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We propose a real-timemulti-view landmark detector based on Deformable Part Models (DPM). The detector is
composed of a mixture of tree based DPMs, each component describing landmark configurations in a specific
range of viewing angles. The usage of view specific DPMs allows to capture a large range of poses and to deal
with the problem of self-occlusions. Parameters of the detector are learned from annotated examples by
the Structured Output Support Vector Machines algorithm. The learning objective is directly related to the
performance measure used for detector evaluation. The tree based DPM allows to find a globally optimal
landmark configuration by the dynamic programming.Wepropose a coarse-to-fine search strategywhich allows
real-time processing by the dynamic programming also on high resolution images. Empirical evaluation on “in
the wild” images shows that the proposed detector is competitive with the state-of-the-art methods in terms
of speed and accuracy yet it keeps the guarantee of finding a globally optimal estimate in contrast to other
methods.

© 2016 Elsevier B.V. All rights reserved.
Keywords:
Deformable Part Models
Structured output SVM
Facial landmarks detection
1. Introduction

The detection of facial landmarks in images is a crucial step in many
computer vision applications involving faces. For example, the land-
mark positions are used for alignment and normalization of face having
substantial impact on the overall accuracy of face recognition systems
estimating e.g. age, gender or identity (for example [1,2]).

In this paper, we propose a real-timemulti-view landmark detector
based on Deformable Part Models (DPM) [3,4]. An exemplary output of
the proposed detector is shown in Fig. 1. The detector is composed of a
mixture of tree based DPM, each component describing landmark
configurations in a specific range of viewing angles. The usage of view
specific DPM allows to capture a large range of poses and to deal with
the problem of self-occlusions. The estimation of the viewing angle
and the landmark position is done simultaneously by a structured
output classifier. The inference problem can be solved globally by the
dynamic programming, hence the detector's output is independent on
an initial estimate in contrast to majority of other methods. Parameters
of the DPM based structured classifiers are learned from annotated
examples by the Structured Output SVM algorithm [5]. The objective
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function of the learning algorithm is directly related to the performance
measure used for detector evaluation. In order to obtain a real-time
detector, we use several speedups. First, we use tree based shape
model defined by separable pair-wise potential functions which allows
to decrease the computational complexity of the dynamic programming
procedure from quadratic to linear in terms of the number of landmark
positions via employing the distance transform [6]. Second, we propose
to use the MIPMAP technique [7] for fast computation of features used
by the local landmark classifiers. Third, we propose a coarse-to-fine
strategy in order to reduce the size of the search space on higher resolu-
tion images. Evaluation on the challenging “Annotated Faces in the
Wild” (AFLW) database [8] and 300-W dataset shows, that the
proposed detector achieves competitive localization error compared to
the current state-of-the-art detectors [9–13], yet it keeps the guarantee
of finding a globally optimal estimate.

The proposed detector significantly outperforms the detector of [9],
on which we build our approach. The authors of [9] propose a multi-
view tree based DPM detector, which simultaneously estimates face
locations, landmark positions and viewing angles. The conceptual
difference to our method is the objective function optimized by the
learning algorithm. Their learning algorithm is a variant of a two-class
Support Vector Machines [14] which, in this application, optimizes the
detection rate of resulting face detector while the landmark positions
serve only as latent variables not appearing in the loss function. In
contrast, our method based on the Structured Output SVMs optimizes
directly the average landmark localization error, being the evaluation
metric of landmark detectors. Using the proper learning objective
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Fig. 1. The exemplary output of the proposed detector. The red dots represent the estimated landmark positions. The blue lines show the underlying graphical structure of the landmark
configuration for a given view. A rough estimate of the viewing angle is shown in the yellow boxes at the top.
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function leads to a significant improvement in the localization accuracy,
as we demonstrate empirically.

The contributions of this paper are as follows:

• We treat the multi-view landmark detection as an instance of
the structured output classification problem. The parameters of the
detector are learned from examples by the Structured Output SVM
algorithm [5]. Unlike the existing related method [9], the objective
function of the learning algorithm is directly related to the perfor-
mancemeasure commonly used for evaluation of landmark detectors.

• We implemented a coarse-to-fine strategy to decrease the computa-
tional complexity of the inference procedure based on the dynamic
programing. The proposed strategy allows to keep a real-time perfor-
mance of the proposed detector when it estimates a dense set of
landmarks (for example 68 landmarks on the 300-W benchmark)
on high resolution images.

• We propose to speed up the evaluation of a dense local feature
descriptor via representing the base features (in our case Local Binary
Patterns [15]) computed inmultiple scales in the form ofMIPMAP [7].
The MIPMAP representation avoids repetitive evaluation of the base
features which significantly decreases the evaluation time without
increasing the localization error.

• We experimentally show that a well tuned tree based DPM landmark
detector with the guarantee to find globally optimal estimate is
comparable in speed and accuracy to other methods using more
complex shape models and local optimization strategies like [10–13].

This paper combines the results of our previously published confer-
ence paper [16] and a workshop paper [17]. In addition, this paper
proposes a coarse-to-fine search strategy which is necessary for the
estimation of a dense landmark sets in higher resolution images, such
as images appearing in the 300-W competition.

The paper is organized as follows. Related work is discussed in
Section 2. The proposed detector and its learning is described in
Section 3. The coarse-to-fine strategy is outlined in Section 4. The
experimental evaluation is given in Section 5. Finally, Section 6
concludes the paper.

2. Related work

2.1. Generative methods

The generativemethods build a holistic parametricmodel of the face
appearance. The shape and the texture are both represented by linear
models learned from a set of aligned faces by the Principal Component
Analysis. Fitting the generative model amounts to minimizing the
error between the input image and the closest synthetic image
generated by the model. Although the shape and the texture are
described by linear models, the error function is highly non-linear
with respect to the unknownposes and shape parameters. The resulting
non-linear minimization problem is solved by iterative descent
methods, finding a local optimum quality of which highly depends on
an initial estimate. Among the most popular generative methods
applied to facial landmark detection belong the Active Appearance
Models (AAMs) [18,19] and the Morphable Models [2].

2.2. Discriminative methods

The discriminative methods learn predictors directly estimating
pose, shape or the landmark positions from features computed on the
input image. The advantages of the discriminative methods are their
conceptual simplicity and a low test time. Nowadays, the most popular
discriminative approach is a cascade of regressors, that were considered
for example in [12,20,21]. Starting from an initial estimate, each regres-
sor refines prediction of the previous one. The prediction in each stage is
based on simple features extracted from patches located at positions
determined by the output of the previous stage. Besides 2D landmark
positions, [11] shows that the cascade of regressors can also accurately
estimate pose and shape of a 3D face model. [22,23] proposed to use
regression to estimate parameters of the AAMs. Regression methods
combined with probabilistic graphical models were proposed in [24,25].
The graphical model is used to aggregate estimates of stochastically sam-
pled local regressors into a single robust prediction.

