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Abstract

In this work, we propose an Instance Re-Identification

Flow (IRIF) for video object segmentation. For the instance

re-identification task, we focus on two main categories: hu-

man and non-human object instances. We track each in-

stance and detect it when it re-appears to determine its cor-

responding bounding box in video frames. When a non-

human object re-appears, we use a list of recent SVM clas-

sifiers to segment that object. Otherwise, we use Pyramid

Scene Parsing (PSP) Network to automatically segment that

person as an initial mask to continue mask propagation. In

particular, we use object detector, Faster R-CNN, to detect

person and extract person attribute as a key feature for both

tracking and re-identification. In addition, DeepFlow and

Deformable Part Model (DPM) are utilized to track and de-

tect non-human objects. Regarding object segmentation, we

adopt multi-SVM classifiers embedding history reference

with several unary components, namely, saliency, CNN fea-

tures, location and color, to segment each object instance

within its possible bounding box in each frame. Note that

we also estimate the z-order of each instance to enhance

the later instance tracking and mask propagation. Bound-

ary snapping is adopted to further refine instance shapes.

Finally, our IRIF method achieves very competitive results

in DAVIS Challenge 2017, namely, 0.615, 0.662, and 0.638

in terms of region similarity (Jaccard index), contour accu-

racy (F-measure), and global score, respectively.

∗Corresponding author. Email: ltnghia@nii.ac.jp

1. Introduction

Video object segmentation is considered as a labeling

problem aiming to separate foreground instance object(s)

from the background region of a video. Object segmenta-

tion in videos is very beneficial in a wide range of practical

applications, i.e., action recognition, object tracking, video

summarization, scene understanding, autonomous vehicle,

and surveillance system.

Regarding the related works, there exist two main

streams of approaches to solve this interesting problem. The

first type of methods is based on bottom-up approaches.

These such methods extend the concept of salient object de-

tection to videos[8, 9, 12, 13, 11]. Some of these methods

generate several ranked segmentation hypotheses [10]. The

main advantage is that they do not require any manual an-

notation and do not assume any prior information on the

object to be segmented. In addition, they are well suited for

parsing large scale databases. However, these bottom up

methods do not exploit the history information of the ob-

jects. Therefore, they may have problems when an object

re-appears after missing in few video frames. Also, they are

prone to errors when there exist many salient objects with

non-tracking requirement in the videos.

The second type of methods is proposed in a top-down

manner. Tsai et al. [18] propose an efficient object flow al-

gorithm that considers video segmentation and optical flow

estimation simultaneously. For the segmentation model,

they construct a multi-level graphical model that consists of

pixels and superpixels, each of which plays different roles

for segmentation. At the superpixel level, each superpixel

is likely to contain pixels from the foreground and back-

ground as the object boundary may not be clear. At the
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pixel level, each pixel is less informative although it can

be used for more accurate estimation of motion and seg-

mentation. With the combination of these two levels, the

details around the object boundary can be better identified

by exploiting both statistics contained in superpixels and

details in the pixel level. Meanwhile, Jampani et al. [5]

introduce Video Propagation Networks (VPN) that prop-

agate information forward through video data. The VPN

architecture is composed of two components. A tempo-

ral bilateral network that performs image adaptive spatio-

temporal dense filtering. The bilateral network allows to

connect densely all pixels from current and previous frames

and to propagate associated pixel information to the current

frame. The bilateral network allows the specification of a

metric between video pixels and allows a straight-forward

integration of temporal information. This is followed by a

standard spatial CNN on the bilateral network output to re-

fine and predict for the present video frame. In deep learn-

ing research, Convolutional Neural Networks (CNNs) have

shown outstanding performance in many fundamental ar-

eas in computer vision, enabled by the availability of large-

scale annotated datasets (e.g., ImageNet classification [7]).

By treating video object segmentation as a guided instance

segmentation problem, Khoreva et al. [6] propose to use a

pixel labelling CNNs for frame-by-frame segmentation. In

particular, given a rough mask estimate from the previous

frame t − 1, they train a CNN to provide a refined mask

output for the current frame t. Recently, Caelles et al. [1]

propose One-Shot Video Object Segmentation (OSVOS),

based on a fully-convolutional neural network architecture

that is able to successively transfer generic semantic infor-

mation, learned on the large scale ImageNet dataset, to the

task of foreground segmentation, and finally to learning the

appearance of a single annotated object of the test sequence

(so-called one-shot learning).

