
Efficiently Updating Feasible Regions for Fitting
Discrete Polynomial Curve

Fumiki Sekiya1(B) and Akihiro Sugimoto2

1 Department of Informatics, SOKENDAI (The Graduate University
for Advanced Studies), Tokyo, Japan

2 National Institute of Informatics, Tokyo, Japan
{sekiya,sugimoto}@nii.ac.jp

Abstract. We deal with the problem of fitting a discrete polynomial
curve to 2D data in the presence of outliers. Finding a maximal inlier
set from given data that describes a discrete polynomial curve is equiv-
alent with finding the feasible region corresponding to the set in the
parameter space. When iteratively adding a data point to the current
inlier set, how to update its feasible region is a crucial issue. This work
focuses on how to track vertices of feasible regions in accordance with
newly coming inliers. When a new data point is added to the current
inlier set, a new vertex is obtained as the intersection point of an edge
(or a face) of the feasible region for the current inlier set and a facet
(or two facets) of the feasible region for the data point being added.
Evaluating all possible combinations of an edge (or a face) and a facet
(or two facets) is, however, computationally expensive. We propose an
efficient computation in this incremental evaluation that eliminates com-
binations producing no vertices of the updated feasible region. This com-
putation facilitates collecting the vertices of the updated feasible region.
Experimental results demonstrate our proposed computation efficiently
reduces practical running time.

1 Introduction

Contour detection is unavoidable for many image processing and/or computer
vision tasks such as object recognition, image segmentation and shape approxi-
mation. A contour is usually represented as a curve and, thus, contour detection
is reduced to fitting a curve to noisy data. Since curves are discretized in the
digital image, discrete curve fitting has been studied for decades for different
classes of curves and different discretization models [1–6,9,11–13]. An impor-
tant advantage of using a discrete curve over a continuous one, when used for
fitting, is that it requires no empirical threshold in error to define an inlier that
affects the output. We note that an underlying threshold that a discrete model
uses to collect its points is usually designed only to achieve some properties such
as connectivity (see [7,10] for example), and thus such a threshold is clearly
justified.

This paper deals with the problem of fitting a discrete polynomial curve to
2D data in the presence of outliers, which is formulated as follows [8]: For a given
c© Springer International Publishing AG 2017
W.G. Kropatsch et al. (Eds.): DGCI 2017, LNCS 10502, pp. 254–266, 2017.
DOI: 10.1007/978-3-319-66272-5 21

Efficiently Updating Feasible Regions for Fitting Discrete Polynomial Curve 255

(a) (i, j) ∈ D(a). (b) (i, j) /∈ D(a).

Fig. 1. Integer point in (not in) D(a). The black curves depict the underlying contin-
uous polynomial curve y = f(x) =

∑d
l=0 alx

l.

data set P = {(ip, jp) ∈ Z
2 | p = 1, . . . , n} (n < ∞) and a degree d, the discrete

polynomial curve fitting is to find the discrete polynomial curve D(a) that has
the maximum number of inliers, i.e., data points in D(a). Here D (a) is defined
[10] by, with coefficients a = (a0, . . . , ad) ∈ R

d+1,

D (a) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(i, j) ∈ Z
2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

min
s∈{1,...,4}

[

(j + ys) −
d∑

l=0

al (i + xs)
l

]

≤ 0 ≤

max
s∈{1,...,4}

[

(j + ys) −
d∑

l=0

al (i + xs)
l

]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (1)

where (x1, y1) = (− 1
2 ,− 1

2), (x2, y2) = (12 ,− 1
2), (x3, y3) = (12 , 1

2), (x4, y4) =
(− 1

2 , 1
2). Equation (1) collects (i, j) ∈ Z

2 iff the four points (i + xs, j + ys) for
s ∈ {1, . . . , 4} lie on the both sides (y >

∑d
l=0 alx

l and y <
∑d

l=0 alx
l) of the

underlying continuous polynomial curve y =
∑d

l=0 alx
l, or at least one of them

is on y =
∑d

l=0 alx
l (Fig. 1). We employ this discretization model because the

connectivity is guaranteed [7].
This problem can be discussed in the parameter (coefficient) space. For the

data point (ip, jp) (p ∈ {1, . . . , n}), the feasible region Rp ⊆ R
d+1 is defined by

Rp =
{

a ∈ R
d+1

∣
∣
∣
∣ min

s∈{1,...,4}
h(p,s) (a) ≤ 0 ≤ max

s∈{1,...,4}
h(p,s) (a)

}

,

where h(p,s) (a) = (jp + ys) − ∑d
l=0 (ip + xs)

l
al (Fig. 2(a)). We remark that

(ip, jp) ∈ D(a) iff a ∈ Rp. Rp is an unbounded concave polytope, which is the
union of two unbounded convex polytopes defined by h(p,1)(a) ≤ 0 ≤ h(p,3)(a)
and h(p,2)(a) ≤ 0 ≤ h(p,4)(a) (cf. Fig. 3(a)). For Π ⊆ {1, . . . , n}, the feasible
region RΠ is defined as the intersection of the feasible regions each of which is
for a data point (ip, jp) where p ∈ Π: RΠ =