2.3. Deformable Part Models

The Deformable Part Models perform alignment by searching the
most likely configuration of local parts. The objective is to maximize
the correlation of local parts with the image, simultaneously with the
plausibility of their joint geometrical configuration. Instances of the
DPM differ in shape model and optimization method used for fitting
the model parameters. The Constrained Local Models (CLM) [13,
26–29] employ the holistic PCA shape model like the AAMs. While
[26] uses a generic optimizationmethod, theworks [13,27–29] propose
optimization strategies tailored for specific models, which the methods
use. For example, [29] proposed a non-parametric representation of the
likelihood of landmark configurations and an optimization method
resembling the mean-shift algorithm. Unlike the CLM, the Active
Shape Models (ASMs) [30] separate the correlation of the local parts
with the image and the regularization via a global PCA shape model
into separate processes.

A specific category addressed in this paper are the DPM using a tree
based graphical model to encode the shape prior [3,4]. The tree based
DPM use relatively weak shape prior which can possibly result to
anthropologically implausible landmark configurations. On the other
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Fig. 2. The acquisition of the normalized frame. Blue box is a detection as provided by the
face detector, red box is the detection box enlarged by a defined margin. The similarity
transformation (removing the possible in-plane rotation and scaling the image to a fixed
size) is applied on the red box and the normalized frame is obtained.
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hand, the weak shape prior requires less shape variation in the training
examples and, most importantly, it allows to find the globally optimal
landmark configuration bydynamic programming. The global optimiza-
tion makes the method independent of an initial estimate which is the
biggest advantage over other approaches. In addition, a mixture of
DPM allows to model a large range of view angles in a principled way.
A notable disadvantage is the high computational demand connected
with the search for a globally optimal solution. The model parameters
are typically trained from annotated examples by discriminative
approaches [9,16], however generative methods can be used as well
[31].

3. The proposed multi-view landmark detector

The tree based DPM approach [3,4,9,32] translates the estimation of
landmark positions into an energy minimization problem. We follow
this scheme by introducing a scoring functionwhich is to bemaximized
w.r.t. the landmark positions and the viewing angle. The shapemodel is
represented by an undirected graph G=(V,E), where V is a finite set of

vertices representing the landmarks and E⊂
�
V
2

�
is a set of edges

between pairs of landmarks, whose positions are related.1 Examples of
particular graphs used in the proposed detector are shown in Figs. 6
and 11.

Let I∈IH×W be a fixed-size image (denoted as the normalized frame
in the sequel), let ϕ∈Φ be a discretized yaw angle corresponding to a
particular view, let s=(s1,… ,s|V|-1)∈(H×W)|V| be a configuration of
landmark locations and, finally, let w denote the vector of parameters

composed of parameterswϕq
i ∈Rnϕqi andwϕg

ij ∈Rnϕgij (ni
ϕq and nij

ϕg
denote

the number of parameters) associated with the unary and pair-wise
potentials, respectively. Then, the scoring function and the proposed
detector h: IH×W→Φ×S, are defined as follows:

f I;ϕ; s;wð Þ ¼ ∑
i ∈ V

qϕi si; I;w
ϕq
i

� �
þ ∑

i; jð Þ ∈ E
gϕij si; s j;w

ϕg
ij

� �

h I;wð Þ ¼ arg max
ϕ ∈ Φ;s ∈ S

f I;ϕ; s;wð Þ: ð1Þ

The first part of the scoring function, denoted as the appearance
model, is composed of unary potentials qi

ϕ(si, I;wi
ϕq) measuring the

quality of the fit of individual landmark positions si, i∈V, to the image
I. The second part, denoted as the deformation cost, is composed of
pair-wise potentials gij

ϕ
(si,sj;wij

ϕg
) measuring the likelihood of the

mutual position of the connected pairs of landmarks.
The normalized frame, serving as an input of the detector, is

constructed from a response of a face detector. The face detector
provides an estimate of the position, the scale and the in-plane rotation
of the face. In order to compensate the imprecision of the face detector,
we extend the face box by a multiple of its size. Finally, we apply a
similarity transformation to obtain the normalized frame of a fixed
size. The process of preparing the normalized frame is illustrated in
Fig. 2.

The landmark configuration s is restricted to be from a predefined
area,s ∈ S ¼ S0 �…� SjV�1j, whereSi ⊂ f1;…;Hg � f1;…;Wgdenotes
the search space of the i-th landmark serving as a hard constraint on the
landmark location.

3.0.1. Appearance models
The appearance model is a linearly parameterized function

qϕi si; I;w
ϕq
i

� �
¼ wϕq

i ;Ψϕq
i I; sið Þ

D E
; ð2Þ
1 The notation
�
V
2

�
means a set of edges of a fully connected graph with nodes V.
where Ψϕq
i ðI; siÞ : I � Si→ℝnϕqi denotes a feature descriptor of a patch

cropped from the image I around the position si. Our approach allows
to use an arbitrary feature descriptor. We have experimented with
several descriptors including normalized intensity values, their
derivatives and HOGs [33]. In the experiments, we use the multi-scale
pyramid of Sparse Local Binary Patterns (S-LBP) [34,16], mainly
because of a favorable trade-off between the speed and the resulting lo-

calization accuracy. The weight vectors wϕq
i ∈Rnϕqi , i∈V, are learned

from examples.
The S-LBP descriptor evaluates standard 3×3 Local Binary Pattern

(LBP) [15] in each position of the original patch. Each 8bit LBP code
is represented by a binary vector composed of all zeros and a single
one, whose position is determined by the LBP code. Then the patch is
downscaled by a factor of two and the LBPs are computed again in all
positions. This process is repeated until the resolution of the down-
scaled patch is below 3×3 pixels. The resulting sequence of binary
vectors is concatenated to a column vector forming the final descriptor.
The resulting sparse high-dimensional S-LBP descriptor can be
best represented by indices of its components equal to one. To give
an example of its dimensionality, let us consider a patch of size
15×15 pixels. The number of all 3×3 pixels sub-windows in all levels
of the scale pyramid is 13×13+5×5+1×1=195. Since each LBP
is represented by a 256-dimensional binary vector, the resulting
descriptor has ni

ϕq
=195 ⋅256=49,920 components.

