

2
i

]� in two cameras having parameters P1(r̃1i ) and P2(r̃2i ) the
following system of equations must hold with λ(∈ R \ {0})

MiXi =

⎡
⎢⎢⎣
c̃1i p

1
3(r̃

1
i )� − p1

1(r̃
1
i )�

r̃1i p
1
3(r̃

1
i )� − p1

2(r̃
1
i )�

c̃2i p
2
3(r̃

2
i )� − p2

1(r̃
2
i )�

r̃2i p
2
3(r̃

2
i )� − p2

2(r̃
2
i )�

⎤
⎥⎥⎦

⎡
⎢⎢⎣
λxi

λyi

λzi

λ

⎤
⎥⎥⎦ = 0. (5)
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In order for a 3D point [xi, yi, zi]
� to exist, the null-space of the 4 × 4 matrix Mi

has to be at least one-dimensional, i.e., the rank must be at most 3. To calcu-
late the triangulated 3D point coordinates we can compute the null-space. For
perspective cameras in general configuration, the null-space will be either zero
dimensional for non-intersecting camera rays or one dimensional, corresponding
to a single 3D point.

Let us apply Eq. (5) to the above example with two RS cameras whose
centers both lie in a plane y = 0. The rotation matrices R10 and R20 will be
rotations around y axis by angles φ1 and φ2. Camera centers will lie anywhere
in y = 0: C1

0 =
[
C1

x, 0, C1
z

]� and C2
0 =

[
C2

x, 0, C2
z

]�. To collapse the projection
rays of both cameras we will set, as shown in the previous section, the rotational
velocities ω1

x = −1 and ω2
x = −1 and translational velocities t1 =

[
0, t1y, 0

]� and

t2 =
[
0, t2y, 0

]�. We then obtain the following matrix

Mi =

⎡
⎢⎢⎣
− cos(φ1) − c̃1i sin(φ1) −c̃1i r̃

1
i c̃1i cos(φ1) − sin(φ1) C1

z c̃1i − C1
x

0 −(r̃1i )2 − 1 0 0
− cos(φ2) − c̃2i sin(φ2) −c̃2i r̃

2
i c̃2i cos(φ2) − sin(φ2) C2

z c̃2i − C2
x

0 −(r̃2i )2 − 1 0 0

⎤
⎥⎥⎦ .

The rank of Mi is at most 3 and, therefore, the rays always intersect at least in
one point. For any pair of image projections the null-space of Mi and thus the
subspace where the 3D point can lie is [a, 0, b, 1]� and therefore all points could
be reconstructed in plane y = 0.

4.3 Projecting onto a Plane

Before we proceed to analysis of multiple RS cameras we need to explain an
important fact, that is, the rotation induced by ω = [−1, 0, 0]� in the linearized
RS model is actually a projection onto a plane y = 0. Let us see what happens
to an arbitrary point on a camera ray. Any 3D point that lies on a camera ray
can be expressed in the camera coordinate system as α [ci, ri, 1]�. For the sake
of simplicity we will consider R0 = I and C0 = [0, 0, 0]� now. We can express
the 3D point in a world coordinate system by

X = R(ri)−1

⎡
⎣
αci

αri

α

⎤
⎦ =

⎡
⎢⎣
1 0 0
0 1

1+r2
i

−ri

1+r2
i

0 ri

1+r2
i

1
1+r2

i

⎤
⎥⎦

⎡
⎣
αci

αri

α

⎤
⎦ =

⎡
⎣
αci

0
α

⎤
⎦ ,

which shows that the x and z coordinates remain the same while the y coordinate
is dropped. An illustration of this is in Fig. 3.

4.4 Multiple Cameras with Parallel y (readout) Directions

We will now use the result from previous subsection to make the following
statement.
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Fig. 3. (Left) Two possible configurations of a scene from image projections u1
i and

u2
i . One is represented by two perspective cameras and point Xi and the other by

linearized RS cameras with ω1
x = ω2

x = −1 and point X̂i. This figure illustrates that
changing ωx parameter to −1 equals to a projection into a plane y = 0. (Right) This
projection is possible even for cameras that do not lie in the plane y = 0 but their
readout direction is parallel.

Theorem: Assume any number of images taken by perspective cameras with
parallel y (readout) directions in space. Then, if there exists a reconstruction
for such cameras using the perspective camera model, then there also exists a
reconstruction using the RS camera model (2) with all cameras and 3D points
lying in plane y = 0.