⋂
p∈Π Rp (Fig. 2(b)). Since RΠ = ∅ if

there exists no a ∈ R
d+1 that satisfies {(ip, jp) | p ∈ Π} ⊆ D(a), we may assume

RΠ �= ∅ below. Accordingly, our fitting problem is formulated in the parameter

256 F. Sekiya and A. Sugimoto

Fig. 2. Feasible region. (a) shows Rp for d = 2 and (ip, jp) = (0, 0). (b) shows inter-
sections among the feasible regions for four data points indexed from 1 to 4. A darker
region has a larger number of inliers.

space as follows: Given P and d, find Π ⊆ {1, . . . , n} with the maximum |Π|
and a ∈ RΠ for that Π.

This problem requires evaluating RΠ for all Π ⊂ {1, . . . , n}, which is reduced
to classify each data point into an inlier or an outlier (we have 2n instances).
To this end, a heuristic based incremental approach [8] was proposed where it
iteratively evaluates whether a data point can be added to the current inlier
set until the inlier set does not have its superset. In this approach, the feasi-
ble region for the current inlier set is tracked by its vertices: when a new data
point is added to the current inlier set, a vertex of the new feasible region can be
obtained from the intersection points of an edge (or a face) of the current feasible
region and a facet (or two facets) of the feasible region for the data point being
added. Evaluating such possible combinations all is, however, computationally
expensive. The contribution of this paper is to facilitate this incremental evalu-
ation by introducing an efficient computation of the vertices of the new feasible
region. Our introduced computation eliminates combinations producing no ver-
tex of the new feasible region, based on the property that an edge or face of
a bounded feasible region is inside the convex hull of its vertices. Though the
computational complexity is not reduced, our introduced computation efficiently
reduces running time in practice, as shown in experiments.

2 Brief Review of Incremental Approach

The incremental approach [8] starts with computing the feasible region for an
initialized inlier set. It then evaluates each data point one by one to update the
feasible region. If the updated feasible region is not empty, the data point is
added to the inlier set; it is regarded as an outlier otherwise. How to represent
and update the feasible region is a key issue there, which is briefly explained
below.

Efficiently Updating Feasible Regions for Fitting Discrete Polynomial Curve 257

2.1 Representing a Feasible Region Using Its Vertices

A vertex of a feasible region is defined as an intersection point of its facets. For
p = 1, . . . , n, and s = 1, . . . , 4, a facet F (p, s) of Rp is defined by

F (p, s) =

{

a ∈ R
d+1

∣
∣
∣
∣
∣

h(p,s) (a) = 0 and
s ∈ arg min

s′∈{1,...,4}
h(p,s′) (a) ∪ arg max

s′∈{1,...,4}
h(p,s′) (a)

}

.

F (p, s) is a part of the hyperplane h(p,s)(a) = 0 supporting Rp (Fig. 3(a)).
Similarly, a facet FΠ(p, s) of RΠ is defined by FΠ (p, s) = F (p, s) ∩ RΠ for
Π ⊆ {1, . . . , n} and (p, s) ∈ Π × {1, . . . , 4} (Fig. 3(b)). Note that FΠ(p, s) may
be empty for some (p, s).

A vertex of RΠ is given as the intersection of d + 1 facets. The set VΠ of the
vertices of RΠ is defined by

VΠ =

⎧
⎪⎪⎨

⎪⎪⎩

a ∈ R
d+1

∣
∣
∣
∣
∣
∣
∣
∣

a ∈ ⋂d+1
λ=1 FΠ (pλ, sλ) for some

(p1, s1) , . . . , (pd+1, sd+1) ⊆ Π × {1, . . . , 4}
such that h(pλ,sλ) (a) = 0 for λ = 1, . . . , d + 1
are linearly independent

⎫
⎪⎪⎬

⎪⎪⎭

. (2)

See Fig. 4 for an illustration of VΠ . Each combination of d+1 facets determining
an element in VΠ is indicated by an element in ΨΠ , which is defined by

ΨΠ =

⎧
⎨

⎩

{(p1, s1) , . . . , (pd+1, sd+1)}
⊆ Π × {1, . . . , 4}

∣
∣
∣
∣
∣
∣

h(pλ,sλ) (a) = 0 for λ = 1, . . . , d + 1
are linearly independent and
their solution is in

⋂d+1
λ=1 FΠ (pλ, sλ)

⎫
⎬

⎭
.

(3)
In this way, the feasible region of the inlier set Π can be represented by

its vertices VΠ with the help of ΨΠ . Note that different elements in ΨΠ may
determine the same element of VΠ .

...

(a) F (p, s).

...

(b) FΠ(p, s) (Π = {1, 2, 3}).

