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Abstract When constructing a dense 3D model of an indoor
static scene from a sequence of RGB-D images, the choice
of the 3D representation (e.g. 3D mesh, cloud of points
or implicit function) is of crucial importance. In the last
few years, the volumetric truncated signed distance func-
tion (TSDF) and its extensions have become popular in the
community and largely used for the task of dense 3D mod-
elling using RGB-D sensors. However, as this representation
is voxel based, it offers few possibilities for manipulating
and/or editing the constructed 3D model, which limits its
applicability. In particular, the amount of data required to
maintain the volumetric TSDF rapidly becomes huge which
limits possibilities for portability. Moreover, simplifications
(such as mesh extraction and surface simplification) signif-
icantly reduce the accuracy of the 3D model (especially
in the color space), and editing the 3D model is difficult.
We propose a novel compact, flexible and accurate 3D
surface representation based on parametric surface patches
augmented by geometric and color texture images. Sim-
ple parametric shapes such as planes are roughly fitted to
the input depth images, and the deviations of the 3D mea-
surements to the fitted parametric surfaces are fused into a
geometric texture image (called the Bump image). A confi-
dence and color texture image are also built. Our 3D scene
representation is accurate yet memory efficient. Moreover,
updating or editing the 3D model becomes trivial since it
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is reduced to manipulating 2D images. Our experimental
results demonstrate the advantages of our proposed 3D rep-
resentation through a concrete indoor scene reconstruction
application.

Keywords 3D modeling - Consumer depth camera - Bump
image - Real-time - Parametric surface

1 Introduction

The construction of fidelity 3D models from RGB-D mea-
surements is of wide interest for the computer vision com-
munity, with various potential applications. For example, 3D
models of real scenes can be used in augmented and virtual
reality for serious games or remote communication. With
recent efforts on developing inexpensive depth sensors such
as the Microsoft Kinect camera or the Asus Xtion Pro cam-
era (called RGB-D cameras), capturing depth information in
indoor environment becomes an easy task. This new set-up
opens new possibility for 3D modeling, and several softwares
have been already proposed to realize live 3D reconstruction
using RGB-D cameras (Davison et al. 2007; Neibner et al.
2013; Newcombe et al. 2011; Weise et al. 2009). The output
of a 3D modeling software is a mathematical representation
of the 3D surfaces of a target scene. As a consequence the
choice of the 3D scene representation is of crucial impor-
tance and should be made carefully depending on the type
of sensor used (e.g., cheap depth sensor with video frame
rate and noisy depth images or expensive laser scanner with
low frame rate but accurate depth images) and depending on
the type of scene to reconstruct (e.g., static man-made indoor
scene or dynamic outdoor scene). This choice will impact on
what tools can be used and what options are enabled.
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In general, the 3D modeling process using RGB-D cam-
eras can be divided into 4 steps: (1) RGB-D measurement
acquisition at the video frame rate; (2) camera tracking (Lowe
1999; Segal et al. 2009); (3) integration (or fusion) of aligned
RGB-D measurements (Chen et al. 2013; Neibner et al. 2013;
Newcombe et al. 2011; Weise et al. 2009) and (4) 3D surface
reconstruction (3D textured mesh generation for example)
(Kazhdan et al. 2006; Pfister et al. 2000). The objective is
then to carry out these tasks with both computational effi-
ciency and high accuracy. Computational speed is important
because we capture 30 frames per second, so each image
needs to be processed quickly in order to process the full
sequence in a reasonable amount of time. Accuracy of the
output 3D model is also important; in particular when we
want it to be usable in simulations or visualisation tasks.

Much work has been proposed that dwells on improv-
ing accuracy of the generated 3D models, but it is only
recent that a few work addressed the problem of compact-
ness of the 3D representation (Chen et al. 2013; Henry et al.
2013; Neibner et al. 2013). Compactness of the generated
3D models is of outmost importance for scalability (when
building large 3D environments) and also for remote user
interaction (when the reconstructed 3D model needs to be
lively streamed through the internet). Most of state-of-the-
art methods employ implicit volumetric models to represent
a 3D scene or objects. The main advantage of volumetric
models is accuracy and easiness for incremental update. The
drawback of volumetric models, however, is that they require
large amount of memory and that they are not well suited for
manipulation or edition. On the other hand, parametric sur-
face models like splines or subdivision surfaces are compact
representations that have been widely used in the computer
graphics community when manipulating 3D scenes, but they
are not used for 3D modeling using an RGB-D camera and
deserve further investigation.

In this paper, we introduce a new compact and flexible
parametric surface representation of the static scene that is
well adapted for 3D modeling using RGB-D cameras. Our
proposed representation consists of a set of parametric sur-
face patches that requires low memory use and, nevertheless,
realises accurate and efficient 3D modeling from an RGB-
D image sequence. The main idea is to represent a static
scene as a set of parametric surface patches to each of which
we attach as its attributes three images describing the local
geometry, color and accumulated confidence. This represen-
tation is flexible in that we can easily build and update the
3D representation and more importantly, with the attributes,
we can always recover the full 3D information of the scene
or objects while reducing required memory.

The advantages of our proposed 3D representation over
state-of-the-art are threefold: (1) its low memory usage
enables live streaming of constructed dense 3D models
through the standard network; (2) generated 3D models are

segmented, which allows reasoning at the level of not points
but objects in post-processing (e.g. loop closure, object selec-
tion/removal); (3) the fine 3D geometry is encoded into 2D
images, and thus edition becomes easy since it is reduced to
manipulating 2D images. We remark that a part of this work
has been reported in Thomas and Sugimoto (2013).

2 Related Work

In general, when constructing a 3D model using an RGB-
D camera, two major questions arise: (1) how to represent
the 3D model? and (2) how to update the 3D model with
incoming data? We discuss the state-of-the-art on these two
problems in this section.

2.1 3D Representations for 3D Modeling

A critical question that all 3D modeling softwares need to
carefully answer is: what 3D representation should we use
during the reconstruction process? The 3D representation
should be compact, accurate and easy to update with live
measurements. In general two different kinds of representa-
tion are used: volumetric models and surface models.

2.1.1 Volumetric Models

Newcombe et al. (2011) proposed KinectFusion where the
global 3D model is represented as a truncated signed distance
function (TSDF) that is discretized into a volume cover-
ing a scene to be reconstructed. The advantage of using a
volumetric representation of the scene is that dense depth
images can be rendered for a given camera position, which
helps the camera tracking process. Moreover, updating the
volume is easy and fast thanks to the GPU. The major
drawback is, on the other hand, compactness. That is, the
data size required to maintain the 3D representation of a
scene is voluminous. This poses problems when dealing with
large scale scenes or when communicating data through the
internet.

Extensions of KinectFusion to a large scene have been
proposed where the volume is moved along with the tracked
camera motion. Roth and Vona (2012) proposed a method
to automatically translate and rotate the volume in space
as the camera moves. The volume is remapped into a new
one by the TSDF interpolation whenever sufficient cam-
era movement is observed. The objective of this work is to
output fine camera tracking with a local map of the environ-
ment. As a consequence, points that leave the volume are
lost and the method can not generate the complete recon-
structed scene. Similarly, Whelan et al. (2012) introduced
Kintinuous, proposing a method to identify points that leave
the KinectFusion volume and incrementally add them into a
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triangular mesh representation of the scene. Available imple-
mentation that can be found in the PCL (The PCL library)
allows even to re-use existing data when moving the vol-
ume. However, rich geometric features in the RGB-D image
sequence are required for accurate scene reconstruction.
When a scene does not have rich geometric features, this
method fails in tracking the camera motion, resulting in poor
reconstruction.

Zeng et al. (2013) and Chen et al. (2013) proposed
an octree-based fusion method to compress the volumetric
TSDF representation of the scene. At the same time, Zhou and
Koltun (2013) proposed to use local volumes around points
of interest and Henry et al. (2013) proposed to segment the
scene into planar patches and use 3D TSDF volumes around
them to represent the 3D scene. Neibner et al. (2013) pro-
posed to use a spatial hashing scheme to compress the empty
space, while keeping real-time performance and state-of-the-
art accuracy. By contrast, our proposed method requires only
three 2D images for each parametric surface patch to model
the scene, which allows more compact representation of the
scene.