Finding the optimal landmark location requires computation of the
S-LBP features in patches centered in all searched positions. A naïve
implementation results in a large number of repetitive evaluations of
the base LPB feature descriptor since the search patches are highly over-
lapped. We propose to pre-compute the base LBP in all scales of the
entire normalized frames. The resulting LBP codes are represented
in the form of MIPMAP [7], which allows efficient indexing of corre-
sponding features in different scales. The final S-LBP descriptor is
then compiled from the MIPMAP on the fly (See Fig. 3.). This approach
makes the feature computation independent of the number of sought
landmarks (assuming that the computational demand of feature compi-
lation can be neglected), leading to about 40% speedup compared to the
naïve implementation. More importantly, this approach allows us to
share the pre-computed features among different views making the
final structured classifier only sub-linearly slower compared to the
naïve strategy evaluating individual DPM detector from a scratch.
Note that the feature descriptor evaluated via the MIPMAP representa-
tion is not exactly the same as the original S-LBP descriptor. Using the
MIPMAP representation leads to skipping some base LBP features com-
puted in lower scales, however, we found that it has no impact on the
detectors accuracy.

Image of Fig. 2
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Fig. 3. Features are pre-computed in all positions and scales of the normalized frame and stored in form of aMIPMAP. The final S-LBP descriptorΨi
ϕq(I,s) is compiled from theMIPMAP on

the fly by stacking the corresponding features.
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3.0.2. Deformation costs
The deformation cost is also a linearly parametrized function

gϕij si; s j;w
ϕg
ij

� �
¼ wϕg

ij ;Ψϕg
ij si; s j
� �D E

; ð3Þ

where Ψϕg
ij ðsi; s jÞ : Si � S j→Rnϕg

ij , which similar to [4], is defined as a

quadratic function of the displacement vector, namely,

Ψϕg
ij si; s j
� � ¼

δx
δy
δx2

δy2

2
664

3
775; where δx

δy

� 	
¼ si−s j ¼ xi−yi

x j−yj

� 	
: ð4Þ

The nij
ϕg=4-dimensional parameter vectors wϕg

ij ∈Rnϕgij , (i, j)∈E, are

learned from examples.
The main advantage of having the deformation cost in the form of a

separable quadratic function is the possibility to use the distance trans-
form [6] to solve the max-sum problem (1) in time depending linearly
on the number of searched positions. The only requirement for applica-
tion of the distance transform is the concavity of the functions gij

ϕ. By
examining the principal minors of the matrix form of gij

ϕ, we see that
this can be enforced by linear constraints involving wij

ϕg. In particular,
we need to keep the 3rd and the 4th components of all 4-dimensional
vectors wij

ϕg, (i, j)∈E, negative. We denote the corresponding set of
indices of the 3rd and the 4th components of wij

ϕg, (i, j)∈E, within the
joint parameter vector w by symbol J�.

3.1. Learning of parameters of the detector by the SO-SVM algorithm

Thanks to the used parameterization of the unary and pair-wise
potentials, the proposed DPM detector (1) is an instance of a linear
classifier. Therefore we can learn the parameters by the SO-SVM
framework [5]. The joint parameter vector w to be learned is given by a
concatenation of parameter vectors of individual appearance models
wi

ϕq, i∈V, as well as parameter vectors of all deformation costs wij
ϕg,

(i, j)∈E. We define a joint feature map Ψ(I,ϕ,s) as a concatenation of
the feature maps Ψi

ϕq(I,si), i∈V, and Ψij
ϕg(si,sj), (i, j)∈E. It is seen that

with these definitions, the scoring function of the detector (1) can be
written as a dot product of the joint parameter vector and the joint
feature map, such that f(I,ϕ,s;w)=〈w,Ψ(I,ϕ,s)〉.
face
detector

C-DPM
detector

I face box landmarks

Fig. 4. The figure visualizes the proposed coarse-to-fine strategy used to improve localization acc
operates on a low dimensional image which is localized by a face detector. The resulting rough
localization allows to compute narrow search spaces of the F-DPM operating on higher resolut
The SO-SVM algorithm translates the learning of the parameter
vector of a linear structured classifier into the following convex program

w� ¼ arg min
w ∈ ℝn

F wð Þ :¼ λ
2

wk k2 þ 1
m

Xm
i¼1

ri wð Þ
" #

ð5Þ

s:t: wi ≤c�; i ∈ J�:

where ri(w) is a loss incurred by the classifier on the i-th training
example (Ii,ϕi,si) and λ

2 ∥w∥2 is a quadratic regularizer introduced to
prevent over-fitting. The optimal setting of the regularization constant
λN0 is tuned on a validation set. Recall, that the inequality constrains
are used to ensure the concavity of functions gij

ϕ
. To this end, we set c�

to a small negative constant. The loss ri(w) is the margin-rescaling
convex proxy (c.f. [5]) of the true loss Δϕ ,s(ϕ,s,ϕ',s') and it reads

ri wð Þ ¼ max
ϕ∈Φ;s∈S

Δϕ;s ϕ; s;ϕ0; s0
� �þ w;Ψ Ii;ϕ; s

� �D E
− w;Ψ Ii;ϕi; si

� �D Eh i
:

ð6Þ

The form of the true loss Δϕ ,s(ϕ,s,ϕ',s') is discussed later in
Section 3.1.1. Evaluation of the proxy loss ri(w) amounts to running
the classifier with the scoring function augmented by the true loss
Δϕ ,s(ϕ,s,ϕ',s').

We solve the problem (5) approximately by the Bundle Methods for
Regularized Risk Minimization (BMRM) algorithm [35], which we have
slightly modified to accept the inequality constraints on w. The BMRM
algorithm is outlined in Algorithm 1. The core idea is to approximate
the original hard problem (5) by a reduced problem

w� ¼ arg min
w ∈ Rn

Ft wð Þ :¼ λ
2
∥w∥2 þ rt wð Þ

� 	
ð7Þ

s:t: wi ≤c�; i ∈ J�;

whose objective function Ft(w) is obtained by replacing the risk term
rðwÞ ¼ 1

m∑m
i¼1 riðwÞ by its cutting plane model

rt wð Þ ¼ max
i¼0;1;…;t�1

r wið Þ þ r0 wið Þ;w �wih i½ � ð8Þ
face box
correction

F-DPM
detector

face box landmarks

uracy and to keep the processing time of the DPMbased detector low. The C-DPMdetector
estimate of the landmarks helps to obtain a corrected face localization. The corrected face
ion images.
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Fig. 5. A few examples of the corrected face box computed from the response of the C-DPM. The original face box detected by face detector is green, the corrected face box is blue. The
landmark positions predicted by C-DPM and used for the face box correction are depicted in magenta color.
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where r0ðwiÞ ∈Rn denotes a sub-gradient of r(w) evaluated atwi ∈Rn.
Starting from an initial guess w0=0, the BMRM algorithm computes
a new iterate wt by solving the reduced problem (7). In each iteration
t, the cutting plane model (8) is updated by a new cutting plane
computed at the intermediate solution wt leading to a progressively
tighter approximation of F(w). It was proved, that the BMRM
converges to an ϵ-precise solution satisfying F(wt)≤F(w⁎)+ε in Oð1ϵÞ
iterations for arbitrary ϵN0. The BMRM accesses the objective
via the first order oracle, which for a given query wt evaluates
r(wt) and the sub-gradient r ' (wt). Components of the sub-gradient
r0ðwtÞ ¼ 1