Fig. 3. Facets of a feasible region. (a): h(p,s)(a) = 0, s = 1, ...4 are depicted in blue
lines. mins∈{1,...,4} h(p,s)(a) = 0 is depicted in yellow, while maxs∈{1,...,4} h(p,s)(a) = 0
is depicted in pink. (Color figure online)

258 F. Sekiya and A. Sugimoto

...

Fig. 4. Vertices VΠ (yellow) of RΠ (Π = {1, 2, 3}). (Color figure online)

2.2 Tracking the Vertices of the Feasible Region

Theorem 1 indicates that ΨΠ plays an important role in tracking the vertices
of the updated feasible region when a new inlier (represented by p∗) comes in.
Note that RΠ is almost always bounded (see [8]).

Theorem 1 (Sekiya and Sugimoto[8]). For Π � {1, . . . , n} such that RΠ

is bounded and p∗ ∈ {1, . . . , n}\Π, ΨΠ∪{p∗} ⊆ ΨΠ ∪ Φ1
Π,p∗ ∪ Φ2

Π,p∗ , where

Φ1
Π,p∗ =

{{(p1, s1) , . . . , (pd, sd)}
∪ {(p∗, s∗)}

∣
∣
∣
∣

{(p1, s1) , . . . , (pd, sd)} is a subset of
an element in ΨΠ and s∗ = 1, . . . , 4

}

,

Φ2
Π,p∗ =

⎧
⎨

⎩

{(p1, s1) , . . . , (pd−1, sd−1)}
∪ {(p∗, s∗

1) , (p∗, s∗
2)}

∣
∣
∣
∣
∣
∣

{(p1, s1) , . . . , (pd−1, sd−1)} is
a subset of an element in ΨΠ

and (s∗
1, s

∗
2) ∈ {(1, 2) , (3, 4)}

⎫
⎬

⎭
.

{(p1, s1) , . . . , (pω, sω)} where ω = d and d − 1 respectively corresponds to
an edge and a (2-dimensional) face of RΠ :

⋂ω
λ=1 FΠ(pλ, sλ) (the intersection

of ω facets). An element in Φ1
Π,p∗ (resp. Φ2

Π,p∗) is thus considered to be the
combination of an edge (resp. a face) of RΠ and a facet (resp. two facets) of
Rp∗ . Theorem 1 therefore indicates that a vertex of RΠ∪{p∗} is a vertex of RΠ

or otherwise obtained as the intersection point of an edge (resp. a 2-dimensional
face) of RΠ and a facet (resp. two facets) of Rp∗ .

3 Efficient Update of Vertices of Feasible Region

Sekiya and Sugimoto [8] evaluates whether each element in ΨΠ ∪ Φ1
Π,p∗ ∪ Φ2

Π,p∗

satisfies the condition in Eq. (3) to extract elements in ΨΠ∪{p∗}. When RΠ is
bounded, any edge or face of RΠ is inside the convex hull of the vertices of RΠ

on that edge or face (Lemma 1). Based on this, we introduce a computation to
eliminate elements in Φ1

Π,p∗ ∪ Φ2
Π,p∗ that cannot be in ΨΠ∪{p∗}. This enables us

to compute ΨΠ∪{p∗} efficiently.
We define a set of edges (or faces) of RΠ . Namely, for ω = d (edge), d −

1 (face), we define

Ψ
(ω)
Π =

{ {(p1, s1) , . . . , (pω, sω)}
⊆ Π × {1, . . . , 4}

∣
∣
∣
∣ {(p1, s1) , . . . , (pω, sω)} ⊆ ξ such that ξ ∈ ΨΠ

}

.

Efficiently Updating Feasible Regions for Fitting Discrete Polynomial Curve 259

...

Fig. 5. Illustration of AΠ,p∗(ψ). For ψ ∈ Ψ
(ω)
Π ,

⋂
(p,s)∈ψ FΠ(p, s) is depicted in green

and VΠ(ψ) in yellow. For s∗ = 1, . . . , 4, h(p∗,s∗)(a) = 0 is depicted in a solid and dotted
red line where the solid part depicts F (p∗, s∗). In this example, s∗ satisfies (i) in Eq. (4)
if h(p∗,s∗)(a) = 0 runs between the two yellow vertices, and (ii) if h(p∗,s∗)(a) = 0 is
depicted in a solid line on either of the dotted black lines which are parallel to the
a0 axis and passes through yellow vertices. AΠ,p∗(ψ) = {3}, accordingly. (Color figure
online)

We note that an edge (or face) is determined as the intersection of d (or d − 1)
facets of RΠ . For an edge (or face) ψ ∈ Ψ

(ω)
Π (ω = d, d− 1), we denote by VΠ(ψ)

the vertices on ψ:

VΠ (ψ) = {a ∈ VΠ | a is determined by ξ ∈ ΨΠ such that ψ ⊆ ξ} .

Let Conv(VΠ(ψ)) denote the convex hull of VΠ(ψ). Then we have Lemma 1
whose proof is provided in AppendixA.

