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Abstract. Region growing is a classical image segmentation method based on hierarchical region aggregation
using local similarity rules. Our proposed method differs from classical region growing in three important aspects.
First, it works on the level of superpixels instead of pixels, which leads to a substantial speed-up. Second, our
method uses learned statistical shape properties that encourage plausible shapes. In particular, we use ray
features to describe the object boundary. Third, our method can segment multiple objects and ensure that
the segmentations do not overlap. The problem is represented as an energy minimization and is solved either
greedily or iteratively using graph cuts. We demonstrate the performance of the proposedmethod and compare it
with alternative approaches on the task of segmenting individual eggs in microscopy images of Drosophila ova-
ries. © 2017 SPIE and IS&T [DOI: 10.1117/1.JEI.26.6.061611]
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1 Introduction
Image segmentation is one of the fundamental image analy-
sis tasks,1–4 consisting of dividing an image into multiple
regions (or classes). Our target application is segmenting
individual eggs in microscopy images of Drosophila ovaries
[see Figs 1(a) and 1(b)], which is one of the key steps in the
image processing pipeline to automatically and robustly
analyze many thousands of images needed to study the
gene expressions governing Drosophila oogenesis.5,6 This
problem has several challenging aspects. First, the objects
(eggs) are highly structured and cannot be easily distin-
guished by texture or intensity. Second, there are several
eggs in the image, often touching, with unclear boundaries
between them. Third, the algorithm should be fast, as there is
a high number of images to be processed. Note also that iden-
tifying individual eggs with mutually similar appearance
is more challenging than a standard binary or multiclass
segmentation7,8 [see Fig. 1(b)]. The standard approach is to
postprocess the foreground/background segmentation using
mathematical morphology and connected component analy-
sis but in this case it turned out not to be sufficiently robust as
you can see in the final experiments.

1.1 Proposed Method
The proposed method combines three existing techniques—
region growing, superpixels, and shape modeling. Region
growing1,9–11 is one of the classical image segmentation
approaches, which starts from “seeds,” often individual pix-
els, and repeatedly joins them with their neighbors according
to rules designed to encourage the homogeneity of the
regions. It is simple to implement and has been used success-
fully in many applications. The novelty of our approach is
threefold: first, we grow the regions based on superpixels

instead of pixels, where superpixels are small compact
homogeneous groups of pixels, which can be calculated
quickly and just once [see Fig. 2(b)]. This improves the seg-
mentation speed by several orders of magnitude while the
superpixels preserve the object boundaries. We are using
the simple linear iterative clustering (SLIC) superpixels,12

which we found to be a good trade-off between speed and
quality, but other superpixel types can also be used.13 Note
that region growing by superpixels, i.e., representing regions
using superpixels, is very different from calculating super-
pixels by region growing.14 Another particularity of our
approach is the image features used. It would be possible
to use classical texture or color features directly. However,
for robustness and speed we first use these features to assign
each superpixel to one of four biologically meaningful
classes7 and use this preliminary segmentation [see Fig. 1(b)]
as input [see Fig. 2(a)] for the region growing—the annota-
tion of individual eggs is shown in Fig. 1(c). In this way, the
region growing can correct imperfections of the preliminary
segmentation as we will present later in Sec. 3. Second, we
incorporate a shape model based on the so-called ray fea-
tures,15,16 to guide the region growing toward plausible
shapes, using our a priori knowledge. (We see that in our
application, the eggs are approximately oval.) The ray fea-
tures are transformed to provide rotation invariance.8

Scale invariance could be also easily achieved but in our
case we do not require it, since object size is an important
attribute. Multiple alternative models can be used in parallel.
Previously, shape models for region growing were described
for example by a distance map17,18 or moments.19 We build
a probability model over the shape features using histogram-
ming, other options include PCA, or manifold learning.20–22

Third, our method segments several objects simultaneously,
ensuring that they do not overlap. One iteration of the
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growing process is formulated as an energy minimization
problem with a Markov random field (MRF) regularization
and solved either greedily or using graph cuts. Since the
number of boundary superpixels in a given iteration is
small, the procedure is very fast. In contrast, applying graph
cuts to all superpixels8,23 is much more time and resource
demanding.

1.2 Other Related Methods
Ye et al.24 used mean-shift superpixels and graph cuts, while
the MRF optimization can also be solved by Gibbs sampling
or simulated annealing.25,26 Unlike the present work, neither
of these methods can handle multiple interacting objects and
incorporate shape models. As one major alternative, graph
cuts can be combined at the pixel-level with a shape
model such as the layered pictorial structures,27 the distance
functions to a shape template,28,29 or the star-shaped model;30

it is also possible to choose among multiple models.31 These
methods alternate between estimating the pose parameters
and refining the segmentations and can converge to
a suboptimal solution if the pose estimation is incorrect.
The number of pose hypotheses that can be simultaneously
considered is limited for computational reasons. Global opti-
mization with respect to the shape model parameters is pos-
sible but very computationally expensive.32 Graph cuts also
can be augmented by constraints on class distances,33 one

region being inside another.34,35 All these methods are slower
than applying graph cuts on superpixels. Region growing is
similar to active contours,1,36 which can be interpreted as
region boundaries, use region-based criteria,37 and are also
often used in biomedical imaging, for example, for cell seg-
mentation and tracking.38 Active contours can be used to seg-
ment multiple objects using, e.g., multiphase level sets39 or
multiobject active contours.40 Objects may be allowed to
overlap or separation between objects can be enforced.40,41

Shape priors can be integrated using the usual alternative
optimization of pose and segmentation;42–45 specialized
methods exist for simple shapes such as circles.46,47 Active
contours can provide subpixel accuracy but their computa-
tional complexity is often very high, although fast discrete
methods exist.48,49

Finally, there seems to be great promise in deep learning
methods using convolutional neural networks, such as U-
net50 requiring a small number of training examples but it
assumes reasonable homogeneous objects and produces
only binary segmentation where individual object separation
relies on correct boundaries prediction. Instance segmenta-
tion method51 solves the task at hand but it requires a large
amount of training data with detailed pixel-level annotation,
which is usually expensive to obtain in biomedical imaging
due to high time demands to medical experts, and also it is
currently not available for our application.