m∑m
i¼1 r0 iðwtÞ can be computed by the Danskin's theorem

(see e.g. [36]) as follows:

r0 i wtð Þ ¼ Ψ Ii; ϕ̂; ŝ
� �

�Ψ Ii;ϕi; si
� �

;

where

ϕ̂; ŝ
� �

¼ arg max
ϕ ∈ Φ;s ∈ S

Δϕ;s ϕ; s;ϕ0; s0ð Þ þ w;Ψ Ii;ϕ; s
� �D Eh i

:

The BMRM translates the original problem (5) to a sequence of
reduced problems (7). The reduced problem can be expressed as an
equivalent convex quadratic program, the dual form of which has only
(a) (b

Fig. 6. The underlying graph structure of individual view-specific detectors, depicted for positi
circles, edges by black arrows connecting them. Each vertex is denoted by its identification nu
solve the inference problem globally by the dynamic programming. The root vertex is repre
occluded landmarks with their incident edges are removed in non-frontal cases.
t variables. Hence the reduced problem is amenable by off-the-shelf
QP solvers. The computational bottleneck is the evaluation of risk r(w)
and its sub-gradient r ' (w). Fortunately, both quantities are sums of
simpler terms, hence their evaluation can be efficiently parallelized.

Algorithm 1. BMRM algorithm.
3.1.1. Loss function
The learning algorithm (5) optimizes a convex surrogate of the true

loss Δϕ ,s(ϕ,s,ϕ',s'). The loss Δϕ ,s(ϕ,s,ϕ',s') is designed to measure a
) (c)

ve viewing angles (negative views are mirrored). The vertices are represented by the red
mber and the name of the corresponding landmark. All graphs are trees which allows to
sented by the blue square. Note that the core of all graphs is the same and just the self-

Image of Fig. 5
Image of Fig. 6
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Fig. 7. Cumulative histograms of the average localization error measured on the testing subset of the AFLW dataset. The localization error is normalized by the face height computed as a
distance between the root of the nose and the chin. Individual sub-figures contain error measured on a subset of test images with the ground truth yaw in a corresponding range.
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discrepancy between the true and the estimated landmark positions on
a given training example. We define the loss function as follows

Δϕ;s ϕ; s;ϕ0; s0
� � ¼ κ sð Þ 1

Vj j
X Vj j

j¼1
∥s j−s0 j∥; if ϕ ¼ ϕ0

1; otherwise;

8<
: ð9Þ

where the normalization constant κ(s) is a reciprocal to the inter-ocular
distance or the distance between the root of the nose and the chin. The
inter-ocular distance is a common normalization suitable for near-
frontal faces. For large yaw angles the inter-ocular distance goes to
zero in which case the root of the nose to chin distance, independent
to yaw angle, seems to be a better choice. We use both mentioned
normalization constants in experiments. For details see Sections 5.1.1
and 5.3.1.
The penalty for confusing the viewing angle is set to 1, which is
much larger value than an acceptable localization error. In turn, the
loss function penalizes mistakes in the viewing angle more than the
landmark misplacement. Note also that the loss Δϕ ,s(ϕ,s,ϕ',s') is non-
negative and 0 iff (ϕ,s)=(ϕ',s') as commonly required by the SO-SVM
framework.

3.2. Inference problem

Evaluation of the detector (1) amounts to solving an instance of
the max-sum problem for each view ϕ separately and then taking the
landmark configuration with the overall highest score. A tractability of
the max-sum problem depends on the graph G. While our framework
does not limit the graph structure, for the sake of speed we set the
graph G to be a tree. In this case the global solution can be found in
polynomial time by the dynamic programing. For a general graph the

Image of Fig. 7


Examples with low localization error E loc ≈ 5%

Examples with misclassified yaw E loc = ∞

Fig. 8. Exemplary images from the AFLW testing set with the average localization error not higher than Eloc≈5% (top), andwith themisclassified yaw angle Eloc=∞ (bottom). The yellow
box represents face detection as provided by the face detector (i.e. the input of proposed detector), the discretized yaw category is written on the top edge of the face box. The landmarks
are denoted by red crosses. The underlying graph corresponding to the yaw category is shown by blue lines connecting landmarks.
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Fig. 9.Cumulative histogramsof the average localization errormeasured on the testing subset of theMulti-PIE dataset. The localization error is normalizedby the face height computed as a
distance between the root of the nose and the chin. Individual sub-figures contain error measured on a subset of test images with the ground truth yaw in a corresponding range.
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max-sum problem is known to be NP-hard. The dynamic programing
solver proceeds as follows. The graph is topologically sorted so that
the root landmark is evaluated last. Then the leafs are evaluated (that
is, the maximizing label is found for each possible label in the adjacent
node) and cut away from the graph. The same evaluation procedure
propagates till the root landmark is solved. The evaluation in the root
landmark provides the optimal value and the optimal landmark
position at the root. The remaining landmark positions are obtained
by backtracking. For more details see e.g. [37].

The computational time required by a plain dynamic programming
scales quadratically with the number of searched landmark positions
(given by S0 �⋯� SjV−1j) and linearly with the number of landmarks.
This starts to be impractical for high resolution normalized frames and a
dense set of landmarks, which is the case of the 300-W challenge. To
alleviate the problem, we use the generalized distance transform
(DT) [6], whose computational time scales only linearly with the num-
ber of landmark positions. The DT exploits the fact that the pair-wise
potentials are concave separable functions of the x and y coordinates.
This allows to perform the maximization over a grid search space by
effectively maximizing over x and y coordinates separately. For more
details on the distance transform we refer to [6].

The DT can be also used in evaluation of the loss ri(w) and its sub-
gradient r'i(w), which is the computational bottle-neck of the BMRM.
Note that the BMRM maintains the non-negativity constraints neces-
sary for the application of the DT during the whole course of the
algorithm. The usage of DT leads to a substantial speed-up of the
learning procedure. Detailed experimental evaluation of speed-ups
due to the usage of DT is discussed in Section 5.2.