Lemma 1. For Π ⊆ {1, . . . , n} for which RΠ is bounded and ψ ∈ Ψ
(ω)
Π (ω =

d, d − 1),
⋂

(p,s)∈ψ FΠ(p, s) ⊆ Conv(VΠ(ψ)).

Suppose we are adding an new inlier p∗ to the current inlier set Π. For each
ψ ∈ Ψ

(d)
Π , Φ1

Π,p∗ has four elements ψ∪{(p∗, s∗)}, s∗ = 1, . . . , 4. Lemma 1 allows to
identify s̃∗ ∈ {1, . . . , 4} such that

⋂
(p,s)∈ψ FΠ(p, s) ∩ F (p∗, s̃∗) = ∅ (the facet of

Rp∗ corresponding to s̃∗ does not intersect with the edge ψ). We can thus define
the subset of Φ1

Π,p∗ by eliminating ψ ∪ {(p∗, s̃∗)} and use the subset instead of
Φ1

Π,p∗ itself in computing ΨΠ∪{p∗}. The same argument can be applied to Φ2
Π,p∗ .

To exclude s̃∗ above, we define AΠ,p∗(ψ) for ψ ∈ Ψ
(ω)
Π (ω = d, d − 1), by

AΠ,p∗ (ψ) =
⎧
⎪⎪⎨

⎪⎪⎩

s∗ ∈ {1, . . . , 4}

∣
∣
∣
∣
∣
∣
∣
∣

(i) min
a∈VΠ(ψ)

h(p∗,s∗) (a) ≤ 0 ≤ max
a∈VΠ(ψ)

h(p∗,s∗) (a) and

(ii) s∗ ∈ arg min
s′∈{1,...,4}

h(p∗,s′) (a) ∪ arg max
s′∈{1,...,4}

h(p∗,s′) (a)

for some a ∈ VΠ (ψ)

⎫
⎪⎪⎬

⎪⎪⎭

.(4)

With AΠ,p∗ (ψ), we can identify the facets of Rp∗ that potentially intersect
with the edge/face ψ (see Fig. 5). (i) in Eq. (4) means that the hyperplane

260 F. Sekiya and A. Sugimoto

h(p∗,s∗)(a) = 0 runs between two vertices of ψ, or passes through one of its ver-
tices. Since the edge or face is inside the convex hull of its vertices (Lemma 1),
it follows that the hyperplane intersects with ψ. This however does not indicate
that the facet determined by s∗ intersects with ψ (the facet is only a part of the
hyperplane). We therefore have to evaluate whether the facet indeed intersects
with ψ, for which (ii) plays the role. (ii) means that, for at least one vertex
a ∈ VΠ(ψ), s∗ achieves the maximum or minimum of h(p∗,s′)(a), s′ ∈ {1, . . . , 4};
unless (ii) is satisfied, the intersection of the hyperplane with ψ is out of the
facet.

Using only s∗ ∈ {1, . . . , 4} in AΠ,p∗ (ψ) for each ψ, we can define the subsets
of Φ1

Π,p∗ and Φ2
Π,p∗ that can be used in computing ΨΠ∪{p∗}.

X1
Π,p∗ =

{
ψ ∪ {(p∗, s∗)}

∣
∣
∣ ψ ∈ Ψ

(d)
Π and s∗ ∈ AΠ,p∗ (ψ)

}
,

X2
Π,p∗ =

{

ψ ∪ {(p∗, s∗
1) , (p∗, s∗

2)}
∣
∣
∣
∣

ψ ∈ Ψ
(d−1)
Π and s∗

1, s
∗
2 ∈ AΠ,p∗ (ψ)

where (s∗
1, s

∗
2) = (1, 2) or (3, 4)

}

.

Now we formally prove that no element in Φ1
Π,p∗\X1

Π,p∗ or Φ2
Π,p∗\X2

Π,p∗ is in
ΨΠ∪{p∗}.

Theorem 2. For Π � {1, . . . , n} such that RΠ is bounded and p∗ ∈
{1, . . . , n}\Π, ΨΠ∪{p∗} ⊆ ΨΠ ∪ X1

Π,p∗ ∪ X2
Π,p∗ .

Proof. Consider ψ ∈ Ψ
(ω)
Π (ω = d, d−1). We show

⋂
(p,s)∈ψ FΠ(p, s)∩F (p∗, s∗) =

∅ for any s∗ ∈ {1, . . . , 4}\AΠ,p∗(ψ). Note that this means ψ′ /∈ ΨΠ∪{p∗} for any
ψ′ ∈ Φd+1−ω

Π,p∗ \Xd+1−ω
Π,p∗ .