Fig. 1 (a) Fluorescence microscopy image of a Drosophila ovary with cell anatomy in magenta and gene
expression in green, (b) preliminary texture-based four-class superpixel-level segmentation, (c) the boun-
dary of the initial four-class segmentation (thin yellow contour) with individual eggs marked manually
(wide color lines), superimposed over the cell anatomy channel in gray.

Fig. 2 Sample Drosophila ovary image with multiple eggs. (a) Probability map obtained from the pre-
liminary segmentation shown in Fig. 1 representing the likelihood for each superpixels being an egg and
approximate egg centres marked by the white dot; (b) SLIC superpixels.
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1.3 Structure of This Paper
The rest of this paper is structured as follows: the method is
described in Sec. 2, including superpixels (Sec. 2.1), shape
models (Sec. 2.3), and optimization (Sec. 2.6). We continue
by experiments in Sec. 3 and conclude in Sec. 4.

2 Methods
Given an input image containing multiple nonoverlapping
but possibly touching objects, a seed point for each object,
and a shape and appearance model, we shall segment
these objects as follows: we group pixels into superpixels
S (Sec. 2.1) and for each of them calculate the appear-
ance-based object probability. The regions corresponding
to objects are then grown (Sec. 2.6) using the appearance
(Sec. 2.2) and shape (Sec. 2.3) models. The final segmenta-
tion is represented by a function g∶S → f0;1; : : : ; Kg, which
assigns each superpixel s ∈ S to one of the objects [if
gðsÞ ¼ 0] or to the background [if gðsÞ ¼ 0].

2.1 Superpixel Clustering
We use the SLIC12 algorithm to calculate a set of superpixels
S that are compact both in space and color. The SLIC algo-
rithm is an adaptation of a widely used k-means clustering
algorithm. It uses a combined color and spatial distance
D ¼ dc þ ξ

η2
· ds, where dc is a Euclidean distance in the

CIELAB color space, and ds is a Euclidean spatial distance
measured in pixels. The superpixel centers are initially
placed on a grid with spacing η, which determines the num-
ber of superpixels and their size. The user-provided weight ξ
controls the trade-off between spatial compactness and color
homogeneity. We use instead a regularization parameter
ν ∈ ð0;1Þ, with ξ2 ¼ η3ν2, which we found easier to
choose.52 Figure 3 shows the impact of the SLIC parameters.
We have also tested the parameter-free adaptive version
SLICO,12 but it performed worse on our data.

2.2 Appearance Model
For each superpixel s ∈ S, we calculate a descriptor ys that
represents the appearance of s through its texture or color
properties. Given ys, we use the appearance model to calcu-
late the probability PyðysÞ that a superpixel s belongs to an
object. For notational convenience, we shall write

EQ-TARGET;temp:intralink-;sec2.2;326;683PyðgðsÞjysÞ ¼
�
PyðysÞ for gðsÞ ≠ 0

1 − PyðysÞ for gðsÞ ¼ 0
:

For our application, we take advantage of the fact that we
already have a good preliminary segmentation method that
can assign superpixels into four biologically meaningful
classes (cytoplasm, follicle cells, nurse cells, and back-
ground) based on texture and color features, and a random
forest classifier with graph cuts regularization.7,8 Our
descriptor ys is therefore simply an integer f1; : : : ; 4g, rep-
resenting one of the four classes. The probability PyðysÞ of
a superpixel belonging to an egg given the preliminary seg-
mentation can be estimated from labeled training data. See
Fig. 1(b) for an example of the preliminary segmentation and
Fig. 2(a) for an example of the probability map Py.

2.3 Shape Model
The purpose of the shape model is to determine the likeli-
hood of a particular shape being the desired object (in our
case, an egg). Given a region (the reference segmentation
during model-learning or an intermediate step of the region
growing during model fitting), we calculate its center of
gravity c and the so-called ray features15,53 r 0, the distances
from c to the region boundary in a set of N predefined direc-
tions (see Fig. 4). To ensure rotation invariance, the distance
vector r 0 ¼ fr0; : : : ; rN−1g is circularly shifted to obtain
a rotational normalized vector rðiÞ ¼ r 0ðði − ΘÞmodNÞ
such that it starts with the maximum element, rð0Þ ¼
maxir 0ðiÞ. As an example, the ray feature vectors r with N ¼
36 [see Fig. 5(a)] and the whisker plots for each rðiÞ

Fig. 3 The influence of the SLIC parameters: superpixel size η and regularization ν.
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independently are shown in Fig. 5(b) for a set of 250
Drosophila eggs. Invariance to scale can be achieved
by another normalization but it is not suitable for our
application.

We have chosen to describe the probability density of the
ray distance vector r by a simple Gaussian mixture model
(GMM) with M components over all vectors r assuming
diagonal coverings matrix for each Gaussian

EQ-TARGET;temp:intralink-;e001;63;252prðrÞ ¼ ρðrÞ ¼
XM
j¼1

wjfjðrÞ; (1)

with fjðrðiÞÞ ¼ 1
σi;j

ffiffiffiffi
2π

p exp
�
− ðrðiÞ−μi;jÞ2

2σ2i;j

�
and

P
M
j wj ¼ 1.