Image of Fig. 9
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Fig. 10. Cumulative histograms of the view insensitive average localization errormeasured on the near-frontal examples of testing subsets of AFLW andMulti-PIE. The localization error is
normalized by the face height computed as a distance between the root of the nose and the chin.
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4. Coarse-to-fine strategy to speed up DPM detector

A practical limitation of the DPM detectors is their computational
cost scalingwith the size of the search spaces of the individual landmark
positions, Si , i∈V. The size of the search space is a function of the
resolution of the normalized frame and the a priori knowledge of
the landmark's position. The a priori landmark position depends on
the accuracy and robustness of the used face detector. That is, an impre-
cise localization provided by the face detector has to be compensated by
a large search space, in order not to miss the correct landmark position.
Fig. 11. The underlying graph (V,E) of the proposed DPM detector used on the 300-W
benchmark. The C-DPM and the F-DPM detectors use the same graphs. The nodes V are
denoted by the red circles (root node is the blue square) while the edges E are shown as
black arrows.
The search is done in the normalized frame and the found landmark
location is projected into the original image. Therefore the resolution
of the normalized frame lower bounds the accuracy of the landmark
localization. In turn, improving localization accuracy increases the
search time.

To alleviate the problem, we propose a coarse-to-fine strategy
(denoted also as C2F-DPM) with two stages. In the first stage, we use
a DPM detector, denoted as C-DPM, which operates in a low-resolution
normalized frame. The output of the C-DPMdetector is used to compute
a better estimate of the face location than the one provided by the face
detector. Hence, the C-DPM detector serves as a precise face detector. In
the second stage we apply a DPM detector, denoted as F-DPM, which
searches for the landmarks in a high resolution normalized frame. The
initial estimate by the C-DPM allows to set much smaller search spaces
in the high resolution normalized frame of the F-DPM detector without
a danger of overlooking the landmarks. The scheme of the proposed
coarse-to-fine strategy is outlined in Fig. 4.

The precise face box used to initialize F-DPM is constructed from the
response of the C-DPMdetector as follows. The center of the precise face
box is computed as the mean of the estimated landmarks. Then the
centers of both eyes Cl ,Cr are computed (again as the mean position of
the corresponding estimated landmarks). The size of the precise face
box is defined as 2.7 ⋅ ∥Cl-Cr∥2. Finally, the in-plane rotation of the
precise face box is computed as the deviation of the (least squares
optimal) line l fitted to the eyes landmarks and the x-axis. A few
examples of the corrected face box are depicted in Fig. 5.
5. Experiments

We split the experiments into two parts. In the first part, Section 5.1,
we evaluate the proposed multi-view landmark detector on the AFLW
[8] and Multi-PIE [38] datasets. These experiments demonstrate the
ability to estimate landmarks robustly in a large range of viewing angles.
The measured timing statistics are summarized in Section 5.2. In the
second part, Section 5.3, we evaluate the detector on the public part of
the 300-W [39,40] datasets and we also present results on the non-
public test set obtained from the organizers of the 300-W competition.
The experiments in the second part evaluate the ability of the detector
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Fig. 12. Cumulative histograms of the average localization error evaluated on the public test images of the 300-W dataset. (a) Shows results for the proposed C2F-DPM detector and the
compared methods. (b) Depicts the localization error of the F-DPM detector initialized by different approaches (see description in the text).
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to estimate a dense set of landmarks from near-frontal faces in high
resolution images.

5.1. Multi-view experiments

5.1.1. Implementation details of the proposed multi-view detector
We discretize the viewing (yaw) angle as follows Φ={-profile,

-half-profile, frontal, half-profile, profile}. For each view we detect a
different number of landmarks visible from the given range of yaw
angles. The particular ranges of the yaw angles and the corresponding
number of estimated landmarks are listed in Table 1. The underlying
graphs Gϕ=(V,E) of the DPM for individual views are depicted in Fig. 6.

The size of the normalized frame is set to 60×60 pixels, which
provides sufficient localization accuracy for the AFLW dataset. Since
the normalized frame has a relatively small resolution, we do not use
the coarse-to-fine strategy in this experiment. A face box found by the
face detector is enlarged by a factor of 1.5 and the enlarged box is
affinely transformed into the normalized frame. In particular, we use a
commercial implementation2 of theWald-Boost face detector proposed
in [41]. In the casewhen the face detector fails tofinda face, thedetector
returns empty set symbols (s=∅,ϕ=∅) to denote the failure
(c.f. definitions of the evaluation metrics in Section 5.1.2). We use the
S-LBP features computed by the MIPMAP for the appearance models
(2). Each landmark's descriptor was computed from a patch of size
9×9 pixels except for the root landmark, the tip of the nose, which
used a bigger patch of 15×15 pixels. As the deformation cost (3) we
use a separable quadratic function of the displacement vector as defined
in Eq. (4). This leads to the overall dimensionality of the joint parameter
vector w ∈Rn equal to n=1,335,360. As the normalization factor κ(s),
present in the true loss (9), we use the face size computed as the
distance between the root of the nose and the chin (namely, the
distance ∥s09-s21∥ using the notation from Fig. 6).

The entire learning procedure composed of tuning the regularization
constant λ took around 5 days on a machine with a 12 cores CPU.

5.1.2. Datasets and the evaluation protocol
We use the AFLW [8] database for both training and evaluation and

the Multi-PIE [38] database just for the evaluation. Both datasets come
2 Courtesy of Eyedea Recognition Ltd., http://www.eyedea.cz/.
with annotation of 21 facial landmarks (see Fig. 6(a)). We used a subset
of 12,525 images from the Multi-PIE for which we have precise ground
truth annotation. The original AFLWdatabase consists of 24,686 images,
however, the annotation of a large number of images is either
inconsistent (confused landmarks) or imprecise. In order to correct
the annotation, we fitted a 3D face model proposed in [42] to the
manually annotated landmarks. The projected landmarks of the 3D
model were then manually inspected and corrected when necessary.
The process reduced the number of images to 21,688 (mainly due to
failures of the face detector involved in the semi-automatic annotation
procedure), but it significantly improved the quality of ground truth
annotation.

We randomly selected ≈25% of images for training, ≈10% for
validation and ≈65% for testing. The number of training examples is
relatively small taking into account the number of model parameters,
which is dim(w)=1,335,360. Surprisingly, the test accuracy of the
learned detector is quite high, which we attribute to the generalization
ability of the SO-SVM algorithm.