2.1.2 Surface Models

Weise et al. (2009) proposed to build a global model using
surface elements called Surfels (Pfister et al. 2000). Using
triangular meshes for a global model requires considerable
efforts to guarantee the integrity and quality of the mesh
topology after adding, updating, or removing any vertices.
As addressed in Weise et al. (2009), however, the use of
Surfels has the advantage that it can be easily updated with
live measurements while keeping consistency of the global
model. One drawback of this method is that the Surfel repre-
sentation is relatively sparse compared with captured depth
images, which degrades the accuracy of registration results.
Moreover the memory space required to maintain the Surfel
representation for large scenes is not small.

Hernandez et al. (2012) introduced the canonical 2D map
framework for 3D face reconstruction where the aligned
points of the 3D facial surface are accumulated in a cylin-
drical model (similar approach is used in Blanz and Vetter
2003). Though high quality face models could be obtained,
the camera tracking system is significantly affected by inac-
curate pose estimates when the current frame has a large
pose variation against the reference frame. This is because
they employ the frame-to-frame camera tracking approach
and no discussion is given about how to use their cylindri-
cal global model into a frame-to-global-model framework.
Moreover, the proposed data integration method has its limi-
tation as it is not view-centric (i.e. it does not account for the
directional nature of the noise in depth images). Besides,
their method is developed for human face reconstruction
only.

@ Springer

2.2 Camera Tracking and Data Integration

The process of accurately estimating the camera extrinsic
parameters (i.e. the camera pose), called the camera tracking
process, is of crucial importance for any 3D reconstruction
method. This process allows to align all acquired data into
a global coordinate system, which is a pre-request for any
data integration method. In general, two main strategies exist:
the frame-to-frame strategy and the frame-to-global-model
strategy.

2.2.1 The Frame-to-Frame Strategy

A standard approach to camera tracking is to employ a frame-
to-frame strategy (Davison et al. 2007; Henry et al. 2012;
Jaeggli et al. 2003). Each incoming frame is aligned to its
previous frame, then newly aligned data are integrated into a
global model (using Surfels (Pfister et al. 2000) for example),
which is triangulated in a final post-process (using poisson
surface reconstruction (Kazhdan et al. 2006) for example).
In Davison et al. (2007), a probabilistic feature-based map
approach was proposed that represents at any instant a snap-
shot of current estimates of the state of the camera and all
features of interest, and also the uncertainty in these esti-
mates. The probabilistic state estimates of the camera and
features are updated during camera motion and feature obser-
vation. When new features are observed the map is enlarged
with new states and, if necessary, features can be deleted.
In Henry et al. (2012), RGBD-ICP was proposed to align
successive frames. RGBD-ICP combines the Iterative Clos-
est Point (ICP) algorithm (Besl and McKay 1992) with the
Scale Invariant Feature Transform (SIFT) algorithm (Lowe
1999). In this method, SIFT feature points (to which depth
information is attached) are first matched together and then
used to augment the standard ICP algorithm. Jaeggli et al.
(2003) proposed to first align all input frames to a reference
frame using the standard ICP algorithm and then to employ a
multiview refinement algorithm in a post process to improve
quality of camera pose estimates.

A crucial limitation of this strategy comes from the frame-
to-frame error propagation, which can lead to significant
errors at the end of the sequence. This becomes fatal when
the trajectory of the camera is large. Note that, however, a
loop closure algorithm may reduce the propagated error if
a loop exists. In this strategy, only the current and previous
frames are loaded on the GPU memory for camera tracking
and, therefore, the GPU memory use is low and tracking is
fast.

2.2.2 The Frame-to-Global-Model Strategy

Another approach to camera tracking is to use the frame-
to-global-model strategy, which has been proven effective
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Fig. 1 TIllustration of introduced notations related to the parametric surfaces. a A parametric surface y, a point y (¢, i), on the surface at coordinates
(¢, h), the associated normal vector 1, (¢, ) and the discretized coordinates discr(t, h). b A 3D point p projects on the surface y at coordinates
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with KinectFusion (Newcombe et al. 2011) and its exten-
sions (Nguyen et al. 2012; Roth and Vona 2012; Whelan et al.
2012). In this strategy, a single high-quality global 3D model
is updated along with live depth measurements. Incoming
depth images are then aligned to dense high-quality pre-
dicted depth images generated from the global model. Using
a global model allows to reduce the error propagation. New-
combe et al. (2011) proposed to employ a linearised version
of the Generalized Iterative Closest Point (GICP) (Segal et al.
2009) (extension of ICP where the point-to-plane metric is
used instead of the point-to-point metric) to align the input
frame with the dense depth image predicted from the global
model. Henry et al. (2013) proposed to use both photometric
and geometric errors to perform dense alignment of RGB-D
frames. The importance of both errors was balanced using
a weighted average. Steinbrucker et al. (2013) proposed to
combine photometric and geometric errors using a proba-
bilistic framework.

In this paper, we also employ the frame-to-global-model
strategy for estimating the camera trajectory.

3 Parametric 3D Scene Representation

We reason that parametric surfaces can be used to describe
the 3D geometry of an indoor scene. We thus propose to
represent a 3D scene as a set of parametric surface patches
having attributes. To each surface patch detected in the scene,
we attach as its attributes three 2D images in addition to
information that identifies the surface patch.

The three images are a three-channel Bump image, an
one-channel Mask image and a three-channel Color image;
these three images encode geometric and color details of the
scene. The Bump image encodes the local geometry around
the surface patch. For each pixel, we record in the three chan-
nels the displacement of the 3D point corresponding to the
pixel from the lower left-corner of the pixel. The Mask image

encodes the confidence for accumulated data at a point and
the Color image encodes the color of each point. The Bump
image encodes the local deviation to the parametric surface
patch, which allows us to accurately represent the geometry
of the 3D scene while using less memory. Adding, remov-
ing or updating points is executed easily and efficiently in
our representation, because we have only to manipulate 2D
images.

3.1 Parametric Surfaces

Let us assume we are given a set of points P = {p1, p2, - - -,
pn} with n > 0, and a C! parametric surface y that best
fits P (how to determine y is still an open question and out
of the scope of this paper). Any 3D point on surface y can
be represented using parameters (¢, h) with 0 < 7, h < 1
that run over y (see Fig. la). This can be mathematically
described as follows:

y:(0,1)* - R?
(t,h) —> (x(t,h), y(t,h), z(t, b)) T,

where (x(t, h), y(t, h), z(t, h)) " is a 3D point on the sur-
face y.

Computation of normal vectors From the C! surface y we
derive the normal map 5, (see Fig. 1a):

ny : ([0, 1)? — SO(3)

, T
a dy a
(t. h) —> norm ((a—f(z, .5, Eam) A

) T
(B, B m, Ea.n) ) ,

where norm is the function that normalise the input vector
to the vector of norm 1, and A is the cross product operator.
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Computation of the projected points For surface y, we define
a projector operator 7, such that for any p € R3,

7y (p) = argming ;¢ (0,172 (1P — ¥ (¢, W)]2).

7, (p) represents the parameters that correspond to the pro-
jection of p onto y (see Fig. 1b).

Discretisation of the parametric surface The parametric sur-
face y is discretised in both dimensions along the surface
into given m and / uniform segments. We define the opera-
tor discr that maps real coordinates (¢, #) € ([0, 11)? that
represent a point on surface y into discrete coordinates!
discr(t,h) € [0,m] x [0,!] that represent a pixel corre-
sponding to the point (see Fig. 1a). Namely,

Y(t, h) € ([0, 1])2,
discr(t,h) = (|t x m], |h x 1]).

3.2 Bump Image

The Bump image, encoded as a three-channel 16 bits image,
represents the local geometry of the scene around a paramet-
ric surface patch. For a given surface patch, the Bump image
is obtained by identifying points around the surface patch
and projecting them onto the discretized surface patch. The
three values of a pixel in the Bump image encode the exact
deviation from the parametric surface patch of the 3D point
corresponding to the pixel. This allows us to record its exact
3D position in the global coordinate system. For the Bump
image, only a few bytes are required to record the position of
a 3D point regardless of the size of the scene, which makes
our 3D model require low memory usage.

We describe more in detail how to obtain the Bump image
and how to recover the 3D coordinates of 3D points using a
simple example depicted in Fig. 2. Our objective is now to
compute the Bump image Bump that corresponds to the set
of point P and the parametric surface y, and to recover the
set of 3D points using only the surface parameters and the
computed Bump image.