The GMM components may represent different egg
development stages or significant shape variations. There
are 2NM model parameters (μi;j; σi;j) to be estimated
from the training data with the expectation-maximization
algorithm,54 while the M weights w are estimated for each
object independently.

2.4 Shape Prior
During region growing, we need to calculate the shape prior
PmðgðsÞ ¼ kjmkÞ ¼ qðs;mkÞ that a given superpixel s ∈ S
belongs to an object k, where mk ¼ ½c; r;Θ;w� is the

shape parameter vector described below. We first calculate
the center of gravity c of the region, then calculate the
ray features to obtain the shifted distance vector r and ori-
entation angle Θ. Finally, the GMM weights w are obtained
by maximum-likelihood fitting of r to the model Eq. (1). The
particularity of using shape models in the region growing
framework is that the shape model needs to allow also inter-
mediate shapes, i.e., shapes that can be grown into likely
objects. In other words, the shape described by mk is not
necessarily the shape of the object to be segmented but it
may be smaller. Let us denote δ the distance of s from
the center of gravity c and let r ¼ rðiÞ be the corresponding
ray along the line from c to s. As ρðrÞ from Eq. (1) is the
density of the boundary being at distance r, we see that
qðs;mkÞ is the cumulative probability of finding the boun-
dary at a distance δ < r, which leads to

EQ-TARGET;temp:intralink-;sec2.4;326;164qðs;mkÞ ¼
Z

∞

δ
ρðrÞdr ¼ 1 −

Z
δ

0

ρðrÞdr;

which is easy to evaluate using the cumulative probability
density of the GMM. For this calculation, superpixels are
represented by their centers. The parameters μi;j and σi;j
are interpolated from neighboring rays using linear interpo-
lation in angle (see Fig. 6).

(a) (b)

Fig. 4 (a) A shape is described by ray features, distances from the center to the boundaries in predefined
directions. (b) The original and shifted distance vectors, r 0 (in blue) and r (in green), respectively.

(a) (b)

Fig. 5 (a) Visualization of 250 egg shapes represented by the distance vectors r and (b) their element-
wise box and whisker plots for each rðiÞ with an angular step of 10 deg.
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The background probability (for k ¼ 0) can be calculated
as a complement. Given the estimated parameters of all
regions M ¼ ðm1; : : : ;mKÞ, we get

EQ-TARGET;temp:intralink-;e002;63;245Pm

�
gðsÞ ¼ kjM

�
¼

8<
:

qðs;mkÞ for k > 0Q
l
ð1 − qðs;mlÞÞ for k ¼ 0 : (2)

An example of shape priors for theM ¼ 5 GMM compo-
nents is shown in Fig. 7.

2.5 Variational Formulation
The optimal segmentation g� is found by maximizing the
a posteriori probability Pðgjy;MÞ, where y represents the
descriptors of all superpixels. We assume that it can be
factorized into appearance, shape, and regularization terms
as follows:

EQ-TARGET;temp:intralink-;e003;326;278PðgðsÞjy;MÞ ¼ 1

ZðM; yÞ · PyðgjyÞ · PmðgjMÞ · PRðgÞ; (3)

where Z is the normalization factor. The appearance and
shape terms Py and Pm, respectively, are expanded assuming
independent pixels as follows:

EQ-TARGET;temp:intralink-;e004;326;210PyðgjyÞ ¼
Y
i∈Ω

PyðgðsðiÞÞjyðsðiÞÞÞ ¼
Y
s∈S

PyðgðsÞjyðsÞÞjΩsj;

(4)

EQ-TARGET;temp:intralink-;e005;326;154PmðgjMÞ ¼
Y
i∈Ω

PmðgðsðiÞÞjMÞ¼
Y

s∈SPmðgðsÞjMÞjΩsj;

(5)

where Ωs are pixels belonging to a superpixel s and jΩsj is
the superpixel size. The neighborhood regularization prior
PR is assumed to factorize as

(a) (b) (c)

Fig. 6 (a) Statistical shape model represented as the inverted cumulative probability of ray distance
distributions in polar coordinates i ∈ N and δ < rðiÞ where i is the ray index (angle) and δ is a distance;
(b) its mapping (and interpolation) to the Euclidean space using superpixels; and (c) the resulting spatial
prior q for a single object with standard orientation Θ ¼ 0 (see Fig. 4).

Fig. 7 (a) Inverted cumulative probabilities of ray distances for M ¼ 5 components of the GMM; (b) the
spatial shape prior q corresponding to each component; and (c) shape cost of fitted models to each of the
segmented objects [see Fig. 1(c)] with thin contours presenting levels of appearance probability Py .
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EQ-TARGET;temp:intralink-;e006;63;752PRðgÞ ¼
Y

ðu;vÞ∈N S

HðgðuÞ; gðvÞÞ; (6)

where the product is over neighboring superpixels ðu; vÞ and
H is chosen such that it encourages them to belong to the
same class, see below.

Taking the negative log-likelihood leads to energy mini-
mization g� ¼ arg mingEðgÞ with

EQ-TARGET;temp:intralink-;e007;63;662EðgÞ¼
X
s∈S

jΩsj½DsðgðsÞÞþVsðgðsÞÞ�þ
X

ðu;vÞ∈N S

BðgðuÞ;gðvÞÞ;

(7)

where N S is set of all neighboring superpixels along the
object boundaries, DsðkÞ ¼ − logPyðkjyðsÞÞ is the data
term (described in Sec. 2.2), VsðkÞ ¼ − logPmðkjMÞ is
the shape term (described in Sec. 2.3).

