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Abstract. Semantic image synthesis is to render foreground (object)
given as a text description into a given source image. This has a wide
range of applications such as intelligent image manipulation, and is help-
ful to those who are not good at painting. We propose a generative
adversarial network having a pair of discriminators with different archi-
tectures, called Paired-D GAN, for semantic image synthesis where the
two discriminators make different judgments: one for foreground synthe-
sis and the other for background synthesis. The generator of paired-D
GAN has the encoder-decoder architecture with skip-connections and
synthesizes an image matching the given text description while pre-
serving other parts of the source image. The two discriminators judge
foreground and background of the synthesized image separately to meet
an input text description and a source image. The paired-D GAN is
trained using the effective adversarial learning process in a simultane-
ous three-player minimax game. Experimental results on the Caltech-200
bird dataset and the Oxford-102 flower dataset show that Paired-GAN
is capable of semantically synthesizing images to match an input text
description while retaining the background in a source image against the
state-of-the-art methods.

1 Introduction

Very recently proposed semantic image synthesis [1] is to manipulate a given
source image semantically with given text descriptions, while still maintain fea-
tures that are irrelevant to what text descriptions. Text descriptions are usually
on foreground (objects), and thus the task is to render foreground given as a
text description into a given source image. Since text descriptions [2] is easier
and more natural for us than image descriptions such as attributes [3], tex-
tures [4] or styles [5], semantic image synthesis is promising to widen the range
of applications of image synthesis.

Generative Adversarial Network (GAN) [6] is capable of synthesizing images,
and work has been proposed that conditions GAN on either text descriptions [2,
7] or images [8–10] to synthesize images for various tasks. Almost all work on
image synthesis [1,2,7,11] follows the original GAN architecture where a single
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discriminator judges whether a synthesized image is realistic. Despite obtaining
remarkable results, synthesizing realistic images directly from text descriptions
is still difficult. This is due to the gap between the semantic levels of images and
text descriptions.

Semantic image synthesis requires to disentangle the semantics contained in
image and text information and then combine the disentangled semantics to syn-
thesize realistic images. This suggests to separately deal with text descriptions
and images with different semantic levels. We thus design a GAN with a pair
of discriminators, called Paired-D GAN, to separately condition text descrip-
tions and images. Indeed, dual discriminator GAN [12] showed that having two
discriminators is more effective than GANs with one discriminator for image
synthesis. Different from dual discriminator GAN, we design different architec-
tures for two discriminators to deal with different levels of semantics of text
descriptions and images. The two discriminators separately judge foreground
and background of the synthesized image to meet an input text description and
a source image. Furthermore, we employ the skip-connection in the generator
to more precisely retain background information in the source image. We also
introduce a training process for adversarial learning in the three-player mini-
max game of the generator and two discriminators. In this way, Paired-D GAN
improves the quality of synthesized images. Experiments on the Caltech-200 bird
dataset [13] and the Oxford-102 flower dataset [14] demonstrate outperformances
of Paired-D GAN against [1,15]. Figure 1 shows an example of our results.

Dong+ Paired-D GAN

This small bird has a blue 
crown and white belly.

128x128

64x64

Fig. 1. Examples of synthesized images. Our results match the text description more
precisely than [1] while successfully retaining background of the source image. The
performance of our method does not change for different sizes of images (64 × 64 and
128 × 128 images).

2 Related Work

With the rapid development of deep learning, many models for image synthe-
sis have been proposed to achieve highly realistic images. They include varia-
tional auto-encoder [16,17], auto-regressive models [18,19], and GAN [1,2,6,15].
Among them, GAN and its variants show remarkably realistic results.
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GAN [6] consists of a generator and a discriminator. The generator maps
the latent variable into the data space while the discriminator judges whether
the output of the generator is real or fake. The generator and the discriminator
are simultaneously trained in a minimax game. Interestingly, GAN can be con-
strained on various conditions not only to generate plausible images but also to
meet the conditions. Some work conditions GANs on the attribute label [3,20] or
images [10,21–24] for domain transfer [21,22], photo editing [23], image super-
resolution [10], and style transfer [24].