For each point p € P, we obtain the pixel coordinates
(i, j) of pin Bump as (i, j) = discr(m,(p)). We encode
in the Bump image the deviation caused by the discretiza-
tion process together with the signed distance of p from
the parametric surface y (with respect to the normal vector
ny (,(p))) so that we can exactly recover the 3D position
of p. Namely,

Bump(i, j) = [m, (pP)[0] x m — i, 7, (P)[1] x [ — ],
(P — v @@y () - 0y (y (P))],

! The notation [a, b] denotes the integer interval between a and b.
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Fig. 2 A simple example for Bump image computation. A parametric
surface is fitted to the input cloud of points and discretised in both
dimensions to generate the 2D image attributes

(t=0.0,h =0.0)

where - is the scalar product operator. Note that in the case
where two points project onto the same pixel in Bump, we
keep in Bump only the values for the point that is closest
to y.

On the other hand, computing the 3D positions of points
is easy. Given a parametric surface y and its Bump image
Bump, it is straightforward to compute the exact position
of a point corresponding to a pixel (i, j) in the global 3D
coordinate system.

. i + Bump(i, j)[0] j+ Bump(i, j)[1]
p(lr ]) =Yy P
m l
+ Bump(i, j)I2]
(i + Bump(i, )[0] j + Bump(, j)[l])
X Ny .

m ’ l

3.3 Mask and Color Images

The Mask image encodes the confidence for 3D points. This
allows us to perform a running average when integrating
live measurements and also to eliminate erroneous measure-
ments. The values of the Mask image are initialized when
generating the Bump image. A pixel in the Mask image is
set to 1 if a point is projected onto the same pixel in the
Bump image, it is set to O otherwise. The Mask image is then
updated with live measurements as explained in Sect. 4.2.
The Color image takes the RGB values of the points that are
projected into the corresponding pixel in the Bump image.
We can thus recover color information of 3D points as well.

3.4 Memory Consumption Analysis

One of the main advantages of our proposed 3D scene rep-
resentation is its low memory consumption compared with
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state-of-the-art volumetric representations. In the ideal case,
for both our 3D scene representation and the volumetric ones,
the empty space is not recorded (using Octrees (Zeng et al.
2013), patch volumes (Henry et al. 2013) or spatial hash
tables (Neibner et al. 2013) are examples on how to come
close to this ideal case for the volumetric TSDF representa-
tion).

Let us consider a 3D scene composed of N points. Then,
for our 3D scene representation each point is recorded in
one pixel with one 8-bits mask value, three 8-bits color val-
ues and three 16-bits bump values. Thus, our representation
requires in total and in the ideal case N x 10 octets to build
an accurate 3D model of the scene. Note that the amount of
memory required to store the parameters of surface patches
(i.e. the surfaces’ equations and bounding boxes) is negligi-
ble compared to the amount of memory required to record
all the points in the scene.

For the volumetric TSDF representation, on the other
hand, a few voxels around the actual 3D position of each point
are necessary to accumulate data. Considering the noise of
the Kinect camera, we assume that voxels up to 5 cm in front
and behind (with respect to the viewing direction) the posi-
tion of each 3D point are required. With a resolution of 4 mm
per voxel, this means that 20 voxels in front and behind are
required for accurate reconstruction. At each voxel, a 8-bits
mask value, three 8-bits color values and one 32-bits TSDF
value are recorded. Therefore in total the volumetric repre-
sentation requires in total and in the ideal case N x 328 octets
to build an accurate 3D model of the scene.

As we see from the above arguments, our proposed 3D
scene representation achieves significant gain in memory
consumption compared with state-of-the-art volumetric rep-
resentations (more than 95% of lossless compression in this
example). Note that since we employ 2D images, 2D image
compression techniques such as JPEG can be employed to
further reduce memory consumption.

4 3D Modeling

Our proposed 3D modeling algorithm follows the stan-
dard frame-to-global-model 3D reconstruction framework.
Namely, given a current state of the global 3D model and
an input RGB-D image, the algorithm first tracks the camera
motion by aligning the input RGB-D image with a predicted
one (rendered from the global model). The global model is
then updated with new data before processing the next input
RGB-D image. To successfully and efficiently perform this
framework, challenging tasks are: (1) efficient rendering of
our proposed 3D representation to produce predicted RGB-
D images; (2) fast and accurate camera motion tracking; (3)
fast and coherent update of our proposed 3D representation
with aligned input RGB-D images.

We propose to render a dense and high quality predicted
RGB-D image from our proposed 3D representation using
OpenGL and the implicit quadrangulation given by the 2D
discretization of each surface patch (see Sect. 4.1). Aligned
measurements are then fused into the predicted RGB-D
image before updating our proposed 3D representation with
fused data. New surface patches, if any, are then detected as
the camera moves through the scene.? The whole pipeline of
our proposed method is illustrated in Fig. 3.

4.1 Camera Tracking

Accurately tracking the camera is of crucial importance for
any 3D reconstruction method. As proposed in Henry et al.
(2013), we also employ the GICP (Segal et al. 2009) algo-
rithm combined with color information because it is fast with
sufficient accuracy when using RGB-D sensors.

For the linearized GICP to work well, a key issue is to
align incoming frames with a dense and high-quality pre-
dicted depth image. Directly projecting all the points of the
global model into the current camera plane is not appropri-
ate. This is because (1) parts of the scene that are close to
the camera would produce relatively sparse depth informa-
tion and (2) handling occlusions would require significant
efforts. Instead, we take advantage of the natural quadrangu-
lation given by the 2D image discretization to render a depth
image using meshes.

From the Mask image of each surface patch, we identify
effective quads (i.e., quads that have positive mask values
at their four summits) as illustrated in Fig. 4. This straight-
forwardly gives us a quadrangulation for each surface patch,
which can be quickly rendered into the current camera plane
using a rasterising rendering pipeline. Note that for a given
camera pose, only surface patches intersecting with the per-
spective frustum of the current camera pose are rendered,
which eases computation.

Using the rendered color image is not good for the regis-
tration task. This is because small errors in camera tracking,
misalignments between depth and color images and motion
blur tend to blur the color image, which is fatal when opti-
mising the alignment. To avoid this problem, we use the color
image of the previous frame superimposed over our predicted
depth image to align the current frame.

4.2 Updating Model with Live Measurements

With the estimated camera pose, and live RGB-D mea-
surements, we can now update and refine our 3D scene
representation. As proposed in Newcombe et al. (2011) we

employ the running average in the camera plane domain to

2 Note that in our implementation the plane detection is run every 20
frames.
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Fig. 3 The pipeline of our proposed method. We employ GICP com-
bined with color information (Henry et al. 2013) to track the camera
position from the input and predicted RGB-D images. The predicted
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Fig. 4 Quads identification from the Mask image. A quad is identified
whenever all mask values at the four summits are greater or equal to 1

reduce input noise. Points lying within § cm deviation to the
global model are used to update the global model (we used
8 = 10.0in Sect. 5). Note that a crucial, implicit assumption
for this approach to be efficient is that all measurements that
are averaged together must come from the same point on the
scene. This is why registering incoming frame has to be done
before integration and is a crucial process.

However, even if the registration process is successful a
problem arises due to noise when integrating new depth mea-
surements directly into the Bump image as seen in Hernandez
etal. (2012). Namely, the problem is that (as shown in Figs. 5,
6) due to noise the same point viewed in two different frames
may be projected into different pixel coordinates in the Bump
image (Fig. 5), and also two different points of the scene may
be projected into the same pixel of the Bump image (Fig. 6).
This results into erroneous averaging computations. In order
to avoid this problem, the integration process should be exe-
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RGB-D image is obtained by rendering the global 3D model in the cur-
rent camera image plane. Measurements are fused in the camera plane
and then recorded into each surface patch’s attributes
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Fig. 5 Because of noise in the line of sight, noisy measurements of the
same 3D point may project into different pixels in the Bump image

cuted directly in the camera plane domain rather than in the
Bump image domain. This is because noise in a depth image
obtained with an RGB-D camera is mainly distributed along
the viewing direction.’

To do so, the currently aligned depth image is merged
with the predicted depth image using a rendered Mask image.
Newly obtained 3D points are then projected onto different
surface patches and the attributes of each surface patch are
updated by replacing mask, color and bump values with the
newly computed ones (if available).