It remains to define the neighborhood term Bðk; lÞ ¼
− logHðk; lÞ. The matrix B can be learned from labeled
training data. To simplify the task, we shall impose on it
the following structure:

EQ-TARGET;temp:intralink-;e008;63;516Bðk; lÞ ¼
8<
:

ω0 for k ¼ l
ω1 for min ðk; lÞ ¼ 0; k ¼ l
ω2 otherwise

; (8)

where ω1 and ω2 represent penalties for an object superpixel
touching a background or another object, respectively; ω0

can be calculated from the partitioning of unity conditionP
k;lHðk; lÞ ¼ 1. In our case, we obtain approximately ω1 ¼

− logð0.1Þ and ω2 ¼ − logð0.03Þ.
To compensate for model imperfections, it turns out to be

useful to add multiplicative coefficients β and γ to modify the
relative strength of the three terms

EQ-TARGET;temp:intralink-;e009;63;367

E 0ðgÞ ¼
X
s∈S

jΩsj½DsðgðsÞÞ þ βVsðgðsÞÞ�

þ
X

ðu;vÞ∈N S

γBðgðuÞ; gðvÞÞ: (9)

It can be solved by a standard graph cut method.55

2.6 Region Growing
We use an iterative approach to find a labeling g minimizing
the global energy E in Eq. (9). We alternate two steps:
(1) update the shape parameters M for fixed labels g and
(2) optimizing the labels g for M fixed; see Algorithm 1.
The initial object labeling g is derived from user-provided
initial object centers ck. The objects start as small as possible
(one superpixel) and grow. For our application, object cen-
ters can be obtained automatically using a random forest
classifier, neighborhood label histograms, ray features, and
density-based spatial clustering.8

Updating M is straightforward and quick—for all super-
pixels Sk currently assigned to object k, we calculate their
center of gravity c, the ray distances r, the angle Θ of the
longest ray, and the weights w as described in Sec. 2.4.

Let us now consider how to update the superpixel labels g.
For speed-up, simplification, and in the spirit of region grow-
ing, we only allow changing a label of superpixels ∂Sk

neighboring an object Sk from the previous iteration and
only to a label k. This has the important property that the
objects remain compact (simply connected), see Fig. 8.
We have considered four optimization strategies for the
superpixel labels.

Greedy approach: We define a priority queue containing
background superpixels s from ∂S ¼∪k ∂Sk sorted by
the energy improvement ΔEk

s obtained by switching s
to object k, which is a neighbor of s. A superpixel s
is removed from the top of the queue if the energy

Algorithm 1 Region growing.

Input S: superpixels, y : superpixel descriptors, ck : initial object
centers, M: statistical shape model

Output: object segmentation g

1 compute data cost D;

2 from object centers ck set initial segmentation g and model shape
parameters mk ;

3 compute shape cost V ;

4 while not converged do

5 update object pose parameters ck and Θk ;

6 if significant change of center ck position, orientation Θk and
object area then

7 update remaining object shape parameters mk ;

8 update shape costs V for all s close to k ;

9 end

10 find superpixels ∂Sk on the external object boundary of k ;

11 optimize Eq. (9) wrt g by changing s ∈ ∂Sk using the greedy or
Graph Cut algorithms;

12 end

Fig. 8 Creating a graph from ∂Sk on the boundary of object Sk . We
connect all candidates of being objects neighboring superpixels ∂Sk
(orange). For purposes of compactness, we also connect the neigh-
boring object Sk (red) superpixels. This configuration imply pairwise
penalty and impose the object compactness, see e.g., s ∈ f1;2g.
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improvement ΔEk
s is positive, it is switched to the object

label k, the model mk is updated, and also the energy
improvement ΔE of all superpixels neighboring with
object k. The convergence can be accelerated by
processing several best superpixels from the top of prior-
ity queue at once. This threshold can be a fixed number
of superpixels or relative energy improvement, switch-
ing s where ΔEk

s > ϵE. Note, the condition ΔEk
s > 0

still holds and once assigned s to an object k in single
iteration cannot be assigned later to another object l.
Regarding the optimality and growth strategy, this num-
ber of assigned s in single iteration should be small.

Multiclass graph cut: This approach attempts to find optimal
labels gðsÞ for superpixels from ∂S, and the remaining
labels are fixed. We create a graph from the superpixels
S̄ with edges connecting neighbors. We set the potentials
from Eq. (9). A superpixel may only get a value of one of
its neighboring object or a background. Other changes are
forbidden by setting the corresponding unary potential to
∞. For optimizing this graph problem, the standard
αβ-swap graph cut algorithm is used.55

Binary graph cut: As a simplification, the binary graph
cut considers that a background superpixel s ∈ ∂Sk

neighboring with a single object k can either remain
background or be switched to the label of its neighbor
(see Fig. 8). The modified unary and binary energy
terms are obtained by a restriction of the general formu-
lation Eq. (9) to the two possibilities for each s. The ad-
vantage of this formulation is that finding a global
minimum is guaranteed and can be done quickly. We
perform this binary graph cut sequentially on all objects
and so it is convenient to allow swapping object labels,
description follows.

Swapping object labels If two objects k and l touch during
the optimization process, we found it useful to allow the
superpixels on the boundary to exchange labels, thus
shifting the border to reflect the shape models, even
after the two objects have touched (see iterations in
Fig. 9 and results in Fig. 10). It is implemented by add-
ing these boundary pixels to the set ∂S.