Among various conditions on GAN, text descriptions make image synthesis
easier and more friendly to us. Reed et al. [2] proposed an end-to-end GAN using
the text condition. They employed a pre-trained text encoder [25] to extract text
features from an input text, and then combined text features with a vector repre-
senting random noise to produce the input of the generator. They also employed
the combination of text features and image features in the discriminator to dis-
criminate real images and generated images. Their proposed model [2] became
the baseline of the GAN framework for generating images from text descriptions.

As an extension, a model conditioned on texts and location information was
proposed [26]. Models with two stages of GAN, Stack-GAN [7] (and Stack-
GAN++ [11]), were also proposed, showing successfully generated higher res-
olution images (256 × 256), compared to [2] (64 × 64). These models [2,7,11,15]
condition on GAN only texts or a pair of texts and location information [26].

Addressing the background problem in image synthesis, Yang et al. [15] pro-
posed to decompose the image synthesis into two phases using foreground and
background generators. They fed random noise vectors to a long short-term
memory (LSTM) network to obtain hidden states for the foreground generator
and used the first hidden state to generate background. They then combined
foreground and background by a compositor operator. However, decomposing
foreground and background may cause less realistic images.

The model proposed by Dong et al. [1] is most related with ours. It also
conditions text and source image on GAN. The architecture of the model is,
however, similar to [2] and has a single discriminator: the noise vector in [2] is
replaced by image features from the image encoder. Though it generates images
that match the semantic meaning of the input text description while maintaining
other parts of a source image, it does not preserve background precisely because
the discriminator is used only for foreground; synthesized images are less realistic
images.

Different from the above mentioned models, we fully take into account each
role of foreground and background in synthesized images. More precisely, our
proposed Paired-D GAN is conditioned on both text descriptions and images,
has skip-connections in its generator to preserve background information as much
as possible, and has two discriminators with different architectures for synthe-
sizing realistic images. Paired-D GAN generates simultaneously foreground and
background.
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(a) Same background (with
different foregrounds).

0 0.5 1 1.5 2 2.5 3 3.5
ReLU1 ReLU2 ReLU3 ReLU4 ReLU5 ReLU6 ReLU7

(b) Different backgrounds
(with one foreground).
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ReLU1 ReLU2 ReLU3 ReLU4 ReLU5 ReLU6 ReLU7

(c) Different backgrounds
(with another foreground).

Fig. 2. Distribution of the mean values of the first 7 ReLU layers in VGG-16.

3 Semantic Levels of Image Features for
Foreground/Background

Convolution Neural Network (CNN) has proved the effectiveness in many tasks.
Along with the depth, CNN extracts different semantic levels of image features
in layers. Gatys et al. [5] pointed out that features in early layers reflect color or
texture of images while features in latter layers convey foreground information.
The work [27] also found that features in early layers address background while
foreground is obtained in latter layers. As [28] learned the statistic of image
features, we experimentally exploit semantic levels of image features in VGG-
16 [29].

We randomly prepare 10 foreground images and 8 background ones. We then
generated 100 images for each pair of foreground-background images with ran-
domly localizing foreground (we have 8000 images in total). We feed these gener-
ated images into the VGG-16 [29] pre-trained on ImageNet dataset [30] without
any fine-tuning to compute the mean activation at each Rectified Linear Unit
(ReLU) layer [31].

The distribution of the mean activations in all 13 ReLU layers shows that the
first 7 ReLU layers are more sensitive to background and foreground than the
other ReLU layers. In the case where background is the same (Fig. 2a), the dis-
tribution of the mean values is small at the 1st – 3rd ReLU layers and becomes
larger from the 4th ReLU layer. This suggests that VGG-16 recognizes the sim-
ilarity of images at the 1st – 3rd ReLU layers and starts to learn differences of
images from the 4th ReLU layer (though not strictly clear at the 4th layer).

On the other hand, in the case where backgrounds are different (Fig. 2b, c),
the values at the 1st – 3rd ReLU layers are larger and similar with each other
even if foregrounds are different (compared to the same background case). This
observation is in good harmony with the same background case. If we change
foreground (Fig. 2b, c), the distribution of mean values is completely different
from the layer 4th to the 7th layer (at each layer respectively).