3 Radial distortion as exhibited in Zhou et al. (2013) is ignored in this
work. How to properly handle this noise is left for future work (Zhou
et al. 2013) is a pointer about how to handle such a noise).
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Fig. 6 Because of noise in the line of sight, noisy measurements of
two different 3D points may project into the same pixel in the Bump
image

Letus consider an RGB-Dimage (D, rgbys) (where Dy
is the depth image and rgby, is the color image) rendered
at the current camera pose, and a newly acquired RGB-D
image (D7, rgbr). We also render a projected Mask image
7 Mask in the same way as for (D, rgbys) but by replac-
ing the RGB values of vertices with the mask values. This
allows us to perform a running average. Thereafter we merge
the two RGB-D images using the Mask image and visibility
constraints.

Let (i, j) be a pixel, (Dyerged, ¥ &bmerged) be the merged
RGB-Dimage and 7 M askyergeq be the merged Mask image.
Then Dyergeq(i, j) is computed as follows:

Dierged (i, j) = Dm(i, J)

and w Maskpergea(i, j) = mMask(i, j)

if D7 (i, j) is not available

Dierged (i, j) = Dr (i, j)

and m Maskpergea(i, j) =1

if Dy (i, j) is not available

Dierged(i, j) = Dr (i, j)

and m Maskpergea(i, j) =1

if Dy (i, j) > Dr(i, j) + 8 (occlusion)

Diergea (i, j) = Dy (. )

and wr Maskpergea(i, j) = mMask(, j) — 1

if Dy (i, j) < Dr(i, j) — & (visibility violation)

Dr(i, j) +wMask(i, j) x Dy (i, j)
1+ nMask(, j)

and m Maskmergea(i, j) = mMask(i, j) + 1 otherwise.

Dmerged(i, J) =

The threshold § is used to check visibility violations and
occlusions (we used § = 10.0 in Sect. 5). Note that the color
image rgbpergea 1s set to the input one (no averaging) to

Algorithm 1 Merge

Require: Two aligned depth images Dy and D)y, their color images
rbgr and rgby, and a projected Mask image 7w Mask corresponding
to Dy.

Ensure: A merged depth image Djyerge, a color image rgbyerge and
an updated projected Mask image m Maskperge-
for (i € [1:col], j € [1: row]) (col and row are the number of
columns and rows respectively in the depth images) do

if D7 (i, j) is not available then
Dmerge(i, ]) <~ DM(i’ ])
aTMaskpyerge(i, j) < mMask(i, j)
else if Dy (i, j) is not available then
Dmerge(iv ]) <~ Dr(, J)
ﬂMas,‘merge(iv J) <1
else if Dy (i, j) > D7 (i, j) + 6 (occlusion) then
Dmerge(i, ]) <~ Dr(, ])
aMaskpyerge(d, j) <1
else if Dy (i, j) < Dr(i, j) — 8 (visibility violation) then
Dmerge(iv ]) <~ Dy (i, J)
TMaskmerge (i, j) < mMask(i, j) — 1
Dierge(i, ) <« CrGDEDgl prbtusk i
T Maskperge(i, j) < wMask(i, j) + 1
end if
end for
rgbmerge <~ rng
return Dyerge, '8bmerge and mMaskperge

avoid motion blurring as much as possible (this helps camera
motion tracking when using color). This process is detailed
in Algorithm 1.

From the merged RGB-D image we can compute a new
set of 3D points and record them into the attributes of each
surface patch. Each point is first projected onto its corre-
sponding surface patch. Then, for a point p, if the mask
value at the projected pixel is smaller than that of p, then
mask, color and bump values are all replaced by the newly
computed values for the point p. Note that if the mask val-
ues are the same, then we record the values of the point
closest to the surface patch. This process is detailed in
Algorithm 2.

Overall, our method (1) aligns the input RGB-D image
(D1, rgbr) to the predicted one (Dyy, rgbys); (2) renders
our proposed 3D representation in the current camera plane
to produce a new pair of predicted RGB-D and mask images
(D, rgby, mMask); (3) merges input data (D7, rgbr)
into the newly computed RGB-D image (Dyy, rgbys) using
the mask image w Mask; (4) updates our proposed 3D model
using the merged data (Dyyerge, F€bmerges T Maskyerge) and
(4) detects new planar patches from a residual RGB-D image.
This last residual image is computed by removing from
(Dimerge, Y8&bmerge) all points that already belong to a sur-
face patch. With the updated 3D scene representation, we
can now proceed to the next frame. This process is detailed
in Algorithm 3.
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Algorithm 2 UpdateBumpImage

Require: A depth image D, a color image rgb and its corresponding
projected Mask image 7w Mask; a Bump Image Bump, a Color image
RG B and a Mask image Mask corresponding to a surface patch y.

Ensure: The updated Bump Image Bump, Color image RGB and
Mask image Mask.
for i € [l:coll,je[l:row]) do

p(, j) < vertex at pixel (i, j) in D
p'(i, j) < vertex in global coordinate system.
(k, q) < discr(m, (', 1))
if Mask(k,q) < wMask(i, j) then
Bump(k, q) < [, (0 (i, )0 x m — i, 70, (0 (i, )] x [ —
7o @G, j) =y, (' G D)) -0y (ry, (', 7)))] (Section 3.2)
RGB(k, q) < rgb(, j)
Mask(k, q) < mMask(i, j)
end if
end for
return Bump, RGB and Mask

Algorithm 3 3D modeling

Require: A predicted depth image Dy and the color image rgby,
the current camera pose 7Tpos, an input depth image D7 and
the color image rgbr, a set of parametric surface patches I' =
{v1, v2, ..., yu} withtheir attributes { Bump1, Bump>, ..., Bump,},
{RGB1,RGB,, ..., RGB,} and {Mask, Mask,, ..., Mask,}.

Ensure: A new predicted depth image Djerge and color image
r8bmerge and an updated set of parametric surface patches I'" with
their updated attributes.

Teurr < AlignGICP(Dr, rgbr, Dy, rgby) (Henry et al. 2013)
T[)OSE <~ T[)OSE * Trurr

(Dp, rgbyr, m Mask) < RenderMesh(T, T;glse) (Section 4.1)
(Dmerge» rgbmerge’ nMaSkmerge) < Merge(Dr, rgbr, Dy, rgbu,
wMask)

for (i € [1:n]) do

(Bump;, RGB;, Mask;) <« UpdateBumplmage (Dperges
rgbmerge’ ﬂMas}‘mergea Vi)
end for

I'" < DetectAndAddNewSurface(Dyerge, )
return Dyyerge, F8bmerge and TV

5 Indoor Scene Reconstruction

We demonstrate the advantages of using our proposed 3D
parametric surface representation for the task of 3D model-
ing. Namely, we applied our proposed 3D representation to
indoor scene reconstruction using a single hand-held RGB-D
camera. The scene is assumed to be static and the objective
is to quickly output an accurate 3D model of the scene.

5.1 Planar Patch Based Representation

We reason that an indoor static scene can be described using
simple parametric surfaces such as planes because it is mainly
composed of man-made objects (such as table, wall and stor-
age for example), with rather simple shapes. We thus used
planes as parametric surfaces and we represented an indoor
scene as a set of planar patches having attributes as discussed
Sect. 3. Each planar patch is identified by its plane equation
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Fig. 7 The proposed 3D representation for indoor static scenes. The
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and a bounding box. An example of our proposed 3D scene
representation for an indoor scene is shown in Fig. 7. We
discuss in the following of this section how to detect and
manipulate the planar patches.

Planar patches segmentation We detect different planes in
a depth image by using the gradient image of the normal
image. From the gradient image, we identify contours and
extract connected components in the depth image. For each
connected component that represents one object, we apply
RANSAC to fit a plane. Once the plane equation is com-
puted, we identify the bounding box of all planar patches
and initialise their attributes. A planar patch segmentation of
a depth image is illustrated in Fig. 8.

To identify contour pixels in the depth image we apply
the Canny edge detector (Canny 1986) on the normal image.
This detector executes sequentially Sobel filter, Hysteresis
filter and Non-max reduction. The output of the detector is
a binary image with 1 in smooth regions and 0 at contour
locations. We apply an erosion filter (with size 2 pixels in the
experiments) to close the contours and identify connected
components in the binary image using OpenCV’s floodFill
function.