We first assume that s∗ does not satisfy (i) in Eq. (4): h(p∗,s∗)(a) < 0 for
∀a ∈ VΠ(ψ) or h(p∗,s∗)(a) > 0 for ∀a ∈ VΠ(ψ). From Lemma 1 and the linearity
of h(p∗,s∗), we have h(p∗,s∗)(a) < 0 for ∀a ∈ ⋂

(p,s)∈ψ FΠ(p, s) or h(p∗,s∗)(a) > 0
for ∀a ∈ ⋂

(p,s)∈ψ FΠ(p, s). It follows that
⋂

(p,s)∈ψ FΠ(p, s) ∩ F (p∗, s∗) = ∅.
We next assume that s∗ does not satisfy (ii): s∗ /∈ arg mins′∈{1,...,4} h(p∗,s′)(a)

∪ arg maxs′∈{1,...,4} h(p∗,s′)(a) for ∀a ∈ VΠ(ψ). Lemma 1 and the linearity of
h(p∗,s∗) imply s∗ /∈ arg mins′∈{1,...,4} h(p∗,s′)(a) ∪ arg maxs′∈{1,...,4} h(p∗,s′)(a)
for ∀a ∈ ⋂

(p,s)∈ψ FΠ(p, s). It follows that
⋂

(p,s)∈ψ FΠ(p, s) ∩ F (p∗, s∗) = ∅. �

4 Algorithm

Algorithm 1 [8]1 is the incremental approach to solve the discrete polynomial
curve fitting for a given data point set P and a given degree d. It classifies each
data index into two classes: Π (inlier) and Π� (outlier). Π is first initialized to
be a set of d + 1 data indices for which VΠ and ΨΠ are computed at low cost

1 Because the initial inlier selection is not the scope of this paper, Algorithm 1 is
presented without any initial inlier set.

Efficiently Updating Feasible Regions for Fitting Discrete Polynomial Curve 261

Algorithm 1. Incremental algorithm (Sekiya+ [8]).
Require: P , d.
Ensure: Π ⊆ {1, . . . , n} and VΠ .
1: Initialize Π := any d + 1 data indices in {1, . . . , n} for which RΠ is bounded.
2: Initialize Π� := ∅.
3: Compute VΠ and ΨΠ using Eqs. (2) and (3).
4: while {1, . . . , n} \ (Π ∪ Π�) �= ∅ do
5: p∗ := any data index in {1, . . . , n} \ (Π ∪ Π�).
6: Compute VΠ∪{p∗} and ΨΠ∪{p∗}
7: if VΠ∪{p∗} �= ∅ then
8: Π := Π ∪ {p∗} and update VΠ and ΨΠ .
9: else

10: Π� := Π� ∪ {p∗}.
11: end if
12: end while
13: return Π and VΠ .

(see [8] for the sufficient condition that RΠ is bounded). In the following loop
(Steps 4–12), we add new data indices to either Π or Π� one by one. When Π
is updated, VΠ and ΨΠ are also updated. Since ΦΠ∪{p∗} �= ∅ if RΠ∪{p∗} �= ∅ (see
[8]), an inlier set obtained by Algorithm1 is guaranteed to have no superset.

The purpose of Algorithm2 is to efficiently compute VΠ∪{p∗} and ΨΠ∪{p∗} in
Step 6 of Algorithm 1: efficient computation of the vertices of the feasible region
updated by an additional data point. Some of the vertices are inherited from the
current feasible region. So, the first loop (Steps 2–7) evaluates each vertex of the
current feasible region to check if it serves as a vertex of the updated feasible
region, where it suffices only to verify that the vertex is inside the feasible region
for the additional data point (Step 5), since FΠ(p, s) ∩ Rp∗ = FΠ∪{p∗}(p, s) for
any (p, s) ∈ Π × {1, . . . , 4}. The vertices appearing only in the updated feasible
region are obtained from X1

Π,p∗ ∪ X2
Π,p∗ in the second loop (Steps 9–16). For

each element in X1
Π,p∗ ∪ X2

Π,p∗ , we first check if the hyperplanes corresponding
to the element intersect at a unique point (Step 10), and if so, we then check if
that intersection point serves as a vertex of the updated feasible region (Step 12).
Note that the condition in Step 12 is equivalent with a ∈ ⋂

(p,s)∈ψ FΠ∪{p∗}(p, s);
a ∈ ⋂

(p,s)∈ψ F (p, s) implies a ∈ Rp∗ since any ψ ∈ X1
Π,p∗ ∪X2

Π,p∗ contains (p, s)
such that p = p∗. The most efficiently working part is Step 8, which reduces the
number of iterations in the second loop.

The computational complexity for this method is the same with [8]: O(nd+2)
for a variable number n of data and a fixed degree d, because O(|Xα

Π,p∗ |) =

O(|Φα
Π,p∗ |) = O(|Ψ (ω)

Π |) for α = 1, 2 where ω = d+1−α. The practical efficiency
of the method is evaluated in the next section.

262 F. Sekiya and A. Sugimoto

Algorithm 2. Efficient update of VΠ and ΨΠ for an additional inlier.
Require: P , d, Π � {1, . . . , n}, p∗ ∈ {1, . . . , n} \ Π, VΠ and ΨΠ .
Ensure: VΠ∪{p∗} and ΨΠ∪{p∗}.
1: Initialize V := ∅ and Ψ := ∅.
2: for all ψ ∈ ΨΠ do
3: a := vertex determined by ψ.
4: if a ∈ Rp∗ then
5: V := V ∪ {a} and Ψ := Ψ ∪ {ψ}.
6: end if
7: end for
8: Compute AΠ,p∗(ψ) for all ψ ∈ Ψ

(ω)
Π (ω = d, d − 1) to have X1

Π,p∗ and X2
Π,p∗ .