This statement can be proven by combining the previous statements. The per-
spective reconstruction gives a set of 3D points Xi = [xi, yi, zi]

� and the cameras
whose centers are Cj

0 =
[
Cj

x, Cj
y , Cj

z

]� and whose y axes are aligned with the y
axis in the world coordinate system, where j is the index for cameras and i for 3D
points. If we project the rays connecting Cj

0 and Xi onto the plane y = 0 we will
obtain the rays that pass through Ĉj

0 =
[
Cj

x, 0, Cj
z

]� and X̂i = [xi, 0, zi]
� which

we have shown that is a configuration that is easily achieved by setting ωj
x = −1

(see Fig. 3). It follows that if there exists a perspective reconstruction for such
images with zero reprojection error, the reconstruction projected to y = 0 will
also have a zero reprojection error.

4.5 The Effect of Planar Projection in the Presence of Image Noise

The mere existence of the planar representation of the scene is not a reason BA
should converge to such a solution. In practice, however, measured image points
are affected by noise, and this noise leads to non-zero reprojection error ej

i in BA
(see Eq. (3)). In this section we show that the planar projection always reduces
the reprojection error and therefore it always provides a superior solution in BA.

Suppose measured image points ũj
i =

[
c̃j
i , r̃

j
i

]�
are now affected by noise

such that ej
i = ũj

i − μ(Pj(r̃i)Xi). For perspective projection, i.e. ωj = [0, 0, 0]�

and tj = [0, 0, 0]� the error can be expressed as
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ej
i = ũj

i − μ
(
Rj
0Xi + Cj

)
=

⎡
⎣̃c

j
i − Cj

x+x cos(φj)+z sin(φj)

Cj
z+z cos(φj)−x sin(φj)

r̃j
i − y

Cj
z+z cos(φj)−x sin(φj)

⎤
⎦

whereas the reprojection error using the linearized RS camera model with ωj =[
ωj

x, 0, 0
]� and tj =

[
0, Cj

z , 0
]� is

ej
i =

[
ej
ix

ej
iy

]
= ũj

i − μ
(
Rj

r(r̃
j
i )R

j
0Xi + Cj + r̃j

i t
j
)

=

[
c̃j
i − Cj

x+x cos(φj)+z sin(φj)

Cj
z+z cos(φj)−x sin(φj)

0

]
.

The ej
iy component of the reprojection error is eliminated and the ej

ix component
remains unchanged by the projection to y = 0; therefore the overall error is
reduced. This is always true for images taken by the perspective cameras with
identical y directions in space.

4.6 What Does It Mean in Practice?

We have shown the reason why the planar projection reduces the reprojection
error in the case where all images are captured by perspective cameras with
identical y direction in space. This case is in practice hardly achieved exactly,
but we can often come very close to this scenario, for example when taking
handheld pictures while walking or taking pictures with a camera mounted on
a car.

When images are captured with the y directions not parallel, we are still able
to reduce ej

iy to zero, but at the cost of increasing the ej
ix component. It follows

that BA will try to reduce ej
iy as far as the increase in ej

ix does not exceed the
reduction in ej

iy.
The amount of increase in ej

ix depends on camera poses when images are
taken and it is complicated to analyze in general. We have, however, practically
observed the following fact.

Observation: For three or more images by perspective cameras with pairwisely
different y directions, the deformation of the scene by BA due to using the RS
model is directly dependent on the angle between the y axes.

In synthetic experiments, we show that when the smallest angle between the
three pairs of y directions is at least 30 degrees, the reconstruction is recovered
correctly. I real experiments, on the other hand, we show that capturing the
scene with sufficient amount of images with two distinct y directions that are
perpendicular with each other, i.e. taking portrait as well as landscape images
provides a correct reconstruction.

5 Experiments

5.1 Synthetic Experiments

In Sect. 4 we have shown that images captured with parallel readout directions
used in BA with linearized RS camera model can be explained by a planar scene



Degeneracies in Rolling Shutter SfM 47

Fig. 4. Experiment with three randomly initialized cameras. The x axis shows the
minimal readout direction angle among the three cameras. The figure on the left shows
the mean spatial error over all 3D points after the optimization and the figure on the
left shows the contraction factor of the scene compared to the ground truth. The lower
the contraction factor the more deformation is in the scene. Results are shown for
several values of error in the observations, expressed by the variance σ of their zero
mean normal distribution.

and that this configuration has lower reprojection error. In synthetic experiments
we verified this also for SLERP and Rodriguez parameterization.

Further investigation was aimed at the case when image readout directions
were not parallel during capture. We studied the amount of minimal angular
difference between the three readout directions needed for the scene to be recon-
structed correctly. To express the “correctness” of the reconstruction we intro-
duce a measure which we call the scene contraction factor.

We calculate scene contraction factor as the ratio between the third principal
component of the 3D points’ coordinates before and after BA. The optimized 3D
points after BA are first fitted to the initial 3D points by a similarity transform
and then the principal components are calculated. If the scene is deformed,
the third principal component will be different. A correctly reconstructed scene
will have contraction factor close to 1 whereas completely flat scene will have
contraction factor equal to 0.