Combining insights given by [5,27], we may thus conclude that VGG-16
weights background in early layers and foreground at latter layers. More pre-
cisely, from the 1st to the 3rd ReLU layers capture background while from the
5th to the 7th ReLU layers do foreground, and the 4th ReLU layer seems to be
in-between as a transition.
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Using appropriate semantic levels of image features for discriminators is cru-
cial. We use above observation for employing appropriate semantic levels of
image features for foreground and background. Namely, we use features from
the 1st to the 3rd ReLU layers for background and those from the 5th to the 7th
ReLU layers for foreground. We remark that more deeply exploring background-
foreground relation is preferable.

4 Proposed Method

4.1 Network Design

Our network follows the GAN architecture [6] for image synthesis [1,2,7,11]. Like
[1], we condition GAN on both text descriptions and a source image. As seen
in Sect. 3, we use different semantic levels of features depending on foreground
and background. Namely, we design the network in which a text description on
foreground matches features in latter layers while features of a source image
in early layers are preserved as much background information as possible. This
appropriate-level selection allows our model to synthesize realistic images that
meet both a text description and a source image.

Nguyen et al. [12] argued that dual discriminators in GAN generate better
images in quality than a single discriminator, though the two discriminators has
the same architecture. To deal with foreground and background separately and
more precisely, we employ a pair of discriminators where each of them inde-
pendently judges foreground/background of synthesized images. For different
semantic levels of foreground and background, we design our discriminators with
different architectures and make each play a different role. Namely, we design
one discriminator to evaluate matching foreground between a text description
and a synthesized image following [1,2,7] and the other discriminator to evalu-
ate whether background of a source image is retained in the synthesized image.
We also introduce an effective training strategy for adversarial learning in a
three-player minimax game.

4.2 Network Architecture

We build our network, called Paired-D GAN, upon the GAN architecture with
one generator G and a pair of discriminators, foreground discriminator DFG

and background discriminator DBG (Fig. 3). We employ the end-to-end encoder-
decoder architecture for our generator G following [1]. The generator G receives
a source image and a text description where the source image is with the size
of n × n × 3 (n can be 64, 128 or 256; 3 are for RGB channels) and the text
description is with maximum of 50 words. G synthesizes an image of n × n × 3
that adaptively changes foreground to match the text description while retaining
background of the source image.

Two discriminators DFG, DBG evaluate whether the synthesized image is
real or generated. DFG receives the generated image and the ground-truth fore-
ground image with the text feature extracted from the text description to focus
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Fig. 3. Framework of our proposed Paired-D GAN.

on foreground evaluation. DBG, on the other hand, receives the image feature
extracted from the source image and the text feature extracted from the text
description to focus on background evaluation. We use the pre-trained VGG-16
to extract image features from input images for DBG as mentioned in Sect. 3.
We remark that the two discriminators do not share their parameters.

We train G, DFG, and DBG simultaneously in a three-player minimax game
using adaptive loss functions. This adversarial learning process enables our gener-
ator G to generate plausible images that mach text descriptions while preserving
background information of the source image.

4.2.1 Generator
Our generator G consists of an image encoder, a text encoder, and a decoder.

The image encoder is a stack of three convolution layers that receives the
source image size of n × n × 3 to produce an image feature with the size of
m × m × 512 (m can be 16, 32 or 64 depending on n) at the top. We adopt the
pre-trained text encoder [25] for our text encoder and use the text embedding
augmentation [7] to produce a text feature with the size of 1× 128. The channel
of the text feature is duplicated to the size of m×m× 128 to be consistent with
that of the image feature.

The image feature and the text feature are then concatenated to produce an
image-text feature as the input of the decoder.

The decoder in our generator consists of one convolution layer, four residual
blocks [32], and two deconvolution layers. The convolution layer reduces the
channel of the image-text feature, and the four residual blocks enrich feature
maps. The two deconvolution layers, on the other hand, upscale the feature
maps.
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We remark that each of the convolution and deconvolution layers in the image
encoder and the decoder is followed by a batch normalization (BN) layer [33] and
a ReLU layer. The only exception is the last deconvolution layer in the decoder
where it uses the tanh activation to guarantee that the range of the output can
be normalized to be [0, 255] (in the test step). We remark that we use images
with the range [−1, 1] in the training step.