9: for all ψ ∈ X1
Π,p∗ ∪ X2

Π,p∗ do
10: if {h(p,s)(a) = 0 | (p, s) ∈ ψ} has a unique solution a then
11: a := the unique solution to {h(p,s)(a) = 0 | (p, s) ∈ ψ}
12: if a ∈ ⋂(p,s)∈ψ F (p, s) ∩ RΠ then

13: V := V ∪ {a} and Ψ := Ψ ∪ {ψ}.
14: end if
15: end if
16: end for
17: return V = VΠ∪{p∗} and Ψ = ΨΠ∪{p∗}.

5 Experiments

For d = 2, we generated input data sets P for n = 200, 400, 600, 800, 1000 as
follows: setting (a0, a1, a2) = (450,−3.2, 0.0064), we randomly generated n inte-
ger points within [0, 499] × [0, 499] so that 80% of the points, called ground-
truth inliers, are in D(a0, a1, a2) while the other 20% points, called ground-truth
outliers, are not in D(a0, a1, a2), where each ground-truth outlier was gener-
ated so that its Euclidean distance from its closest point in D(a0, a1, a2) is
in [1, 4]. In the same way, we generated data sets for d = 3 where we used
(a0, a1, a2, a3) = (250, 5,−0.03, 4.0×10−5) to generate their ground-truth inliers
and outliers. P is shown in Fig. 6 for n = 200, 600, 1000. In the experiments, we
used a PC with an Intel Xeon 3.7 GHz processor with 64 GB memory.

We applied our proposed method (Algorithm1 together with Algorithm 2)
100 times to each P to see the efficiency of our introduced computation. At
each trial, we randomly initialized Π (Step 1) and selected p∗ (Step 5), where
the d + 1 data indices in the initial Π are chosen only from the ground-truth
inliers. For comparison, we also applied Algorithm 1 alone (Sekiya+ [8]) 100
times to each P using the same initialization and data point selection. We then
evaluated the recall (the ratio of ground-truth inliers in the output against the
whole ground-truth inliers) and the computational time (i.e., processing time).

Tables 1 and 2 show the average of recalls over 100 trials for each P and the
average of computational times over 100 trials for the two methods. We remark
that the outputs by our proposed method are exactly the same as those by
Algorithm 1 alone.

Efficiently Updating Feasible Regions for Fitting Discrete Polynomial Curve 263

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

(a) d = 2, n = 200.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

(b) d = 2, n = 600.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

(c) d = 2, n = 1000.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

(d) d = 3, n = 200.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

(e) d = 3, n = 600.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

(f) d = 3, n = 1000.

Fig. 6. Examples of input data sets. Ground-truth inliers are depicted in green while
ground-truth outliers in red. (Color figure online)

We see in Table 2 that our proposed method achieves the same results much
faster than Algorithm 1 alone. We see that Algorithm 2 indeed efficiently updates
feasible regions in computational time thanks to |X1

Π,p∗ ∪ X2
Π,p∗ | < |Φ1

Π,p∗ ∪
Φ2

Π,p∗ |. To visualize this efficiency, we compared |X1
Π,p∗ ∪ X2

Π,p∗ | and |Φ1
Π,p∗ ∪

Φ2
Π,p∗ | in each iteration in a trial in the case of n = 400 (Fig. 7). We observe

that (1) |X1
Π,p∗ ∪ X2

Π,p∗ | is significantly smaller than |Φ1
Π,p∗ ∪ Φ2

Π,p∗ | and that
(2) |X1

Π,p∗ ∪ X2
Π,p∗ | is almost constant independent of the size of the inlier set.

We remark that X1
Π,p∗ ∪ X2

Π,p∗ = ∅ indicates AΠ,p∗(ψ) = ∅ for all ψ ∈ Ψ
(ω)
Π

(ω = d, d − 1).

Table 1. Recall of ground-truth inliers (average over 100 trials).

n 200 400 600 800 1000

d = 2 0.870 0.860 0.810 0.859 0.855

d = 3 0.817 0.805 0.773 0.806 0.822

Table 2. Computational time (ms) (average over 100 trials).

n 200 400 600 800 1000

d = 2 Sekiya+[8] 36.92 69.16 90.92 138.32 177.28

Proposed 1.16 1.88 2.32 3.28 3.60

d = 3 Sekiya+[8] 154.16 267.32 366.16 488.36 627.16

Proposed 8.68 9.12 10.36 9.76 11.12

264 F. Sekiya and A. Sugimoto

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200 250 300 350 400

of data evaluated (iteration)

(a) d = 2.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300 350 400

of data evaluated (iteration)

(b) d = 3.