We sampled three cameras randomly on a sphere with radius of 1 and pointing
towards the a cubical scene. We measured the mean distance of initial 3D points
from the resulting ones and also the scene contraction factor. Altogether 10,000
samples were generated and we categorized them based on the minimal angle
between the three pairs of readout directions.

For each of these samples the same analysis as in previous experiment was
done using 1000 different initializations with increasing image noise. We show the
results for several values of the image noise in Fig. 4. From these experiments we
can predict that if the minimal readout direction angle among the three camera
pairs is at least 30 degrees, the reconstruction should be correct.

5.2 Real Data Experiments

To test our hypotheses under real conditions we captured several datasets using
smart-phone camera under various angles. In order to have three mutually
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distinct RS readout directions we captured the same scene in vertical, hori-
zontal and tilted position of the phone. Images were extracted from short videos
captured handheld while moving around the objects or walking.

An incremental SfM pipeline similar to [16,18] was used to provide a baseline
reconstruction. This pipeline was then adapted to use R6P [3] solver for absolute
camera pose computation and used either linearized camera rotation model,
SLERP or Rodriguez rotation model in bundle adjustment. Since we observed
identical behavior for all rotation models, we present only the results of the
linearized one. This rolling shutter aware version of the pipeline is denoted in
the experiments as RS and the original as global shutter (GS) camera, which is
equivalent with the perspective camera.
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Fig. 5. Analysis of the criticality in real datasets. The degeneracy is shown as flatness of
the scene, where zero means completely flat. For either horizontal or vertical datasets,
the degeneracy is apparent as the scene usually collapses to a plane completely. The
results of the RS pipeline on datasets with both horizontal and vertical images show
the same scene dimensions as the ones with GS pipeline.

For each dataset we ran the two pipelines on several subsets of data – horizon-
tal images, vertical images, horizontal+vertical and horizontal+vertical+tilted.
According to our expectations, for the subsets containing only one readout direc-
tion the scene was collapsing to a plane as the RS incremental pipeline was pro-
gressing. We have calculated the flatness of the scene using principal component
analysis (Fig. 5). Note that flatness in Fig. 5 is not the same as scene contraction
factor used in synthetic experiments, value 0 still means the scene is completely
flat, but the maximum is different for each dataset.

It is important to realize that in practice only few iterations of BA are allowed
for the sake of performance and therefore the scene collapses gradually as new
cameras are added and BA step is repeated. For small datasets with only small
number of BA steps (up to 20 cameras) the deformation was not so apparent but
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Fig. 6. Reconstructions using SfM pipeline for unorganized RS images. (Left) Horizon-
tal image set sample and its reconstruction below. (Middle) Vertical image set sample
and its reconstruction next to it. (Right) Reconstruction from both horizontal and
vertical images. Notice the deformations when only one image direction is used. Two
perpendicular directions provide correct results.
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it was extremely critical in larger datasets. When three distinct image readout
directions were present in the dataset, we did not notice any deformation of the
model caused by the RS pipeline compared to the GS pipeline, which confirms
our predictions.

Even more important, however, are the experiments with two distinct read-
out directions (horizontal+vertical), which also do not show any deformation
compared to the baseline GS reconstruction. This shows that in practice having
horizontal as well as vertical images of the scene should be sufficient to success-
fully reconstruct the scene using RS pipeline. We show the results in (a rather
complex) Fig. 6.

6 Conclusion

We tackled the topic of SfM with RS cameras. Recent works have shown that
accounting for the camera movement in RS images can greatly improve the
result and presented several practical RS camera models. We show that such
models when used without constraints on the camera motion lead to incorrect
reconstructions.

We analyzed the cases in which incorrect reconstruction arises and the rea-
sons why it is so. We prove that any two perspective images can be explained
by the linearized RS camera model and a planar scene. Further we prove that
a set of images taken with parallel readout directions that can be explained by
perspective cameras can also be explained by RS cameras and a scene all lying in
a single plane. Moreover, we prove that the reprojection error is always reduced
in such a case and, therefore, BA tends to prefer such solution.

This is a consequence of the linearized rotation being a mere projection on
a plane. Since the linearized rotation model is a close approximation to all the
other models it is expected that the other models will exert similar effects in
BA. We have observed this both in synthetic and real data.

We show that in order to obtain a correct reconstruction using unconstrained
RS SfM pipeline the input images should be captured with different readout
directions. Synthetic experiments suggest that for 3 or more cameras, the mini-
mal mutual angle between the readout directions should be at least 30 degrees.
The experiments on real data confirm our predictions and in addition show that
having two image sets with perpendicular readout directions is enough to obtain
a correct reconstruction using SfM pipeline with the RS camera model.
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