The basic idea here is that each smooth region represents
an object, and that each object is mostly distributed around a
plane (for the case of indoor scenes). To compute the plane
equation that best fit each region, we execute RANSAC on
GPU for each region. Because noisy measurements can cause
leaking of one object into another (often happens in prac-
tice), or because one object may be distributed along multiple
planes (like a cylinder for example) we iteratively refine the
segmentation as follows.
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Depth image

Gradient image

Fig. 8 Example of a planar patches segmentation of a depth image.
First, contours in the the depth image are identified using the gradient
image. Then the depth image is segmented out by identifying connected
components in the binary image corresponding to the contours (i.e. the

Pixels that were initially labelled in a region but do not
belong to the fitted plane are unlabelled. This generates a
residual mask image that is applied to the original contour
image. Namely, for each pixel in the contour image, if the
pixel is already labelled then the value of the contour at this
pixel becomes 0. Then again, connected components identi-
fication followed by RANSAC is executed. This iteration is
repeated until no more plane is detected. A plane is detected
if it contains sufficient number of points (2000 points in the
experiments).

Note that at each new RGB-D frame the label image is
initialised using previously computed planar patches. To be
more precise, the label image is first obtained by rendering
each planar patch in the current camera image plane with its
label as color. This significantly reduces the computational
cost of segmentation at run-time since only a small part of
the depth image needs to be segmented.

Resizing planar patches From a single depth image, only
some parts of planes are visible in general (like the ground
for example). It is not possible to know the complete size of
a plane right after detecting it. Therefore, we dynamically
resize each plane (i.e. its bounding box) with live measure-
ments. To do so, we use an arbitrary resizing step s (s = 32
pixels in the experiments). At each iteration, we evaluate
whether points are added close to the boundary (closer than
a distance of s). If added, we extend the size of the bound-
ing box by s in the corresponding direction (for example, if
points are close to the left boundary, then the bounding box’s
size is extended in the left direction). The information for the
bounding box is updated accordingly to the new one and the
Mask, Color and Bump images are re-sized.

Merging two planar patches Because of noise in the depth
images, one planar region may be segmented into two con-
nected regions in the planar patch segmentation process.
Then multiple planes may represent the same parts of the
scene, which must be avoided. We identify such planes by
computing the intersection of the bounding boxes of planes
having similar parameters. If two planes have non-empty
intersection between their bounding boxes, then the two
planes are merged. To do so, we identify the parameters
(n, d) of the largest plane and compute the union of the

Identify planes attributes

Segmented image

image with 1 if the pixel is a contour, O otherwise). Finally, for each seg-
ment the plane equation fitted to the points in the segment is computed
and the attributes are initialised

two bounding boxes of the largest plane and a plane to be
merged in order to create the bounding box of the merged
plane. Thereafter, points from the two planes are projected
onto the merged plane with their respective color and mask
values. Note that if two points project onto the same pixel
in the merged plane, only the one with the maximum mask
value is kept.

5.2 Experimental Results

We evaluated our algorithm using data that we captured using
a Microsoft Kinect for Windows V1 sensor. All scenes were
captured at 30 fps. If not stated otherwise, we used a res-
olution (i.e., size of one pixel) of 0.4 cm for the attribute
images. We quantitatively and qualitatively evaluated the per-
formances of our proposed method by comparing our results
with those obtained using the Infinitam software (Kahler
et al. 2015), which is a recent software that implements most
recent techniques for 3D reconstruction using a TSDF 3D
representation. We ran both our method and Infinitam on a
MacBook Pro Retina with a 2.8 GHz Intel Core i7 proces-
sor and an AMD Radeon R9 M370X 2048MB Graphic card.
Because the graphic card we used does not support CUDA,
we implemented our proposed method using OpenCL and
we ran Infinitam on the CPU (only CUDA GPU imple-
mentation was available). As a consequence we could not
report processing speed of Infinitam on our dataset.* With
our OpenCL implementation of our proposed method we
processed the 640 x 480 RGB-D image sequences at 12 fps
in average. Datasets used for the experiments shown in this
paper are publicly available (https:/sites.google.com/site/
diegotthomas/datasets) and summarised in Table 1 (the size
is given as length x width x height). Note that we ran Infini-
tam with the parameters as set in the code available at http://
www.robots.ox.ac.uk/~victor/infinitam/download.html.

For all results we report in Table 2 the maximal amount of
GPU and CPU memory usage at run-time with our method.
The maximal amount of CPU memory usage corresponds to
the value read from the Windows task manager toolkit. It

4 For information, Infinitam was reported to run above 20 fps.
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Table 1 Dimensions of datasets (available at https://sites.google.com/
site/diegotthomas/datasets.) used to produce our experimental results

Name of dataset (Length x width x height) # frames
DESK 2mx Ilm x 1 m 880
LOUNGE 8mx45m x 2.5m 3000
LIBRARY 60mx5mx25m 19,900
LIBRARY- 2 40m x 3m x 2.5m 11,000
KITCHEN Smx4mx25m 3730
HumaN 45mx3mx25m 1260
CORRIDOR I11lmx25mx25m 1600

takes into account not only the amount of memory required
to maintain the 3D model but also the memory usage of the
whole application. We thus also report (in parenthesis) the
amount of memory dedicated to maintain only the raw data of
our 3D representation (i.e., the three Bump, Color and Mask
images for each planar patch). We also report in Table 2,
for each dataset, the size in the hard drive of the produced
3D model, the number of planar patches that compose it,
the number of 3D points represented and the mean, minimal
and maximal fps at run-time. For comparison purpose, we
also show in Table 2 the CPU memory usage (read from the
Windows task manager) at run-time of Infinitam (GPU was
not available), the size in the hard drive of the produced 3D
mesh and the number of 3D points represented. Note that in
some cases, the Infinitam software pre-allocated memory for
the 3D reconstruction and we had memory usage of 931 MB,
though the amount of memory actually used to maintain the
3D model was probably lot less.

On the CPU, our raw data (i.e., uncompressed images)
of the Bump, Color and Mask images for each planar patch
are kept in memory to maintain our built 3D model. Once
saved on the hard drive, the images are compressed using file
format. This is why the size of the files in the hard drive is
less than the reported CPU memory usage. On the GPU, at
runtime, for each visible planar patch (the number of visible
patches is bounded by the visual frustum) we maintain (in
addition to the raw Bump, Color and Mask images) a vertex
buffer object and quads indices to allow fast OpenGL ren-
dering. This speeds up reconstruction but increases memory
footprint. Note that planar patches that do not appear in the
visual frustrum for a certain amount of time (100 frames in
our experiments) are unloaded from the GPU on-the-fly, and
the Bump, Color and Mask images are kept on the CPU to
save GPU memory space. As a consequence, the amount of
memory used in the GPU is independent from the overall
size of he scene.’

5 The GPU memory usage at run-time depends only on the complexity
of the scene (i.e., number and size of planar patches in the current visual
frustrum).
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We first applied our method to a small-scale scene to see
the ability of our proposed method for reconstructing fine
geometric details. We scanned a closed view of a desk, called
DESK (see Table 1). Note that we chose a simple scene so
that planar patches allow the representation of most of cap-
tured 3D points. This allows us to quantitatively evaluate
reconstruction accuracy for all points obtained with the vol-
umetric reconstruction of Infinitam. Figure 9a, b show the
results obtained with our method and with Infinitam, respec-
tively. Note that, in this experiment, we ran out method with
aresolution of 0.2 cm for the attribute images. Our produced
3D model consisted of 13 planar patches having each a Bump,
Color and Mask image. It took 3.05 MB of memory space
and represented 534,490 3D points with color. The raw .stl
file generated by Infinitam was about 18.1 MB. We loaded
this model into MeshLab and merged duplicated vertices,
which decreased the number of vertices from 1,112,142 to
208,843. We then exported the 3D mesh to a binary .ply file
(without color), which was of size 7.15 MB. At run-time, our
proposed method ran at 13.5 fps in average, with a maximum
of 14.5 fps and a minimum of 13 fps.®

o0 quantitatively evaluate reconstruction accuracy, we first
aligned the cloud of points obtained with our method (Fig. 9a)
with that obtained with Infinitam (Fig. 9b) using the ICP
algorithm provided by the PCL library (http://pointclouds.
org), and then computed the Euclidean distance between each
point obtained with Infinitam and its closest point obtained
with our proposed method. Figure 9c illustrates distances
as a heat map. From Fig. 9, we can see that the 3D model
obtained by our method has almost the same accuracy with
that obtained by Infinitam, while using two times less amount
of memory space. Note that with our proposed 3D represen-
tation we also recorded color of the 3D scene.