Once the joint parameter vector w is learned, we evaluate the
detector on the hold out test examples. For the evaluation we use
three metrics, namely, the average localization error Eloc (sometimes
also called point-to-point error), the yaw misclassification rate Eyaw
and the face detector error Efd defined as follows

Eloc ϕ; s;ϕ�; s�ð Þ ¼
κ sð Þ
jV j ∑

jV j

j¼1
∥s j � s�j∥; if ϕ ¼ ϕ�

∞; if s ¼ ∅ or ϕ ≠ϕ�

8><
>: ð10Þ

Eyaw ¼ 1
m

Xm
i¼i

〚ϕi ≠ϕ
�
i 〛; ð11Þ

Efd ¼ 1
m

Xm
i¼i

〚ϕi ¼ ∅〛; ð12Þ

where the brackets 〚⋅〛 denote the Kronecker delta, (ϕi,si) is the
detector response on the i-th test image and (ϕi

⁎,si⁎) denotes the ground
truth annotation. We report the cumulative histogram of the average
localization error Eloc and the single number statistics Eyaw, Efd. Since
most of the competing detectors come with their own integrated face

http://www.eyedea.cz
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Fig. 13. (a) Shows comparison of the proposed detectors on all four test datasets. Results on non-profile facial images of the AFLW and the Multi-PIE are processed by the multi-view
detector estimating 21 landmarks. Results on the public and the non-public part of the 300-W are obtained by the C2F-DPM detector estimating 51 landmarks. (b) Shows difference in
the localization accuracy evaluated on all 68 landmarks compared to the subset of 51 landmarks not containing the contours.
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detectors, we cannot separate contributions of the face detector failure
from the definition of the evaluation metrics. That is, a face detector
failure incurs maximal localization error Eloc as well as the yawmisclas-
sification error Eyaw.

To avoid a possible confusion of the reader and to make the
evaluation comparable with previous works, we also introduce the
view insensitive average localization error Eloc2 defined as

Eloc2 s; s�ð Þ ¼ κ sð Þ
Dj j

XDj j

j

∥s j−s�j∥: ð13Þ

In contrast to (10), Eloc2(s,s⁎) does not penalize themisclassification
of the viewing angle and it computes the point-to-point error only for
the set of detected landmarks (denoted as D). The error Eloc2(s,s⁎)
has been the standard evaluation metric used so far, however, it is not
suitable for evaluation of truly multi-view detectors which may return
different sets of landmarks depending on the viewing angle like the
proposed one (e.g. more landmarks are visible for frontal view than
for the profiles).

Since we consider the speed of the detector as its important aspect,
we measure timings for all stages of the proposed detector and provide
a comparison to other methods.

5.1.3. Competing methods
In this section we describe a list of existing methods against which

we compare the proposed detector. Namely, we compare to the tree
based DPM detector of Zhu & Ramanan [9], which is the most related
to our work. Despite a relatively low localization accuracy, it is up to
our best knowledge the only publicly available detector working in
Table 1
The discretization of the viewing angle (yaw).

Viewing angle names (ϕ∈Φ)
-profile -half-profile frontal half-profile profile

Viewing angle ranges
(-110∘ , -60∘] (-60∘ , -15∘] (-15∘,15∘) [15∘ ,60∘) [60∘ ,110∘)

Number of landmarks detected in ϕ
13 19 21 19 13
the full range of the yaw angle. We also compare against the IntraFace
[10] detector, considered to be the current state-of-the-art in both
precision and speed, the detector of Kazemi & Sullivan [12], Gauss-
Newton Deformable Part Models (GN-DPM) [13], and Chehra [11]. In
addition, we evaluate a baseline tree based DPM detector composed of
a set of independent view-specific detectors in order to demonstrate
the advantage of the proposed structured output model.

To have a fair comparisonwith the competingmethods, we crop the
test images around the face box enlarged by 30%. This should minimize
the dependency on a specific face detector used by the competing
approaches. We also consider only a subset of landmarks common to
all methods. In particular, the common subset contains 18 landmarks
for the frontal view, leaving out the landmarks representing ears and
chin (see Fig. 6a). Not all of the competing methods are capable of
estimating the viewing angle. In such case, we use the head pose
estimator based on fitting a 3D model to the estimated landmarks
[43]. The estimated yaw is then rounded to the intervals defined in
Table 1.

5.1.3.1. Independent detectors. To show the benefits of the proposed
multi-view detector simultaneously estimating the view angle and the
landmark locations, we use the following baseline approach. We learn
a set of independent single-view DPM detectors, each for a different
view ϕ∈Φ. The particular single-view detector is then selected based
on the response of the face detector providing a rough estimate of the
yaw ϕ. The individual single-view detectors have exactly the same
structure and use the same features as the proposed multi-view
detector.

5.1.3.2. Detector of Zhu & Ramanan [9].We use the code provided by the
authorswith the fully sharedmodel “p99”. This detector simultaneously
works as the face detector and detector of facial landmarks. The detector
returns 68 or 39 landmarks for the near-frontal or profile views, respec-
tively. The Zhu & Ramanan detector uses a part of the Multi-PIE
database for training, which is not consistent with our split. Hence the
corresponding results on the Multi-PIE dataset can be positively biased.

5.1.3.3. Chehra [11]. We use the implementation of the recently pub-
lished facial landmark detector provided by the authors. The detector
uses a cascade of discriminatively trained regressors estimating the

Image of Fig. 13
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pose and shape parameters of a 3D facemodel. The detectorwas trained
on the 300-W dataset [40]. The detector returns 49 landmarks.

5.1.3.4. IntraFace [10]. We use the code kindly provided by the authors.
This detector uses supervised descentmethod (SDM) learning a descent
direction from the training data in order to minimize an objective
function formulated as a non-linear least squares matching of the face
model to the image. It detects 49 landmarks. The detector comes with
an estimator of the yaw angle. The detector was learned on a subset of
Multi-PIE and LFW [44] datasets. Hence the results on the Multi-PIE
dataset can be positively biased, since we use a different split.

5.1.3.5. GN-DPM [13]. We use a code provided by the authors. This
detector is an instance of a generative DPM, where the optimization of
the appearance and global shape model is done simultaneously by the
Gauss–Newton algorithm. It detects 49 landmarks. The detector is
initialized from a response of the Zhu & Ramanan detector (using the
p204-Wild model). The detector was trained on the LFPW [45] dataset
being a part of the 300-W benchmark.

5.1.3.6. Kazemi & Sullivan [12]. We used the implementation from the
“dlib C++” library. This detector is based on a gradient boosting of
ensemble of regression trees. It detects 68 landmarks. The detector is
trained on the iBUG dataset which overlaps with testing part of the
300-W benchmark. Hence we compare this method only on the AFLW
and Multi-PIE datasets.