To reflect the features at early layers weighting background information into
a synthesized image, we employ the skip-connection from the image encoder to
the decoder. More precisely, the first layer in the image encoder is connected
to the last layer in the decoder while the second layer in the image encoder is
paired with the second last layer in the decoder.

4.2.2 Foreground Discriminator
The foreground discriminator should be able to discriminate foreground of real
images and that of generated images. We employ the foreground-text matching in
the foreground discriminator. Following previous work [1,2,7,11], we design our
foreground discriminator DFG as a classification task that rewards high proba-
bility scores to real images and low ones to generated images in the adversarial
learning phase.

Our DFG is a stack of six convolution layers.
Each of the first four convolution layers uses the filter size of 4 × 4, the

reflection-padding size of 1 × 1, and the stride size of 2 × 2, producing 64, 128,
256, 512 output channels, respectively. These convolution layers encode an input
to produce the high-level semantic image features containing mostly foreground
information (cf. Sect. 3). These image features are then concatenated with the
text feature obtained from the input text description using the text encoder to
produce a image-text feature.

Next, the image-text feature is fed into the last two convolution layers, each
of which is with the filter size of 1 × 1, and 4 × 4, respectively, no padding, the
stride size of 1 × 1, outputting 512, 4 channels respectively. The output of the
last convolution layer indicates how realistic the image input to DFG is using
the similarity probability.

We remark that each of the all convolution layers except for the last one is
followed by a BN layer and a ReLU layer. We follow Reed et al. [2] to train DFG

(Eq. 1).
DFG need not access all image information but focuses on foreground image

information. To enhance the performance of DFG, we introduce a processing
before feeding an input image to DFG. Namely, we create a binary filter where
0 at each pixel is generated with the probability of p. We then apply the binary
filter to the image input to DFG, and feed the filtered image to DFG. This pro-
cessing brings two benefits: (1) DFG has more chance to focus on only foreground
information, helping to extract semantic image features of foreground, and (2)
this operation prevents quick convergence [34].
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4.2.3 Background Discriminator
The background discriminator evaluates how real and generated images are dif-
ferent in background. We therefore design the background discriminator as a
verification task with the limited number of samples in each category. This is
because each image in a dataset has different background in general, and the
number of samples with the same (very similar) background is limited. To this
end, we follow the idea of the Siamese network [35] because it shows the effec-
tiveness for the verification task.

Our DBG consists of four fully-connected layers in which the first three layers
are two shared-parameter layers and the last one is the joint layer, producing
512, 100, 10, 1 outputs, respectively. DBG receives two input features (one from
the source image with the text description and the other from the generated
image with the text description) and passes them to the two shared-parameter
layers separately before being jointly trained at the last layer.

In order to create the input of DBG, we feed the input image into the pre-
trained VGG-16 to compute the mean and variance at the first four ReLU layers
(cf. Sect. 3), and then concatenate them with the text feature extracted from
the input text description using the pre-trained text encoder [25] (without using
the text embedding augmentation [7]). The text feature is useful to disentangle
background and foreground information (e.g. images with the same background
and different foreground information can be positive samples for the background
verification task). We remark that the size of the input is 1 × 1068 where the
image feature is with the size of 1 × 768 and the text feature is with the size of
1 × 300.

We propose a new training strategy for DBG, which is based on the con-
trastive loss function [35] that fully uses a source image and a text description.

4.3 Adversarial Learning for Paired-GAN

Training the generator G, and a pair of discriminators DFG and DBG becomes a
three-player minimax game conditioned on images and text descriptions. Using
positive/negative training samples, we first update the parameters of DFG with
fixing the parameters of DBG and G, and then update the parameters of DBG

with fixing the parameters of DFG and G, and finally update the parameters of G
with fixing the parameters of the two discriminators. We iterate this adversarial
training to minimize each loss function separately.