To attest the ability of our proposed method for recon-
structing large-scale 3D scenes we ran three experiments
using one large and two very-large scale scene. First we
produced results with our method and Infinitam using
the data LOUNGE of size about 8§ m x4.5m x 2.5m
(see Table 1) publicly available at http://www.stanford.edu/
~qianyizh/projects/scenedata.html. This data represents a
fairly large scale indoor 3D scene (far beyond the capac-
ities of the original KinectFusion algorithm). The results
in Fig. 10 show that our proposed method can success-
fully reconstruct a large-scale scene in details. The resources
used to obtain the 3D model in our representation are given
in Table 2.7 Results obtained with Infinitam with this data
were not good because of incorrect camera tracking. This
probably happened because of fast camera motion. The

6 Memory usage at run-time was less than 150 MB on the GPU and
less than 35 MB on the CPU.

7 At run-time, the GPU memory usage never exceeded 300 MB, while
the number of visible planar patches never exceeded 28 planes.
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Table 2 Detailed memory usage on GPU and CPU at run time, 3D models’ size, number of planar patches and number of 3D points represented,

and mean, minimal and maximal fps at run-time

GPU CPU # patch Size # points fps
Max (MB) Max (MB) (MB) After unification Mean Min Max
DESK Our method 150 149 (35) 13 3.05 534,490 13.5 13 14.5
Infinitam - 931 - 7.15 208,843 - - -
LOUNGE Our method 300 512 (388) 204 341 4,634,811 13.5 12.5 16
Infinitam - 429 - 165.4 4,859,909 - - -
LIBRARY Our method 447 2340 (2180) 972 256.1 34,502,106 11.3 8.5 14.5
Infinitam - Failed - Failed Failed - - -
LIBRARY- 2 Our method 311 1178 (881) 365 98.8 17,661,018 13.5 10 17.5
Infinitam - Failed - Failed Failed - - -
KITCHEN Our method 220 341 (133) 60 12.2 2,456,257 13 10.5 16
Infinitam - 261 - 97 2,739,421 - - -
HUMAN Our method 160 236 (76) 51 7.71 1,233,470 12.5 11 16.5
Infinitam - 931 - 97 2,830,081 - - -
CORRIDOR Our method 250 265 (140) 38 14.5 3,114,343 14 12 16
Infinitam - 931 - 161 4,724,034 - — -
Bold values indicate that the 3D models built with our proposed method have low memory footprint
>1.0cm
- 0.66 cm
- 0.33 cm
0.0cm

(a)

(b)

Fig. 9 Results obtained with data DESK. The results obtained with our proposed method were about the same accuracy as those obtained with
Infinitam, while using two times less amount of memory. a Our method. b Infinitam. ¢ Error image

(b)

Fig. 10 Results obtained with data LOUNGE from 3D Scene Dataset
with our method and Infinitam. a Our method. b Infinitam

3D mesh generated by Infinitam contained about 4,859,909
3D points after unifying duplicated vertices. It took about
165.4 MB of memory space after recording it as a binary

.ply file. Note that our 3D representation also have color
while color was not available in the 3D mesh built by Infini-
tam.

Second, we captured two large scale scenes using the
Kinect for Windows V1 sensor. The sequences were cap-
tured in a library and results obtained with our method
are shown in Figs. 11 and 12. The two datasets are called
LIBRARY and LIBRARY- 2, whose dimensions are given in
Table 1. As we can see from Figs. 11 and 12, though
reconstruction results are satisfactory locally, globally results
are not good. This is because of the accumulation of drift
errors that inevitably occur when tracking camera move-
ments. In particular sequences taken when walking through
desks were challenging for the camera tracking because
of few salient features (texture was quite uniform and the
shape of the desks with chairs present several symmetries).
This resulted in quite dramatic errors in camera pose esti-
mation at large scale and poor quality of the global 3D
reconstruction. To overcome this problem a loop closure
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Fig. 11 Results obtained with data LIBRARY with our method. a Result
obtained with our method. b Zoom 1, zoom 2, zoom 3

algorithm should be used to re-position all planar patches
together in a consistent manner, which is left for future
work.

The resources used to build the 3D models in our repre-
sentation with datasets LIBRARY and LIBRARY- 2 are given
in Table 2.3 From these results, we can confirm that our pro-
posed representation is promising to reconstruct very-large
scale 3D scenes, because the GPU memory usage at run time
is, as expected, low and independent from the size of the
scene, and our method can also process long sequences of
RGB-D images in real-time. We note that the Infinitam soft-
ware could not process the whole RGB-D image sequence
and failed in producing a complete 3D model with both data
LIBRARY and LIBRARY- 2.

To illustrate the usefulness of combining both depth and
color images for tracking camera motion, we captured an
indoor scene called KITCHEN (of about 5m x 4m x 2.5m)
containing parts that do not have rich geometric features (as
shown in Fig. 13) and we compared results by our method
with and without using color and results obtained with Infini-
tam (which does not use color). In such a case using depth
alone fails, as shown in Fig. 14b, c. However, by combining
both depth and color images, as expected, we could success-
fully track the camera and reconstruct the 3D scene as shown
in Fig. 14a.

Figure 15 shows reconstruction results of a scene with
non-planar objects. We can see from Fig. 15 that, in this
scenario, the choice of the plane as the underlying parametric
surface is not well adapted to reconstruct the human body. In
particular the head is poorly reconstructed: only half of the
head is reconstructed and with poor resolution. The results

8 The memory usage at run-time with data LIBRARY never exceeded
447 MB in the GPU and 2180 MB in the CPU. The memory usage at
run-time with data LIBRARY- 2 never exceeded 311 MB in the GPU and
881 MB in the CPU.
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Fig. 12 Results obtained with data LIBRARY-2 with our method.
Result obtained with our method

Fig. 13 Two input RGB-D images of the KITCHEN data-set and current
3D reconstruction captured from the Infinitam software

obtained using Infinitam, which allows for arbitrary shape,
were better than those obtained with our proposed method in
this scenario. This experiment indicates that depending on the
scene to reconstruct, it may be better to use more complicated
3D surfaces than the 3D plane. Actually it has been shown
in Anasosalu et al. (2013) that to accurately reconstruct the
human head, a sphere as the underlying parametric shape is
a better choice.

To show the advantage, in this case, of using a different
parametric shape to build our 3D representation we imple-
mented a simple example for the reconstruction of the human
head. As shown in Fig. 16, we manually fit a sphere over the
head from the first RGB-D frame of the HUMAN sequence.
We then ran our proposed method by adding this sphere as
an additional surface patch. Note that in order not to have
duplicated points we did not detect any planar patches in
the region around the sphere. Results shown in Fig. 17 show
that the sphere is a more appropriate underlying parametric
shape to reconstruct the human head. By using the sphere we
could reconstruct a denser and more precise 3D model of the
human head. Note that how to automatically detect and fit
the best parametric shapes to support the 3D reconstruction
using our proposed 3D representation is another issue, and
left for future work.

To demonstrate the advantage of building structured 3D
models (like our proposed 3D representation) over unstruc-
tured 3D models (like TSDF, meshes or cloud of points as
those built by KinectFusion or Infinitam) we captured an
RGB-D image sequence called CORRIDOR where parts of
the sequence have neither geometric nor color features. This
situation often happens when dealing with uniform indoor
scenes. For example when building a 3D model of a build-
ing, one has to walk through corridors as shown in Fig. 18a,
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(b)

()

Fig. 14 Results obtained by our method with and without using color and Infinitam with the KITCHEN data-set. The low memory usage of our
proposed method allows us to combine geometric and color information for robust camera tracking. a Our method with color. b Our method without

color. ¢ Infinitam

Fig. 15 Results obtained with data HUMAN with our method and with
Infinitam. a Our method. b Infinitam

(b)

Fig. 16 Manual initialisation of the sphere to build the human head. a
First input image. b A sphere is fit to the head

Fig. 17 Results obtained with our method using only planes (a) for
3D reconstruction, or with adding a sphere for better reconstruction of
the head (b)

which generally lack in salient features. In such a case, as
shown in Fig. 19, camera tracking is not possible and recon-
struction fails. To help tracking the camera motion, adding

(b)

Fig. 18 Two input images from data CORRIDOR with and without
dummy objects captured from the Infinitam output. a Corridor with-
out dummy objects. b Corridor with dummy objects