5.1.4. Results
This section summarizes the comparison of the proposed landmark

detector with competingmethods on the AFLW andMulti-PIE datasets.
In Figs. 7 and 9, we show the cumulative histograms of the mean
localization error Eloc evaluated on the test images of the AFLW and
the Multi-PIE dataset, respectively. Besides statistics computed on all
test images, we also evaluate the detectors on subsets of test images
with a specified range of the ground truth yaw angle:

• near-frontal images with ϕ∈(-15∘,15∘)
• non-profile images with ϕ∈(-60∘,60∘)
• profile images with ϕ∈(-110∘, -60∘)∪(60∘,110∘)

Most of the detectors are not trained or designed for the full range of
yaw angle and thus they fail on the profile images. For this reason, we
show results on the profile subset only for the proposed detector, the
baseline independent DPMdetector and thedetector of [9], all operating
in the full range of yaw angle. In Table 2, we also show the yawmisclas-
sification error Eyaw and the face detector error Efd on the non-profile
images.

The results demonstrate that the proposed detector has consistently
good localization accuracy in all views. For near-frontal and non-profile
faces, the proposed detector does not provide the smallest localization
Table 2
The yaw mis-classifications error Eyaw and the face detector error Efd for non-profile
testing examples (that is, images with ground truth yaw in the range (-60∘,60∘)) from
AFLW and Multi-PIE datasets, respectively.

Database

Method

AFLW Multi-PIE

Efd Eyaw Efd Eyaw

Proposed 0.00% 23.61% 0.12% 22.27%
Independent detectors 0.00% 30.34% 0.12% 44.08%
Zhu & Ramanan [9] 35.60% 56.47% 0.12% 33.43%
CHEHRA [11] 25.30% 40.52% 19.99% 25.39%
IntraFace [10] 19.10% 32.76% 12.00% 28.01%
Kazemi & Sullivan [12] 20.57% 31.80% 10.68% 32.85%
GN-DPM [13] 19.05% 48.09% 0.13% 63.01%
error (Elocb0.075) with the highest frequency but it dominates the
other methods in the regime with a tolerable error (ElocN0.075). This
behavior is consistent over the AFLW and the Multi-PIE dataset. On
profile images, the proposed detector significantly outperforms the
only full multi-view competitor [9]. The proposed detector is also
consistently better than the baseline composed of independent DPM
detectors which demonstrates the benefits of using the structured
classifier over the independent estimate of the view and the landmark
locations.

The presented comparisons has the following limitations. The main
drawback is that the evaluation criteria Eloc combines the landmark
localization error with the face detector error Efd which, as can be seen
from Table 2, is non-negligible. Moreover, on the AFLW dataset our
face detector has 0% error because the same detector was involved in
the semi-automatic annotation procedure and hence the results of our
method are positively biased. This is not the case on the Multi-PIE
where, however, our face detector has also significantly lower error.
On the other hand, our method and the detector of [9], unlike other
competitors returning a single landmark set for all views, are addition-
ally penalized for the incorrect yaw estimates which also contributes to
the overall localization error Eloc (c.f. Eq. (10)). Another drawback is an
inconsistent training set used by differentmethod. Thementioned defi-
ciencies are mitigated by using the 300-W benchmark as described in
Section 5.3.

In order tomake our evaluation compatiblewith previousworks, we
also evaluate the methods using the view insensitive localization error
Eloc2. The cumulative histograms of Eloc2 obtained on the near-frontal
examples of the testing subset of both AFLW and Multi-PIE are shown
in Fig. 10. It is seen that if the set of landmarks to be estimated is
known a priori, the performance of all methods improves significantly.
The best performing method is the IntraFace on both datasets. The
results of the proposed DPM based detector remain competitive. For
completeness, Table 3 summarizes the count of intrinsic face detector
failures for each method, obtained on the near-frontal examples of the
testing subset of both AFLW and Multi-PIE. Note that our commercial
face detector is significantly outperforming all competitors, especially
on the AFLW database.

Fig. 8 shows exemplary outputs of the proposed detector on a
sample of test images from the AFLW dataset. We show both examples
with small localization error, Eloc≈5%, and the highest error, Eloc=∞,
that is, images on which the yaw estimate failed.

5.2. Timing

Table 4 presents average times required by competing methods to
process a single image. The time is measured on the cropped images
containing only the face in order to decrease time spent in the face
detector which is an integral part of the methods [10,9,12]. We do not
count initialization time and, if possible, we subtract the face detector
time [12].

The fastest among the compared methods is the independent DPM
detector using an external method for the yaw estimate. Otherwise,
the proposed DPM detector is consistently significantly faster (by an
Table 3
Count of face detector failures on AFLW & Multi-PIE databases for near-frontal testing
subset.

Database

Method AFLW Multi-PIE

Proposed 0/5663 0/3747
Independent detectors 0/5663 0/3747
IntraFace 705/5663 26/3747
Chehra 930/5663 48/3747
GNDPM 1050/5663 0/3747
Kazemi & Sullivan 932/5663 218/3747
Zhu & Ramanan 2002/5663 0/3747



Table 4
The average time (in seconds) requiredby competingmethods to process a single face.We
show themean and the standard deviation in seconds computed over the test images. The
results are computed separately for each dataset. The “proposed” stands for the multi-
view detector on the AFLW (first column) and the Multi-PIE (second column) dataset
and C2F-DPM detector on the 300-W dataset (third column), respectively.

Database

Method AFLW Multi-PIE 300-W

Proposed 0.011±0.005 0.012±0.002 0.1±0.02
Independent detectors 0.003±0.001 0.004±0.001 —
Zhu & Ramanan [9] 60.4±24.0 18.9±11.4 73.9±144.4
Chehra [11] 0.1±0.08 0.2±3.4 0.2±2.6
IntraFace [10] 0.05±0.1 0.03±0.01 0.1±0.2
Kazemi & Sullivan [12] 0.4±0.4 0.4±0.3 —
GN-DPM [13] 0.8±0.4 0.5±0.1 0.6±1.8
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order of magnitude at least) than the other methods on both AFLW and
Multi-PIE datasets.

The processing time required by individual stages of the proposed
detector is detailed in Table 5. It is seen that the computations are dom-
inated by the feature evaluation,which depends on the resolution of the
normalized frame and the size of the search space. On the other hand,
the MAX-SUM inference takes, thanks to the distance transform, less
than 20% of the overall time. To demonstrate the benefit of the distance
transform, we also show the time required by the MAX-SUM inference
when solved by a plain dynamic programming.