For the adversarial training for Paired-D GAN, we use positive and negative
samples whose definitions depend on DFG and DBG. A positive sample of DFG

is a sample in which foreground is the ground-truth and its text description is
matching. A sample is negative if (1) foreground is the ground-truth but its
text description is mismatching or (2) foreground is generated even if its text
description is matching. A positive sample of DBG, on the other hand, is the
one where the background of the source image used in training the generator
and discriminators for each iteration is the same regardless of whether text
descriptions are matching or mismatching. A sample is negative if background
is generated even if the text descriptions match foreground.
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Table 1. Types of input pairs used in the adversarial leaning process.

DFG DBG

Positive {g, ϕ(t)} {(s, t), (s, t̄)}
Negative {g, ϕ(t̄)}, {G(s, ϕ(t)), ϕ(t)} {(G(s, ϕ(t)), t), (G(s̄, ϕ(t)), t)}

Let s be an image in a dataset and t be a text description. Then, we let g
be an image in the dataset whose foreground is the ground-truth to t (t is thus
a matching text description to g). We denote by s̄ a randomly selected image
(from the dataset) having different background from s, and by t̄ a different text
description from t (a mismatching text description to g). We also denote by ϕ(·)
the text embedding augmentation [7]. Then, positive/negative samples of DFG

and DBG can be classified as in Table 1.
Let D(·) denote the discriminators (DFG and DBG). At each iteration in

training D(·), we randomly select all the types of samples in Table 1 from the
training dataset, and feed them one by one to D(·) to obtain the probability
whether the sample is positive or negative. We train the two discriminators to
reward a high score to a positive sample and a low score to a negative sample.
Through the training, we maximize the ability of D(·) to assign relevant scores
to the samples. The loss functions for D(·) are defined as follows:

LFG = E(g,t)∼pdata [log DFG(g, ϕ(t))] +
1
2
E(g,t̄)∼pdata [log(1 − DFG(g, ϕ(t̄)))]

+
1
2
E(s,t)∼pdata [log(1 − DFG(G(s, ϕ(t)), ϕ(t)))]. (1)

LBG = E(s,t,s,t̄)∼pdata [log DBG((s, t), (s, t̄))]
+E(s,t,s̄,t)∼pdata [log(1 − DBG((G(s, ϕ(t)), t), (G(s̄, ϕ(t)), t)))], (2)

where pdata denotes the all the training data and E(·)∼pdata means the expecta-
tion over pdata. Each term in Eqs. 1 and 2 corresponds to the type of samples:
log(D(·)) for positive samples and log(1 − D(·)) for negative samples. Note that
Eq. 1 follows [2].

Since our adversarial learning process is a three-player minimax game, we also
train the generator G in which we minimize the terms of log(1 − D(·)) in Eqs. 1
and 2. In practice, however, maximizing log(D(·)) is known to be better than
minimizing log(1 − D(·)) in training G [6]. We also introduce the reconstruction
loss to keep the structure of the input source image. Now the loss function for
G is:

LG = E(s,t)∼pdata [log(DFG(G(s, ϕ(t)), ϕ(t))]
+E(s,t,s,t̄)∼pdata [log(DBG((G(s, ϕ(t)), t)), (G(s, ϕ(t̄)), t̄)))]
+λE(s,t)∼pdata ‖s − G(s, ϕ(t))‖2 , (3)

where λ is the hyperparameter, and ‖.‖2 is the Euclidean distance. To train G,
we randomly select an image s, and two text descriptions t and t̄ to generate
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the synthesized images. We then feed them to the DFG and DBG to receive
feedback signals for updating parameters of G. We remark that since our aim is
not to reconstruct the source image, λ can be small (we set λ = 0.0001 in our
experiments).

As discussed in [2], training DFG with match and mismatching text descrip-
tions enables DFG to feedback stronger image-text matching signals, allowing G
to generate plausible images that match text descriptions. Our usage of a pair of
image and a text description in training DBG, on the other hand, enables DBG

to generate stronger signals as well, leading to the capability of G of retain-
ing background information (though at the beginning, DBG spends more time
to verify background, DBG gradually need not concern foreground thanks to
text descriptions, and has ability of easily judging whether the image is real
or generated). Accordingly, the above adversarial learning brings to Paired-D
GAN the capability of generating realistic images that match text descriptions
in foreground and precisely retain background of source images.