3 Experiments
The experiments are performed on a large dataset (containing
more than 15,000 images) of microscopy images of
Drosophila ovaries, containing egg chambers at various

Fig. 9 (a–d) Several iteration steps of the greedy region growing, and (e–h) of the multiclass graph cut
optimization with object label swapping algorithms. Each color region corresponds to an individual object
k , the thin white contours are levels of the appearance probabilities Py . White dots represent the centers
ck of mass and white arrows the principal orientations Θk for each object.

Fig. 10 Example of region growing segmentation results applying (a) greedy approach and (c) graph
cuts. (b) We also show the energy evolution during iterations. Each color region corresponds to an object,
the thin white contours are levels of the appearance probabilities Py .
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stages of development.56,57 For 72 images, containing ∼250
eggs, we have a full pixel-level manual segmentation. The
images have two channels but only the cell anatomy channel
[shown in magenta in Fig. 1(a)] is used.

For evaluation of the segmentation performances, we used
the standard measures58—F1-score, accuracy, precision, and
recall. We also use the Jaccard index—computed on the
binary object/background results. For all experiments, we

Table 1 Quantitative evaluation of the segmentation quality for several configurations of our region growing method.

Configurations

Jaccard Accuracy F 1 score Precision RecallMethod Model Object swap

Greedy Single No 0.6433 0.9324 0.9324 0.9324 0.9324

Greedy Single Yes 0.6367 0.9299 0.9299 0.9299 0.9299

Greedy Mixture No 0.7377 0.9583 0.9583 0.9583 0.9583

Greedy Mixture Yes 0.7527 0.9577 0.9577 0.9577 0.9577

Graph cut Single No 0.6426 0.9317 0.9317 0.9317 0.9317

Graph cut Single Yes 0.6220 0.9284 0.9284 0.9284 0.9284

Graph cut Mixture No 0.7360 0.9573 0.9573 0.9573 0.9573

Graph cut Mixture Yes 0.7544 0.9568 0.9568 0.9568 0.9568

Fig. 11 Resulting segmentation for several different variants of our method: single Gaussian model (top
row) versus GMM (bottom row), the binary and multiclass graph cut on the left and right half, respectively.
Colored regions represent individual objects and white levels the contours or segmentation Y .

Table 2 Dependency of running time on superpixels sizes (respectively number of superpixels) with regularization ν ¼ 0.3. Note, the code has not
been yet optimized for speed.

Superpixel size [pixels]

10 15 20 25 30 35 40

Greedy

Time [seconds] 1468 225 98 72 38 32 27

Jaccard 0.755 0.754 0.753 0.753 0.752 0.746 0.741

Graph cut
Time [seconds] 94 41 21 9 7 6 5

Jaccard 0.756 0.755 0.754 0.754 0.753 0.748 0.743
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Fig. 12 The impact of quality of initial center selection (top row) on the final segmentation (bottom row).
Each set of initial centers (colored equally for all eggs) was obtained by adding random displacement
regarding particular egg size. For all initialization, the region growing converged to the same segmentation.

Fig. 13 Examples of resulting segmentation using morphological snakes on input images directly
(top row) and on appearance probabilities Py (bottom row). The manual annotation for these images is
presented in Fig. 14.

Table 3 Quantitative comparison of the proposed region growing method (RG2Sp) with other baseline methods.

Jaccard Accuracy F 1 score Precision Recall Time [seconds]

Watershed 0.5705 0.9246 0.9246 0.9246 0.9246 5

Watershed (w. morph.) 0.5705 0.9270 0.9198 0.9136 0.9327 7

Morph. snakes (image) 0.4251 0.8769 0.8070 0.9053 0.7987 784

Morph. snakes (Py ) 0.6494 0.8812 0.8812 0.8812 0.8812 968

Graph cut (pixel-level) 0.7143 0.9204 0.9204 0.9204 0.9204 15

Graph cut (superpixels) 0.3164 0.8643 0.8643 0.8643 0.8643 3

RG2Sp (greedy) 0.7527 0.9577 0.9577 0.9577 0.9577 72

RG2Sp (graph cut) 0.7544 0.9568 0.9568 0.9568 0.9568 9
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used the following SLIC parameters: superpixel size η ¼ 20
pixels and regularization ν ¼ 0.3. The average running time
to calculate the superpixels for our images of size
1000 × 1000 pixels was about 1 seconds. The proposed

method has a few parameter to set—the coefficient β and γ,
and the update thresholds in Algorithm 1. Experimentally,
we found that setting β ¼ 2 and γ ¼ 5 give the best results
for our images. We set the threshold for a shift to 20 pixels

Fig. 14 Each row represents a microscopy image segmented by an expert (annotation) and the three
automatic methods—from left to right: watershed, graph cut on pixels, and region growing. The expert
annotation is shown overlaid on the input image. The segmentation results are shown overlaid over the
input image with the preliminary four-class segmentation contours shown as thin white lines.
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(superpixel size), rotation 10 deg, and volume change to 5%.
These values allow reaching the same segmentation quality
as with updating V in every iteration, about twice as fast.

3.1 Comparison of Region Growing Variants
We compare the different variants of our segmentation
method: using graph cut versus greedy approach, GMM
(with M ¼ 15) versus single Gaussian (assuming GMM
with M ¼ 1), allowing object label swapping. Quantitative
results are shown in Table 1. It confirms our expectation
(see Fig. 11) that it is best to use a GMM with a multiclass
graph cut and label swapping with respect to Jaccard index
which well reflects our visual observation.

Let us discuss the behavior of the graph cut and greedy
region growing algorithms. The resulting segmentation of
both graph cut and greedy is very similar. Speaking about
the second criterion—processing time, the graph cut is faster
in terms of a number of the iterations (see Fig. 10), but each
iteration is a little longer. The total processing time of the
graph cut approach is about 9 seconds compared to greedy
which takes about 72 seconds per image. We experimented
with superpixel sizes and observed that they do not have
a large influence on the segmentation quality, but they have
a significant impact on the processing time, see Table 2.
Region growing speeds up with larger superpixels and con-
sequently there are fewer candidates to evaluate.