5.3. 300-W Experiments

5.3.1. Implementation details
The 300-W dataset contains near-frontal images with all 68 land-

marks considered to be always visible. Therefore in this experiment
we consider only the single-view variant of the DPM detector. On the
other hand, in contrast to the experiments on AFLW and Multi-PIE, we
estimate a dense set of 68 landmarks in images with considerably
higher resolution. The graph with landmark configuration is depicted
in Fig. 11. In order to keep the processing time of the detector reason-
ably low, we use the proposed coarse-to-fine search strategy, denoted
as C2F-DPM detector, with the following settings.

5.3.1.1. The coarse C-DPM detector. The size of normalized frame of the
C-DPM detector is set to 80×80 pixels. The normalized frame is
obtained by affinely transforming an image cropped around the face
box enlarged by a factor of 1.5. The patches used to compute features
for the appearance model are set to 13×13 pixels for all landmarks
except of the root landmark (s31), whose patch size is 21×21 pixels.
The C-DPM detector has dim(w)=2,478,348 parameters in total,
which are learned from examples.

5.3.1.2. The fine F-DPM detector. The size of normalized frame of the
F-DPM detector is set to 160×160 pixels. The face box is extended by
factor of 1.25. The patches of the appearance model are 15×15 pixels
Table 5
The time requirements of individual stages of the proposed detector. The statistics are shown fo
detectors evaluated on the 300-W datasets. We list the mean and the standard deviation comp
without using the distance transform for comparison. All times are shown in milliseconds.

Type

Stage Multi-view detector
(AFLW + Multi-PIE)

Normalized frame 0.009±0.003
Feature computation 8.1±4.1
MAX-SUM inference 2.4±1.9
overall 10.5±4.7
MAX-SUM inference without dist. transf. 93.0±1.6

(38×slower)
for non-root landmarks and 21×21 pixels for the root landmark.
The overall dimensionality of the parameter vector w is dim(w)=
3,456,012.

5.3.2. Evaluation protocol
We use the public part of the 300-W dataset [39] for training and

evaluation of the proposed methods. The public part contains 6,193
images in total. We use the original split of the images to the training
and the test part. Since our learning algorithm requires a validation
set for tuning the regularization constant, we further split the original
training set into training and validation part. This results in 3 subsets:
518 images for testing, 551 for validation (tuning the reg. parameter
λ) and 5,124 for training theweightsw. We use the average localization
error normalized by the interocular distance. The face detector failures
are penalized by∞. That is, we use the evaluationmetric entirely consis-
tent with the 300-W challenge.

Since the available implementations of most of the competing
methods donot detect all 68 landmarksweuse a subset of 49 landmarks
(without the landmarks on the cheek contour) common to all compared
detectors. The twomissing landmarks from the 51 landmark set are the
inner corners of the mouth.

5.3.3. Results on public test images
Fig. 12(a) shows the cumulative histograms of the average localiza-

tion error for all comparedmethods evaluated on the public test set part
of the 300-W dataset. The best method appears to be the IntraFace
detector [10] closely followed by the proposed C2F-DPM detector.
Only marginally worse results are obtained for the Chehra [11] and
the GN-DPM detector [13]. The only full multi-view competitor [9]
provides reasonable localization error yet significantly worse than the
other compared methods.

In Fig. 12(b), we show the localization error of the fine, second stage,
F-DPM detector initialized by different methods. Namely, we consider
initialization from an uncorrected face detector's bounding box and
also from an ideal bounding box computed from the ground truth anno-
tation. It is seen that the proposed initialization from the coarse C-DPM
detector (whose error is also shown) yields the best results closely
matching the initialization from the ideal bounding box.

The rightmost columnof Table 4 reports an average time required by
the compared methods to process as a single image of the 300-W
dataset. The fastest methods are the IntraFace [10] (which detects 49
landmarks) and the proposed C2F-DPM detector (detecting 68 land-
marks). The slowest method is the Zhu & Ramanan [9] which employs
the DPM simultaneously for the face localization and the landmark
localization unlike the othermethods usingmuch faster slidingwindow
face detectors.

5.3.4. Results on non-public test images
The results of the proposed C2F-DPMdetector on the non-public test

images provided by the organizers of the 300-W competition are
summarized in Fig. 13. In Fig. 13(a) we compare localization accuracy
of the proposed detector on all four benchmark datasets. First, we
r themulti-view detector used on AFLW andMulti-PIE dataset and the C-DPM and F-DPM
uted over test images. Last row shows the time needed to compute MAX-SUM inference

C-DPM
(300-W)

F-DPM
(300-W)

0.4±0.1 1.4±0.4
35.5±6.1 64.2±9.0
5.3±0.8 6.4±0.9
41.2±6.8 72.0±9.9
970.0±30.1
(183×slower)

2167±38.8
(339×slower)
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include results on a subset of non-profile facial images (and thus
comparable with 300-W dataset) from the AFLW and the Multi-PIE
dataset processed by the multi-view DPM detector estimating 21 land-
marks. Second, we include results obtained by the C2F-DPMdetector on
the public and the non-public test images of the 300-W estimating 51
landmarks. It is seen that estimation of landmark location jointly with
the viewing angle in “multi-view” images from AFLW and Multi-PIE
constitutes (not surprisingly) significantly harder problem. Further-
more, we observe that the results on the non-public test images of
300-W are much less optimistic compared to the public ones.

The face detector error Efd on the non-public part was 1.33%.
Fig. 13(b) shows the difference in localization accuracy when

evaluated on the full set of 68 landmarks and a subset of 51 landmarks
not containing the cheek contour landmarks.

6. Conclusions

We have proposed a real-time, full multi-view landmark detector
based on the Deformable Part Models. The detector uses a mixture of
tree based graphical models to capture landmark configurations in a
full range of yaw angle. The landmark positions and the viewing angle
are estimated simultaneously by a global optimization method based
on the dynamic programming. The objective function of the learning
algorithm is tightly related to the evaluation metric. The benefits of
using a proper objective function are demonstrated by empirical
comparison with the Zhu & Ramanan detector [9], which has similar
structure, but uses simpler two-class SVM algorithm for learning. To
achieve a real-time performance we have implemented several
speedups. First, we proposed a coarse-to-fine search strategy using an
output of a fast low-resolution DPM detector to shrink a search space
of the consequent precise DPM detector operating on a high resolution
image. Second, we sped up the computation of LBP based dense feature
descriptor by pre-computing base LBP features in multiple scales and
representing them as a MIPMAP. Third, we use a DPMwith decompos-
able pair-wise potentials, which allow to reduce the inference time by
the distance transform. Experiments on public benchmarks with “in
the wild” images show that the proposed detector is comparable in
accuracy and speed with other approaches using more complicated
shape models and local optimization methods for inference.

An open-source implementation of the proposed detector together
with learned models can be downloaded from http://cmp.felk.cvut.cz/
~uricamic/clandmark.
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