Fig. 19 Results obtained with our method and with Infinitam for the
sequence CORRIDOR that contains parts without either rich geometric
or color features. The reconstruction failed because the camera motion
could not be tracked. a Our method. b Infinitam

dummy objects in the scene is possible (Fig. 18b). Then,
thanks to successful camera tracking, any 3D reconstruction
technique can be applied (note that Infinitam did not perform
so well in Fig. 20b probably because color information was
also needed to correctly track the camera in this case). How-
ever the built 3D models then contains the dummy objects as
shown in Fig. 20, which is not desirable since the objective
is to reconstruct the corridor without dummy objects. If the
built 3D model is an unstructured 3D mesh or cloud of points
as those produced by Inifnitam, then editing the 3D model to
remove the dummy objects and close holes in the ground is
difficult. By contrast, thanks to our output that is structured
into several planar patches, it is straightforward to remove
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Fig. 20 Results obtained with our method and with Infinitam for the
sequence CORRIDORDUMMY that contains several additional objects
compared to the sequence CORRIDOR. Accurate camera trajectory could
be estimated thanks to the additional dummy objects. a Our method. b
Infinitam

¥ i
) -

v
(a) '

Fig. 21 After running our proposed method, additional objects can be
easily removed from the built 3D model to obtain the desired (feature-
less) 3D scene. a Texture images before (#p) and after (down) inpainting.
b Edited 3D model

(b)

Fig. 22 Results obtained with our method for the data-set KITCHEN.
Our proposed method directly generate segmented 3D models. It is then
straightforward to isolate or remove specific objects. a Our 3D model.
b Table isolated. ¢ Table removed

the dummy objects. Moreover, because editing our built 3D
model comes down to manipulating 2D images, it is easy to
simply inpaint the Bump, Mask and Color images to close
holes as shown in Fig. 21a. Actually, by using our method
only we could successfully build the corridor without the
dummy objects, as shown in Fig. 21b.

In Fig. 22, we illustrate one interesting output of our scene
representation. That is, more than 3D meshes, our method
directly outputs roughly segmented 3D meshes. Therefore,
we can easily remove some parts of the reconstructed scene
directly after reconstruction; this enriches possible usage of
our method as seen below. The example shown in Fig. 22
was obtained by simply hiding mesh layers in MeshLab. As
we can see it becomes easy to remove undesired objects from
the reconstructed scene (see Fig. 22c), or on the contrary to
keep only objects of interest (see Fig. 22b).

@ Springer

6 Discussion

3D imaging is still at its blabbering stage compared with
2D imaging. Recently, tools became available that allow to
automatically build high fidelity 3D models from inexpen-
sive consumer depth cameras (as shown above). However,
simply outputting raw data alone (such as an unstructured
dense cloud of 3D points) is largely insufficient to broaden
the range of applications for automatic 3D modeling. For
example, most of applications for 3D modeling (e.g., robot
navigation, scientific simulations or entertainment) require
to navigate in the 3D model at interactive frame rate. This
requires access to multiple levels of details for each part of
the 3D model. Moreover, the possibility to easily edit the
generated 3D model is of outmost importance for applica-
tions in virtual reality or artistic design. In this section, we
discuss about the advantages of using our proposed 3D scene
representation (i.e. parametric surface patches augmented by
geometric and color texture images) against state-of-the-art
3D representations (e.g., cloud of point, 3D meshes or volu-
metric TSDF) for various post-processing operations.

6.1 Fast Rendering at Multiple Level of Details

State-of-the-art 3D modeling methods can output 3D models
with resolution (i.e. average distance between neighbouring
points) about the milimeter. As shown in Fig. 9 a 3D model
generated by Infinitam for a small scene of about 2 by 1 m
already contains more than two hundred thouthands of points.
When the size of the scene is increasing, rendering the 3D sur-
face quickly requires a huge amount of resources. This limits
usage of 3D models built using KinectFusion-like softwares
to small scale scenes only. Simplifying the output 3D mesh
as done in Zhou et al. (2013) works only for untextured ren-
dering. However, when textured rendering is required (which
drastically improves visual impression), simplifying the 3D
mesh results in dramatically decreasing the amount of details
in the rendered image.

In computer graphics, to achieve fast rendering with keep-
ing sufficient level of details in both color and geometry,
independently of the size of the scene, rendering at multi-
ple levels of details is commonly used. The concept is that
surfaces far from the camera are rendered with low level
of details, while surfaces close to the camera are rendered
with high level of details. This drastically reduces render-
ing processing time. In this section, we show that by using
our proposed 3D scene representation, it becomes possible
to map color and normal images with various resolutions
onto coarse meshes to perform rendering at multiple levels
of details and at interactive frame-rate independently of the
scale of the scene.

Figure 23 shows an example of full resolution Bump,
Color, Alpha and Normal images for a planar patch generated
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Bump Image (Z channel) Color image

Alpha image Normal image

Fig. 23 Illustration of the computed alpha and normal images for a given Color and Bump image. Empty regions in the Bump image that are
covered by a triangle are visible in the Normal image with grey color (inside the red circles) (Color figure online)

(a) (b)

Fig. 24 A light, yet detailed rendering of our built 3D model by tak-
ing advantage of texture mapping. a The geometrically simplified 3D
mesh has a sparse triangulation. b Rendering the simplified mesh with-
out texture mapping produces unsatisfactory results because of the loss
in color information. ¢, d Visually detailed rendering with relighting

by our proposed method (as explained in Sect. 5). Figure 24
shows an example of a light, yet detailed 3D rendering of
this planar patch. This example also illustrates the limitation
of standard mesh simplification. A geometric mesh simplifi-
cation will remove most of points inside the wall, which do
not contain geometric details (Fig. 24a). As a consequence
the 3D mesh generated in this way will lose most of its color
details (Fig. 24b). However, with our method, it was possible
to map the color and normal image onto the simplified mesh
to generate detailed rendering (Fig. 24c, d). In the remaining
of this section, we detail how to produce such a rendered
image in this example.

Note that in a post-process, it would be possible to com-
pute texture images that could be mapped over a 3D mesh
built from a TSDF 3D representation of the scene. This would
then allow rendering the scene at multiple levels of detail
by modifying the resolution of the texture image and by
simplifying the 3D mesh. However, our proposed method
has the advantage that it allows building the texture images
on-the-fly independently of the size of the scene to be recon-
structed.

To achieve scale independence, loading the whole 3D
model at the full level of details is not realistic. If the scene is
large, loading all data at once may require a huge amount of

(d)

and color could be obtained by mapping the color and normal images
produced by our proposed 3D modeling method onto the simplified 3D
mesh. a Sparse triangulation. b No texture mapping. ¢ Detailed texture.
d Detailed geometry

resources. Rather, for each surface patch that composes the
scene, we load its attributes at the level of details that corre-
sponds to the current viewpoint. Namely, we employ three
levels of details, from the coarsest level [v/ 1 (for patches
farther than 10 meters from the camera centre), to the finest
level [vl 3 (for patches closer than 3 meters from the camera
centre). At [vl1 the attribute images are down sampled to
32 x 32 pixels, and at [vl2 the images are down sampled to
half the resolution of the original images in both dimensions.
Every time sufficient movement of the camera is observed,
attributes of surface patches are updated (if needed). At every
update of a surface patch’s attributes, we have to (1) compute
the mesh simplification and (2) compute the normal image.

3D mesh simplification For each surface patch, we build a
coarse triangular mesh onto which its attribute images will
be mapped. For the case of planar patches, the triangulation
is computed from the Bump image (which is of a differ-
ent resolution depending on the level of details required).
First we detect salient points in the Bump image that will be
the mesh vertices. To do so, we compute the gradient image
of the third channel of the Bump image (the channel that
encodes the vertical displacement) and binarize it using sim-
ple thresholding. We then compute the triangulation of the
salient vertices using the standard 2D Delaunay triangula-
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Fig. 25 A planar patch rendered at the three different levels of details.
At level 1 the triangulation contains only a few vertices and the tex-
ture images have low resolution, which produces low detailed rendered
images but with low computational burden. At level 3, there are more
vertices in the triangulation than at level 1 and the texture images have
the full resolution. This produces highly detailed rendered images but
with more expensive computational cost that at level 1. a Lvl 1. b Lvl
2.¢Lvl3

tion (with the 2D coordinates of all vertices being the pixel
indices in the Bump image). Figure 25 illustrates the mesh
simplification for a planar patch at the thee different levels of
details (its attribute color images at the three levels of details
are shown in Fig. 26). The 3D mesh had about 1.5 million
vertices before simplifications, about 3000 vertices after sim-
plification at level 3, about 2000 vertices after simplification
atlevel 2 and about 200 vertices after simplification at level 1.
Note that different sampling strategies can be used depending
on the underlying parametric shape in use.