We also experimented with the dependence of the result-
ing segmentation on the position of the initial centers ck. We
found that our method is very robust to the initialization—for
a center initialization up to 1/2 distance between the true
center and the object boundary, we obtained visually equiv-
alent results, see Fig. 12.

3.2 Baseline Methods
We apply all methods on the results of the preliminary four-
class segmentation Y [see an example in Fig. 1(b)] as there is
no method that can well segment individual eggs in our
microscopy images of Drosophila ovaries directly. For com-
parison we chose such methods to cover a wide range of seg-
mentation approaches that can be potentially used for this
task—object segmentation, as we discussed in Sec. 1.

Watershed segmentation:59–61 This is widely used for
separating touching objects. We start from the binar-
ized segmentation7,8 and apply the distance transform
to calculate the distance of each pixel to the back-
ground. The watershed algorithm starting from initial
centers is then used to identify individual objects. We
also tested some morphological operations such as
opening, before applying the watershed to see the
improvement of the egg separation. It then turned
out that selecting a universal structure element (SE)
for all images is not reasonable because of (i) the
large variance in egg size and (ii) connection thickness
in between two eggs—a small SE does not always split
neighboring eggs and a large SE may suppress the
appearance of small eggs. We remark that in the
experiments, we used morphological opening with
the circular SE with 25 pixels in diameter.

Morphological snakes:62 We used multiple morphological
snakes with smoothing 3 and λ1;2 ¼ 1 initialized from
the circular region around the center with diameter 20

pixels which are approximately the size of used super-
pixels evolving in parallel. We also adopted a restric-
tion that individual snakes cannot overlap. We apply
the multisnakes approach on the input image directly
and also on appearance probabilities Py, see Fig. 13.
The snakes on raw images frequently struggle with
handling internal egg structure, on the other hand,
snakes on Py have difficulty separating touching eggs.

Pixel-level graph cuts:63 This optimizes an energy func-
tion similar to the previous method but at the pixel-
level. The data term is distributed from superpixels
to pixels in a straightforward way, DiðkÞ ¼
− log PyðkjyðsðiÞÞÞ for all pixels i ∈ Ω and standard
pairwise regularization for the Potts model. Pixels
from a small region around the provided initial object
centers ck are forced to class k.

Superpixel-level graph cut:24 This works similarly as
above except that we assign classes k to superpixels,
not pixels. The energy function EðgÞ from Eq. (7) can
be used directly, again without the shape cost V and
without employing region growing.

3.3 Comparison with Baseline Methods
In the final experiment, we compare the performance of our
selected method, i.e., region growing with a GMM, multi-
class graph cut, and label swapping, and compare it with
alternative baseline methods. Table 3 presents the quantita-
tive results. We can say that the proposed method performed
better than the other methods in all comparable metrics.

Example segmentation results are shown in Fig. 14. We
can see that the comparable methods usually fail to properly
distinguish touching eggs. Also, they are frequently merging
two eggs together even if the second egg does not contain an
initial seed which can happen in real-world application.8

4 Conclusion
We presented a new region growing segmentation technique.
It is fast due to using superpixels, and it is also robust due to
handling the growing with a graph cut and a ray feature-
based shape model. It can handle touching objects as well
as objects with only partly visible boundaries. Our method
is developed with a specific application in mind where we
have shown it to perform better than the baseline methods.
However, it can be easily generalized and applied to other
domains, whenever a set of objects with known shapes is
to be segmented.

5 Source Code
The implementation of the proposed method together with
other tested methods will be available in a Github repository:
http://github.com/Borda/pyImSegm.

Disclosures
The authors have no relevant financial interests in this article
and no potential conflicts of interest to disclose.

Acknowledgments
This work was supported by the Czech Science Foundation
project 14-21421S and by the Grant Agency of the Czech
Technical University in Prague under the grant SGS15/

Journal of Electronic Imaging 061611-11 Nov∕Dec 2017 • Vol. 26(6)

Borovec, Kybic, and Sugimoto: Region growing using superpixels with learned shape prior

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 11/16/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



154/OHK3/2T/13. A part of this work was carried out under
the NII International Internship Program.

References

1. M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and
Machine Vision, 3rd ed., Thomson Engineering, Toronto (2007).

2. D. L. Pham, C. Xu, and J. L. Prince, “A survey of current methods in
medical image segmentation,” Ann. Rev. Biomed. Eng. 2, 315–337
(2000).

3. K.-P. Wong, “Medical image segmentation: methods and applications in
functional imaging,” in Handbook of Biomedical Image Analysis, D.
Wilson and S. Laxminarayan, Eds., pp. 111–182, Springer, Boston,
Massachusetts (2005).

4. A. Elnakib et al., “Medical image segmentation: a brief survey,” inMulti
Modality State-of-the-Art Medical Image Segmentation and
Registration Methodologies, A. S. El-Baz et al., Eds., pp. 1–39,
Springer, New York (2011).

5. P. Tomancak et al., “Systematic determination of patterns of gene
expression during Drosophila embryogenesis,” Genome Biol. 3(12),
research0088.1 (2002).

6. J. Borovec and J. Kybic, “Binary pattern dictionary learning for gene
expression representation in drosophila imaginal discs,” in
Mathematical and Computational Methods in Biomedical Imaging
and Image Analysis (MCBMIIA) Workshop at ACCV, pp. 555–569
(2016).