In literature, there exist many efforts on constructing

datasets towards this interesting problem. Firstly, the

Densely-Annotated VIdeo Segmentation (DAVIS) initia-

tive [14] provided a dataset with 50 high-definition se-

quences with all their frames annotated with object masks at

pixel-level accuracy. Later, a new dataset [15] is constructed

for 2017 DAVIS Challenge on Video Object Segmentation

in order to further push the performance in video object seg-

mentation. The new dataset consists of a new, larger, more

challenging videos. As the main new challenge, the new se-

quences have more than one annotated object in the scene.

In addition, the complexity of the videos has also increased

with more distractors, smaller objects and fine structures,

more occlusions and fast motion, etc. Figure 1 highlights

the difference of DAVIS 2017 dataset with its previous ver-

sion.

In order to tackle this challenging and interesting prob-

lem, we propose an Instance Re-Identification Flow (IRIF)

Figure 1. The major difference between annotations of DAVIS

2016 (left) DAVIS 2017 (right) datasets: bi-instance segmentation

vs. multi-instance segmentation.

for video semantic segmentation. Our results on DAVIS

2017 Challenge dataset highly indicate that our method

is competitive among the state-of-the-art methods in this

newly built dataset.

2. Proposed Method

In this section, we introduce our approach of Instance

Re-Identification Flow (IRIF) for video object segmenta-

tion. Figure 2 illustrates the flow chart of the proposed

framework.

2.1. Instance Re-Identification for Video Object
Segmentation

Given the first frame with its ground truth label, we ex-

tract the bounding box for each instance. Then, we extract

CNN features from each bounding box and perform hu-

man classification in order to identify the human instance

needed to be segmented in the video. In this work, we con-

sider two types of instances: human and non-human ones.

For each video frame, we localize the instances in a re-

identification manner. For human instances, we first detect

person from the image by using Faster R-CNN [16]. Then,

we extract person re-identification feature [19] for all de-

tected person region. For the implementation, we use the

state-of-the-art implementation to detect1 and extract per-

son re-identification feature2. DeepFlow and Deformable

Part Models (DPM) [4] are utilized to track and detect non-

human objects. Note that we expand the bounding box to

10% in order to well capture the whole area of the object

instances.

Regarding the instance segmentation task, we utilize

multiple binary SVM classifiers [2] which is learned from

the appearance of the previous n frames with sampling

1https://github.com/Eniac-Xie/faster-rcnn-resnet
2 https://github.com/ShuangLI59/person search
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Figure 2. The overview of our proposed IRIF framework. The segmentation performed on the current frame is based on the history

information of the previous frames. The merging is enhanced with z-order. The segmentation result of the current frame is further fed to

the process of the coming frame.

step size δ, where n and δ are set as 8 and 2, respec-

tively. Note that our multiple binary SVM classifiers are

implemented for history reference with several unary in-

stances, e.g., saliency [11], CNN features [7], location of

the bounding box and color, to segment each object within

its tracked bounding box in each frame. We only update

the SVM model if the size of one object instance signifi-

cantly changes. In case the human is missing and reappear

in the next couple of frames, we adopt the state-of-the-art

image parser, Pyramid Scene Parsing (PSPNet) [21] with

the pre-trained model on PASCAL VOC dataset [3]. The

re-identification results from PSPNet are blended into our

final segmentation outcomes. We utilize GrabCut [17] for

each instance in order to separate it with the background.

After this step, each pixel is assigned with the instance ID.

Then, we simultaneously run mask propagation for each ob-

ject instance as described in the following subsection.

2.2. Instance Topological Order Estimation for
Mask Propagation

Actually, Object Flow [18] can be used for mask prop-

agation with a single instance. However, in case multiple

instances to be segmented from a video clip, it is essential

to determine the topology relationship (in term of z-order)

between components so that we can sequentially combine

the propagated masks of different instances into final result.

Let A and B be two instances of interest, MA and MB

(a) ocean-birds (b) monkeys (c) choreography

Figure 3. z-order estimation from masks with connected compo-

nents rule (a), instance size (b), and combining the two rules (c).

be their initial masks, respectively. We define A > B if A

is likely to be closer to the camera than B. From the initial

masks of all instances, we aim to detect all partial z-order

relationships between pairs of instances by the following

heuristics:

• Rule 1-Connected Components: If MB is divided

into multiple connected instances by MA, then A > B.