Fig. 7. |X1
Π,p∗ ∪ X2

Π,p∗ | (red) and |Φ1
Π,p∗ ∪ Φ2

Π,p∗ | (green) in each iteration. The hori-

zontal axis is the number of data points already evaluated (i.e., |Π ∪ Π� |). The results
are from a trial of n = 400. (Color figure online)

6 Conclusion

We dealt with the problem of fitting a discrete polynomial curve to 2D data in
the presence of outliers. We discussed how to efficiently compute the vertices
of the feasible region for an incrementally updated inlier set in the parameter
space. Based on the property that an edge or face of a bounded feasible region is
inside the convex hull of its vertices, we introduced a computation to facilitate
updating the vertices of the feasible region when a new data point is added to the
current inlier set. The efficiency of our proposed computation was demonstrated
by our experimental results.

Acknowledgements. This work is in part supported by Grant-in-Aid for Scientific
Research (Grant No. 16H02851) of the Ministry of Education, Culture, Sports, Science
and Technology of Japan.

A Appendix: Proof of Lemma1

Proof. For any b ∈ ⋂
(p,s)∈ψ FΠ(p, s), we prove that b ∈ Conv(VΠ(ψ)), i.e.,

b is represented as a convex combination of some vertices in VΠ(ψ). In fact, it
suffices to show that there exist c1, c2 ∈ ⋂

(p,s)∈ψ FΠ(p, s) and (p1, s1), (p2, s2) ∈
Π × {1, . . . , 4} that satisfy the following: c1 ∈ FΠ(p1, s1) and c2 ∈ FΠ(p2, s2),
the linear systems {h(p,s)(a) = 0 | (p, s) ∈ ψ ∪ {(p1, s1)}} and {h(p,s)(a) =
0 | (p, s) ∈ ψ ∪ {(p2, s2)}} are respectively independent, and b is represented
as a convex combination of c1 and c2. Why this proves b ∈ Conv(VΠ(ψ)) is
explained as follows. For ψ ∈ Ψ

(d)
Π , it is obvious since we have c1, c2 ∈ VΠ(ψ)

immediately. For ψ ∈ Ψ
(d−1)
Π , next, each of c1 and c2 can be seen as b in the case

of ψ ∈ Ψ
(d)
Π ; ψ∪{(p1, s1)}, ψ∪{(p2, s2)} ∈ Ψ

(d)
Π is proven by Lemma 1 in [8]. From

the result already obtained for ψ ∈ Ψ
(d)
Π , therefore, c1 and c2 are respectively

represented as a convex combination of two vertices in VΠ(ψ ∪ {(p1, s1)}) and

Efficiently Updating Feasible Regions for Fitting Discrete Polynomial Curve 265

VΠ(ψ ∪{(p2, s2)}). b is represented as a convex combination of the four vertices
in VΠ(ψ), accordingly.

We therefore prove for the existence of c1, c2, (p1, s1), (p2, s2) as described
above. If there exists (p′, s′) ∈ (Π × {1, . . . , 4})\ψ such that b ∈ FΠ(p′, s′) and
{h(p,s)(a) = 0 | (p, s) ∈ ψ∪{(p′, s′)}} is independent, then the required condition
is immediately satisfied for c1 = c2 = b and (p1, s1) = (p2, s2) = (p′, s′). We
therefore give the proof for the other case. Let us first consider the (d + 1 − ω)-
dimensional flat {a ∈ R

d+1 | h(p,s)(a) = 0 for (p, s) ∈ ψ}, which includes⋂
(p,s)∈ψ FΠ(p, s). We then consider an arbitrary half-line on the flat running

from b. Note that such a half-line necessarily exists since d + 1 − ω ≥ 1. A point
in the half-line is represented by c(r) = b + rv for some vector v ∈ R

d+1\{0}
and a parameter r ∈ R≥0. For such a half-line, it has been already shown in
the proof of Lemma 1 in [8] that, for some r1 > 0 (r1 < ∞), c1 = c(r1)
satisfies c1 ∈ FΠ(p1, s1) for ∃(p1, s1) ∈ (Π×{1, . . . , 4})\ψ such that {h(p,s)(a) =
0 | (p, s) ∈ ψ ∪{(p1, s1)}} is independent. c2, on the other hand, is found on the
half-line running in the opposite direction from b, whose point is represented by
c′(r) = b + r(−v). Since it is also a half-line on the same flat, for some r2 > 0
(r2 < ∞), c2 = c′(r2) satisfies c2 ∈ FΠ(p2, s2) for ∃(p2, s2) ∈ (Π×{1, . . . , 4})\ψ
such that {h(p,s)(a) = 0 | (p, s) ∈ ψ ∪ {(p2, s2)}} is independent. Now, b is on
the line segment connecting c1 and c2, which means that b is represented as a
convex combination of c1 and c2. �

References

1. Buzer, L.: An incremental linear time algorithm for digital line and plane recogni-
tion using a linear incremental feasibility problem. In: Braquelaire, A., Lachaud,
J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 372–381. Springer,
Heidelberg (2002). doi:10.1007/3-540-45986-3 33