7. R. Nava and J. Kybic, “Supertexton-based segmentation in early
Drosophila oogenesis,” in Proc. Int. Conf. on Image Processing (ICIP),
pp. 2656–2659 (2015).

8. J. Borovec, J. Kybic, and R. Nava, “Detection and localization of
Drosophila egg chambers in microscopy images,” in 8th Int. Workshop
on Machine Learning in Medical Imaging, Springer, Quebec
(2017).

9. S. W. Zucker, “Region growing: childhood and adolescence,” Comput.
Graphics Image Process. 5(3), 382–399 (1976).

10. R. Adams and L. Bischof, “Seeded region growing,” IEEE Trans.
Pattern Anal. Mach. Intell. 16(6), 641–647 (1994).

11. C. Revol-Muller et al., “Region growing: when simplicity meets
theory—region growing revisited in feature space and variational frame-
work,” Commun. Comput. Inf. Sci. 359, 426–444 (2013).

12. R. Achanta and A. Shaji, “SLIC superpixels compared to state-of-the-art
superpixel methods,” IEEE Trans. Pattern Anal. Mach. Intell. 34(11),
2274–2282 (2012).

13. D. Stutz, A. Hermans, and B. Leibe, “Superpixels: an evaluation of the
state-of-the-art,” Comput. Vision Image Understanding (2017).

14. P. Buyssens et al., “Eikonal-based region growing for efficient cluster-
ing,” Image Vision Comput. 32(12), 1045–1054 (2014).

15. K. Smith and A. Carleton, “Fast ray features for learning irregular
shapes,” in IEEE 12th Int. Conf. on Computer Vision, pp. 397–404
(2009).

16. K.-M. Lee and W. N. Street, “Learning shapes for automatic image seg-
mentation,” in Proc. INFORMS-KORMS Conf., pp. 1461–1468 (2000).

17. J. L. Rose et al., “Shape prior integrated in an automated 3D region
growing method,” in Proc. Int. Conf. on Image Processing (ICIP),
Vol. 1 (2007).

18. J. L. Rose et al., “3D region growing integrating adaptive shape prior,”
in 5th IEEE Int. Symp. on Biomedical Imaging: From Nano to Macro,
pp. 967–970 (2008).

19. J. L. Rose et al., “Shape prior criterion based on Tchebichef moments in
variational region growing,” in Proc. Int. Conf. on Image Processing
(ICIP), pp. 1081–1084 (2009).

20. A. Quispe and C. Petitjean, “Shape prior based image segmentation
using manifold learning,” in 5th Int. Conf. on Image Processing,
Theory, Tools and Applications (IPTA), pp. 137–142 (2015).

21. P. Etyngier, F. Segonne, and R. Keriven, “Shape priors using manifold
learning techniques,” in IEEE 11th Int. Conf. on Computer Vision,
pp. 1–8 (2007).

22. O. Moolan-Feroze et al., “Segmentation of the right ventricle using dif-
fusion maps and Markov random fields,” in Int. Conf. on Medical Image
Computing and Computer-Assisted Intervention, Vol. 8673, pp. 682–
689 (2014).

23. Y. Li et al., “Lazy snapping,” ACM Trans. Graphics 23, 303–308
(2004).

24. X. Ye, G. Beddoe, and G. Slabaugh, “Automatic graph cut segmentation
of lesions in CT using mean shift superpixels,” Int. J. Biomed. Imaging
2010, 1–14 (2010).

25. Q. Yu and D. A. Clausi, “IRGS: image segmentation using edge pen-
alties and region growing,” IEEE Trans. Pattern Anal. Mach. Intell.
30(12), 2126–2139 (2008).

26. K. Qin and D. A. Clausi, “Multivariate image segmentation using
semantic region growing with adaptive edge penalty,” IEEE Trans.
Image Process. 19, 2157–2170 (2010).

27. M. P. Kumar, P. H. S. Torr, and A. Zisserman, “OBJ CUT,” in Proc. of
the IEEE Conf. on Computer Vision and Pattern Recognition, San
Diego, Vol. 1, pp. 18–25 (2005).

28. D. Freedman and T. Zhang, “Interactive graph cut based segmentation
with shape priors,” in IEEE Computer Society Conf. on Computer
Vision and Pattern Recognition (CVPR), Vol. 1, pp. 755–762 (2005).

29. N. Vu and B. S. Manjunath, “Shape prior segmentation of multiple
objects with graph cuts,” in 26th IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pp. 1–8 (2008).

30. O. Veksler, “Star shape prior for graph-cut image segmentation,” in
European Conf. on Computer Vision (ECCV), pp. 454–467, Springer
(2008).

31. K. Nakagomi et al., “Multi-shape graph cuts with neighbor prior
constraints and its application to lung segmentation from a chest CT
volume,” Med. Image Anal. 17(1), 62–77 (2013).

32. T. Schoenemann and D. Cremers, “Globally optimal image segmenta-
tion with an elastic shape prior,” in Proc. of the IEEE Int. Conf. on
Computer Vision (2007).

33. A. Delong and Y. Boykov, “Globally optimal segmentation of multi-
region objects,” in Proc. of the IEEE Int. Conf. on Computer Vision,
pp. 285–292 (2009).

34. J. Ulen, P. Strandmark, and F. Kahl, “An efficient optimization frame-
work for multi-region segmentation based on Lagrangian duality,” IEEE
Trans. Med. Imaging 32(2), 178–188 (2013).

35. H. N. Isack et al., “Efficient optimization for hierarchically-structured
interacting segments (HINTS),” in Proc. of CVPR (2017).