Normal image computation In the triangular mesh computed
above, each vertex is identified from a salient pixel (u, v)
in the Bump image. Therefore, each vertex has its corre-
sponding 2D coordinates (also called texture coordinates)

in the attribute images. The texture coordinates are simply
width of the Bump image). Mapping the color image onto the
mesh is thus straightforward. However, mapping the color
image only is not sufficient because we also have to ren-
der the geometric details for realistic lighting or untextured
visualisation. To do so, we need to map a normal image
that encodes variations of normal vectors at pixels of the
attribute images. This normal image is computed from the

), where height and width are the height and
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Fig. 26 The attribute color images at the three levels of details used to
generate the renderings in Fig. 25. From left to right, level 3,2 and 1

Bump image (Fig. 23 illustrates such a normal image). We
detail in the following how to compute the normal image.

For each vertex P of the simplified 3D mesh we compute
the orthonormal basis consisting of the normal, the tangent
Tgt and the bitangent BTgt vectors, according to Lengyel
(2001). The normal vector is identical to the normal of the
surface patch. The tangent space has to be aligned such that
the X axis corresponds to the U direction in the Bump image
and the Y axis corresponds to the V direction in the Bump
Image. By doing so, for each point Q in the tangent space of
P we can write

Q — P = (uvg[0] — uvp[0]) Tgt
+ (uvq[1] — uvp[1])BTgt,

where uvp and uvq are the 2D texture coordinates of P and
Q respectively, and uvp[0] and uvp[1] denote the U and V
texture coordinates of P, respectively. Figure 27a illustrates
such an orthonormal basis with a simple example.

For each triangle (sg, 1, s2) in the mesh we compute its
corresponding tangent space and accumulate the base vectors
Tgt and BTgt in its three summits (note that one vertex can
be a summit of multiple triangles). The process is illustrated
in Fig. 27b. Let APos; = s1—sg, APosy = s —sgp, AUV| =
uvy —uvg and AUV, = uvy —uvy, where uvyg, uvy and uvy
are the 2D texture coordinates of sg, s1 and s, respectively.
Tgt and BTgt are obtained by solving

APos; = AUV,[0]Tgt + AUV, [1]BTgt,
APos; = AUV,[0]Tgt + AUV, [1]BTgt.

We now have the solution to this system:

_ APos; x AUV;[1] — APosy x AUV{[1]

r

APos; x AUV1[0] — APos1 x AUV;[0]

r

BTgt =

where r = AUV1[0] x AUV;,[1] — AUV [1] x AUV;[0],
and - denotes the dot product and AUV;[0] and AUV;[1]
denotes the U and V texture coordinates of the ith summit.
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3D world coordinate system

2D texture coordinate system

~ BTgi(0)
IARE 0

(b) uv2=(1,0)

Fig. 27 A toy example that illustrates the computation of the ortho-
normal basis used to compute the Normal image. a For each vertex of
the triangulation, we compute the orthonormal basis that consists of the
normal, the tangent and the bitangent vectors. b Illustration of the com-
putation of the tangent and bitangent vectors for the triangle circled in
red in (a). These vectors are accumulated into the tangent and bitangent
vectors of each summit (Color figure online)

Then, we recompute the tangent and bitangent vectors of the
summits of the triangle. Namely, for each i € {0, 1, 2},

Tgt(si) < Tgt(si) + Tgt,
BTgt(s;) < BTgt(s;) + BTgt,

where Tgt(s;) and Btgt(s;) are the tangent and bitangent
vectors, respectively, of the ith summit. We note that the two
vectors are both initialised to be the 0 vector. Once each face
of the mesh has been processed, for each vertex the basis is
made orthonormal.”

Thereafter, for each pixel in the Bump image we compute
the coordinates of its normal vector n in its local normal, tan-
gent and bitangent basis. To quickly identify which triangle
a pixel belongs to, we draw each triangle (in the 2D space
of texture coordinates) with its index as color. Then trian-

9 (1) The tangent vector is made orthogonal to the normal vector and
normalised and (2) the bitangent vector is made orthogonal to both the
normal and tangent vectors and then normalised.

3D frontal view

3D frontal view with light

C))

3D frontal view 3D frontal view with light

(b)

Attribute Color image

3D frontal view

3D frontal view with light

()

Fig. 28 Example of possible edition of a 3D model constructed using
our proposed method. We implemented a very basic 2D editing tool
(more advanced 2D edition is out of the scope of this paper) that allows
inpainting missing data in both color and geometry shown in (a). a
Initial 3D model and its attribute Color image. b Edited 3D model after
painting to fill part of missing data. ¢ Edited 3D model after removing
some undesired parts

Attribute Color image

gle identification reduces to looking for the color value in an
index image. First, for each pixel we compute its barycen-
tric coordinates (in texture coordinate space) in the triangle to
which the pixel belongs and identify the corresponding inter-
polated normal N, tangent Tgt and bitangent BTgt vectors at
the pixel location (the three vectors are made orthonormal).
Second, we compute the coordinates fi of the actual normal
vector n at the pixel in its local basis:

n[0] = Tgt - n,
n[1] = BTgt - n,
fi[2] = N -n.

Finally, we map each coordinate value so that it ranges
between 0 and 255 (namely, the mapped coordinates are
NMap[i] = 255 x %, i € {0,1,2}) and store it into
the pixel values of the normal image.

Transparency effect Because empty regions of the Bump
images (i.e., regions where the mask values are 0) may be
covered by triangles in the (convex) 2D Delaunay triangula-
tion (as shown in the red circles in Fig. 23), we employ the
Mask image to compute the alpha channel for transparency
effects. The alpha channel of the color image (mapped onto
the 3D mesh) is computed by setting alpha values to O for
pixels with Mask value of 0 and to 255 otherwise. As shown
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With color Without color

(@

Without color

With color (b)

Fig. 29 Example of possible modifications of the 3D geometry of a 3D
model constructed using our proposed method. We simply modified the
Z components (increase or decrease its value with a Gaussian pattern)
of the Bump image to extrude or dig holes in the wall. Note that each
edition was obtained in a few seconds, without much practicing. a Edited
3D model after modifying its 3D geometry (digging holes in this case).
b Edited 3D model after modifying its 3D geometry (extruding moles
in this case)

in Fig. 24, this allows to obtain correct rendering of the 3D
model.

6.2 Easy Editing of the 3D Model

Because of imperfect tracking, imperfect noise correction
or incomplete scanning, constructed 3D models often con-
tain remaining outliers and holes. Enabling the function of
easily correcting undesired artefacts is of great interest to
produce high quality 3D models, even if the corrections have
to be made interactively. Thanks to the parametric surface
representation we output with our proposed method, this
function becomes executable. This is because for each object
in the scene, which is modelled using a surface patch, its
local geometry and appearance is encoded in two 2D images.
Therefore, by simply modifying the 2D attribute images we
can modify the 3D geometry and appearance of the object.
Editing our produced 3D model then reduces to editing its
2D image attributes, which can be done easily and intuitively.
Figures 28 and 29 show examples (with a simple 3D model)
of possible editing that can be done using our produced 3D
models.

7 Conclusion
We proposed a novel 3D representation using a set of para-

metric surface patches that achieves accurate, compact and
efficient 3D reconstruction from an RGB-D image sequence.

@ Springer

By projecting the scene or objects onto different paramet-
ric surface patches that segment the scene, we introduced
attributes to each surface patch in the scene, with which
we can reduce significantly the size required for the scene
representation and thus we can generate a global textured
model that is light in memory use and, nevertheless, accu-
rate and easy to update with live RGB-D measurements. We
remark that it is important to choose the most appropriate
parametric surface depending on the input data to ensure
lossless representation of the scene. Developing a strategy
for finding parametric surfaces that best fit the input data
(which is out of the scope of this paper) is an interesting
direction for future work. We also remark that our proposed
flexible 3D representation has an advantage against standard
TSDF representations at very large scale. In these situations,
the standard TSDF allows loop closure (crucial to correct
drift errors) at the cost of decreasing resolution (thus loosing
details). As we have already attempted using our proposed
3D scene representation, it is possible to achieve efficient
and accurate loop closure without any loss in details even at
very large scales (Thomas and Sugimoto 2014). More detail
in this direction will be reported in another venue.
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