In Figure 3a, the green bird is closer to camera than

the red one is the green mask splits the red mask into

two connected instances.

• Rule 2-Instance Size: If MA does not contains any

subregion of MB (and vice-versa), and we cannot in-

fer their z-order by other topological relationship, we

define A > B if the size of MA is greater than that

of MB . This heuristic is from the observation that a

closer object tends to be larger than the other. In Fig-

ure 3b, the red object has larger size and is predicted to

be closer to camera than the green one. This heuristic

is shown to be efficient with choreography to estimate

the topology order of persons from their mask sizes

(Figure 3c).

Note that we first compute the z-order of different instance

masks right after obtaining the ground truth of the first

frame. Currently we only apply these two simple rules

for this step to illustrate our key idea: use z-order to se-

quentially combine propagated masks of different instances.

More complicated rules will be added into our framework

to fully process various practical scenarios. We also update

z-order for every single video frame.

2.3. Segmentation Refinement with Boundary
Snapping and Rare Instance Attention

Through preliminary results, we observe that the initial

segmentation are not smooth enough. Therefore, to improve
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Figure 4. The instance segmentation process in our IRIF framework. Basically, the process involves the instance re-identification with

further refinement via rare instance attention and boundary snapping.

the quality of segmentation, we also adopt boundary snap-

ping [1] to further refine object shapes. To this end, we ex-

tract the saliency [11] and the contour [20] from the video

frame. The salient pixels close to the contour are snapped.

Furthermore, we refine the results by taking the rare in-

stances into consideration. We observe that rare objects are

shrunk due to larger objects. To identify rare object in-

stances, we compute the percentage of each object instance

mask in terms of area (provided in the first frame). Instances

with their size smaller than 5% the total size of tracking ob-

jects are considered as the rare ones. Our assumption is that

a smaller object tends to be small in the whole video. Next,

we recover rare object instances by transferring the results

produced by the foreground probability obtained from the

binary-SVM classifier on each object instance. Figure 4

illustrates the segmentation process in our proposed IRIF

framework.

3. Evaluation on 2017 DAVIS Challenge

Dataset

As aforementioned, the main new challenge added to

the sequences of DAVIS 2017 Challenge is the presence

of multiple objects (instances) in a video frame. Overall,

the DAVIS 2017 dataset consists of 150 sequences, total-

ing 10, 459 annotated frames and 376 objects. There are

total 30 video sequences for testing and their ground truth

not publicly available. Submissions to all phases is done

through the CodaLab site of the challenge3. For the evalua-

tion metrics, the per-object measures are used as described

in [14]: Region Jaccard (J) and Boundary F measure (F).

The overall measures are computed as the mean between

J and F, both averaged over all objects. As shown in Ta-

ble 1, our IRIF method achieves very promising results in

3https://competitions.codalab.org/competitions/16526

DAVIS Challenge 2017, namely, 0.615, 0.662, and 0.638 in

terms of region similarity (Jaccard index), contour accuracy

(F-measure), and global score, respectively. Our results

on DAVIS 2017 Challenge dataset highly indicate that our

method is competitive among the state-of-the-art methods

in this newly built dataset. Furthermore, Figure 5 visualizes

our video object segmentation results. From left to right,

we can observe the first video frame, and two pairs of pro-

cessed video frames (without and with refinement, respec-

tively). Our final results successfully track and segment the

key instances. Regarding the runtime performance, it ap-

proximately takes around 30 seconds to process one video

frame in average.

4. Conclusion and Future Works

In this paper, we introduce the novel IRIF framework,

instance re-identification flow, for semantic segmentation in

videos. Our framework is able to segment multiple object

instances unlike the binary labeling problem stated in the

related works. Throughout the experiments, our framework

achieves a competitive result among the participating sub-

missions.

In the future, we are looking at embedding more ad-

vanced techniques for different parts in our IRIF framework

to improve both quality and runtime performance. In addi-

tion, we consider modeling the semantic relationship among

object instances into the segmentation process.
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Figure 5. The visualization results of our proposed IRIF method on the DAVIS 2017 dataset. (left to right): the first video frame with

the ground truth label, frame t without refinement, frame t with refinement, frame t
′ without refinement, and frame t

′ with refinement.

The final refinement is done with human re-identification based PSPNet blending, rare instance consideration and boundary snapping.

The ground truth of the certain video frame is not publicly available. Our final results significantly track and segment the key objects as

annotated in the first frame.
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