36. H. Lu et al., “Active contours model for image segmentation: a review,”
in Proc. of the 1st Int. Conf. on Industrial Application Engineering,
pp. 104–111 (2013).

37. K. Zhang et al., “Active contours with selective local or global segmen-
tation: a new formulation and level set method,” Image Vision Comput.
28(4), 668–676 (2010).

38. O. Dzyubachyk et al., “Advanced level-set-based cell tracking in
time-lapse fluorescence microscopy,” IEEE Trans. Med. Imaging
29(3), 852–867 (2010).

39. L. Vese and T. Chan, “A multiphase level set framework for image seg-
mentation using the Mumford and Shah model,” Int. J. Comput. Vision
50(3), 271–293 (2002).

40. B. C. Lucas, M. Kazhdan, and R. H. Taylor, “Multi-object geodesic
active contours (MOGAC),” in 15th Int. Conf. on Medical Image
Computing and Computer-Assisted Intervention (MICCAI), pp. 404–
412, Springer, Berlin Heidelberg (2012).

41. N. Paragios and R. Deriche, “Coupled geodesic active regions for image
segmentation: a level set approach,” in 6th European Conf. on
Computer Vision, pp. 224–240, Springer, Berlin Heidelberg (2000).

42. T. F. Cootes et al., “Active shape models—their training and applica-
tion,” Comput. Vision Image Understanding 61(1), 38–59 (1995).

43. M. E. Leventon, W. E. L. Grimson, and O. D. Faugeras, “Statistical
shape influence in geodesic active contours,” in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition, pp. 316–323, IEEE
Computer Society (2000).

44. A. Tsai et al., “A shape-based approach to the segmentation of medical
imagery using level sets,” IEEE Trans. Med. Imaging 22(2), 137–154
(2003).

45. M. Gastaud, M. Barlaud, and G. Aubert, “Combining shape prior and
statistical features for active contour segmentation,” IEEE Trans.
Circuits Syst. Video Technol. 14(5), 726–734 (2004).

46. C. Molnar, Z. Kato, and I. Jermyn, “A multi-layer phase field model for
extracting multiple near-circular objects,” in Int. Conf. on Pattern
Recognition (ICPR), pp. 1427–1430 (2012).

47. C. Molnar et al., “Accurate morphology preserving segmentation of
overlapping cells based on active contours,” Sci. Rep. 6(1), 1–10 (2016).

48. Y. Shi and W. C. Karl, “Real-time tracking using level sets,” in IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition,
Vol. 2, pp. 34–41 (2005).

49. J. Kybic and J. Krátký, “Discrete curvature calculation for fast level set
segmentation,” in Int. Conf. on Image Processing (ICIP), pp. 3017–
3020, IEEE, Piscataway, New Jersey, electronic version (2009).

50. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional net-
works for biomedical image segmentation,” in Int. Conf. on Medical
Image Computing and Computer-Assisted Intervention, pp. 234–241,
Springer International Publishing, Cham (2015).

51. B. Romera-Paredes and P. H. S. Torr, “Recurrent instance segmenta-
tion,” Lect. Notes Comput. Sci. 9910, 312–329 (2016).

52. J. Borovec and J. Kybic, “jSLIC: superpixels in ImageJ,” in Computer
Vision Winter Workshop, Z. Kunbelova and J. Heller, Eds., pp. 14–18,
Czech Society for Cybernetics and Informatics, Praha (2014).

53. A. Lucchi, K. Smith, and R. Achanta, “Supervoxel-based segmentation
of mitochondria in EM image stacks with learned shape features,” IEEE
Trans. Med. Imaging 31(2), 474–486 (2012).

54. G. Xuan andW. Zhang, “EM algorithms of Gaussian mixture model and
hidden Markov model,” in Proc. Int. Conf. on Image Processing, Vol. 1,
pp. 145–148 (2001).

55. Y. Boykov and O. Veksler, “Fast approximate energy minimization via
graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239
(2001).

56. D. A. Baker and S. Russell, “Gene expression during Drosophila mel-
anogaster egg development before and after reproductive diapause,”
BMC Genomics 10, 242 (2009).

Journal of Electronic Imaging 061611-12 Nov∕Dec 2017 • Vol. 26(6)

Borovec, Kybic, and Sugimoto: Region growing using superpixels with learned shape prior

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 11/16/2017 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



57. D. Jia et al., “Automatic stage identification of Drosophila egg chamber
based on DAPI images,” Sci. Rep. 6, 18850 (2016).

58. O. Koyejo et al., “Consistent multilabel classification,” in Advances in
Neural Information Processing Systems, pp. 3321–3329 (2015).

59. S. Beucher, “The watershed transformation applied to image segmen-
tation,” in Proc. of the 10th Pfefferkorn Conf. on Signal and Image
Processing in Microscopy and Microanalysis, pp. 299–314 (1992).

60. Q. C. Q. Chen, X. Y. X. Yang, and E. Petriu, “Watershed segmentation
for binary images with different distance transforms,” in Proc. Second
Int. Conf. on Creating, Connecting and Collaborating through
Computing, Vol. 2, pp. 111–116 (2004).

61. X. Ji et al., “Cell image segmentation based on an improved watershed
algorithm,” in Proc. 8th Int. Congress on Image and Signal Processing
(CISP), pp. 433–437 (2016).

62. P. Marquez-Neila, L. Baumela, and L. Alvarez, “A morphological
approach to curvature-based evolution of curves and surfaces,” IEEE
Trans. Pattern Anal. Mach. Intell. 36(1), 2–17 (2014).

63. Y. Boykov, “Graph cuts and efficient N-D image segmentation,” Int. J.
Comput. Vision 70, 109–131 (2006).
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