2. Kenmochi, Y., Buzer, L., Talbot, H.: Efficiently computing optimal consensus of
digital line fitting. In: International Conference on Pattern Recognition (ICPR
2010), pp. 1064–1067. IEEE (2010)

3. Largeteau-Skapin, G., Zrour, R., Andres, E.: O(n3logn) time complexity for the
optimal consensus set computation for 4-connected digital circles. In: Gonzalez-
Diaz, R., Jimenez, M.-J., Medrano, B. (eds.) DGCI 2013. LNCS, vol. 7749,
pp. 241–252. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37067-0 21

4. Largeteau-Skapin, G., Zrour, R., Andres, E., Sugimoto, A., Kenmochi, Y.: Opti-
mal consensus set and preimage of 4-connected circles in a noisy environment. In:
Proceedings of the International Conference on Pattern Recognition (ICPR 2012),
pp. 3774–3777. IEEE (2012)

5. Provot, L., Gerard, Y.: Recognition of digital hyperplanes and level layers with
forbidden points. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev,
K.N., Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 144–156.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-21073-0 15

6. Sekiya, F., Sugimoto, A.: Fitting discrete polynomial curve and surface to noisy
data. Ann. Math. Artif. Intell. 75(1–2), 135–162 (2015)

7. Sekiya, F., Sugimoto, A.: On connectivity of discretized 2D explicit curve. In:
Ochiai, H., Anjyo, K. (eds.) Mathematical Progress in Expressive Image Synthesis
II. MI, vol. 18, pp. 33–44. Springer, Tokyo (2015). doi:10.1007/978-4-431-55483-7 4

http://dx.doi.org/10.1007/3-540-45986-3_33
http://dx.doi.org/10.1007/978-3-642-37067-0_21
http://dx.doi.org/10.1007/978-3-642-21073-0_15
http://dx.doi.org/10.1007/978-4-431-55483-7_4

266 F. Sekiya and A. Sugimoto

8. Sekiya, F., Sugimoto, A.: Discrete polynomial curve fitting guaranteeing inclusion-
wise maximality of inlier set. In: Chen, C.-S., Lu, J., Ma, K.-K. (eds.) ACCV
2016. LNCS, vol. 10117, pp. 477–492. Springer, Cham (2017). doi:10.1007/
978-3-319-54427-4 35

9. Sere, A., Sie, O., Andres, E.: Extended standard Hough transform for analytical line
recognition. In: Proceedings of International Conference on Sciences of Electronics,
Technologies of Information and Telecommunications (SETIT 2012), pp. 412–422.
IEEE (2012)

10. Toutant, J.-L., Andres, E., Largeteau-Skapin, G., Zrour, R.: Implicit digital sur-
faces in arbitrary dimensions. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.)
DGCI 2014. LNCS, vol. 8668, pp. 332–343. Springer, Cham (2014). doi:10.1007/
978-3-319-09955-2 28

11. Zrour, R., Kenmochi, Y., Talbot, H., Buzer, L., Hamam, Y., Shimizu, I., Sugimoto,
A.: Optimal consensus set for digital line and plane fitting. Int. J. Imaging Syst.
Technol. 21(1), 45–57 (2011)

12. Zrour, R., Largeteau-Skapin, G., Andres, E.: Optimal consensus set for annulus
fitting. In: Debled-Rennesson, I., Domenjoud, E., Kerautret, B., Even, P. (eds.)
DGCI 2011. LNCS, vol. 6607, pp. 358–368. Springer, Heidelberg (2011). doi:10.
1007/978-3-642-19867-0 30

13. Zrour, R., Largeteau-Skapin, G., Andres, E.: Optimal consensus set for nD fixed
width annulus fitting. In: Barneva, R.P., Bhattacharya, B.B., Brimkov, V.E. (eds.)
IWCIA 2015. LNCS, vol. 9448, pp. 101–114. Springer, Cham (2015). doi:10.1007/
978-3-319-26145-4 8

http://dx.doi.org/10.1007/978-3-319-54427-4_35
http://dx.doi.org/10.1007/978-3-319-54427-4_35
http://dx.doi.org/10.1007/978-3-319-09955-2_28
http://dx.doi.org/10.1007/978-3-319-09955-2_28
http://dx.doi.org/10.1007/978-3-642-19867-0_30
http://dx.doi.org/10.1007/978-3-642-19867-0_30
http://dx.doi.org/10.1007/978-3-319-26145-4_8
http://dx.doi.org/10.1007/978-3-319-26145-4_8

	Efficiently Updating Feasible Regions for Fitting Discrete Polynomial Curve
	1 Introduction
	2 Brief Review of Incremental Approach
	2.1 Representing a Feasible Region Using Its Vertices
	2.2 Tracking the Vertices of the Feasible Region

	3 Efficient Update of Vertices of Feasible Region
	4 Algorithm
	5 Experiments
	6 Conclusion
	A Appendix: Proof of Lemma1
	References