5 Experiments

5.1 Dataset and Compared Methods

Dataset. We used the Caltech-200 bird dataset [13] and the Oxford-102 flower
dataset [14]. The Caltech-200 bird dataset contains 11,788 images belonging
to one of 200 different bird classes. The Oxford-102 flower dataset has 8,189
images with 102 classes of the flower. Each image in the datasets has 10 captions
collected by Reed et al. [25]. Following previous work [1,2], we split the Caltech-
200 dataset into 150 training classes and 50 testing classes, and the Oxford-102
dataset into 82 training classes and 20 testing classes. We remark that we resized
the images used in our experiments to ones with 64 × 64.

Compared Methods. We employed the model proposed by Dong+ [1] as the
baseline. We also compared our method with Yang+ [15] that generates image
foreground and background separately and recursively from input text descrip-
tions (we chose this though the task is different because it generates realistic
images). For Dong+ [1], we used the re-implementation by Seonghyeon [36] (as
recommended by the authors of Dong+ [1]). For Yang+ [15], we used the publicly
available source codes with the parameters recommended by the authors [37].
We remark that we used the combination of a noise vector and a text feature [2]
as an input for Yang+ [15].

5.2 Implementation and Training Details

We implemented our model in PyTorch. We adopted the pre-trained text
encoder [25] without any fine-tuning. To extract image features for the back-
ground discriminator input, we employed the VGG-16 [29] pre-trained on Ima-
geNet dataset [30] without any fine-tuning. Like [1], we also used the image
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augmentation technique (e.g., flipping, rotating, zooming and cropping). We con-
ducted all the experiments using a PC with CPU 6-cores Xeon 3.7 GHz, 64 GB
of RAM, and GTX1080 Titan GPU (11 GB of VRAM).

We optimized the adaptive loss functions (Sect. 4.3) using Adam opti-
mizer [38] with the learning rate of 2 × 10−3, the learning rate decay of 0.5
performed every 100 epochs, the momentum β1 = 0.9 and β2 = 0.999, and the
division from zero parameter ε = 10−8. We did not use the weight decay. We
trained our model with the batch size of 48 for 600 epochs.

5.3 Evaluation Metrics

We use the inception score (IS) [39] to evaluate the overall quality of synthe-
sized images. We also use two metrics, foreground score (FGS) and background
score (BGS) for evaluating foreground and background of synthesized images
separately.

IS is widely used for the generative model evaluation through the output
of the Inception-v3 network [40]: IS(G) ≈ exp( 1

N

∑N
i=1 DKL(p(y|x̂(i)||p̂(y)))),

where x̂ is a synthesized image by the generator G, N is the number of generated
images, DKL is the Kullback–Leibler divergence, y indicates an instance of all
classes given in the dataset, p(y|x̂) is the conditional class distribution, and
p̂(y) = 1

N

∑N
i=1 p(y|x̂(i)) is the empirical marginal-class distribution.

We employ the visual-text shared-space [25] and compute the matching
between text descriptions and foreground for the foreground evaluation: FGS =
‖fimg − ftext‖2 where fimg and ftext are the features from the image encoder and
the text encoder.

For background evaluation, we use BGS = ‖x̂ � xseg − x � xseg‖2 where x
is the source image, and � is the element-wise multiplication. xseg is the inverse
map of xseg where xseg is the binary segmentation map of x provided from the
dataset. We use xseg to mask foreground for x and x̂.

5.4 Qualitative Evaluation

Figures 4 and 5 illustrate some examples of the results obtained by our method
(with p = 0.8) and Dong+ [1]. They show that the synthesized images by our
method match the text descriptions more precisely than Dong+ [1] while suc-
cessfully retaining background of the source images.

On the Caltech-200 dataset, we see that the results by our method are clearer
in foreground and background with less noise than Dong+ [1] (Fig. 4). Though
foreground of the results by Dong+ [1] also matches the text descriptions (not
always though), we observe that background is not preserved well.

On the Oxford-102 dataset, on the other hand, we see that our method and
Dong+ [1] both have some failures in synthesizing images (red rectangles in
Fig. 5). This is because images in the dataset are too complex; for example, the
detail of flowers such as a stamen is too small. Nevertheless, we still observe that
our method outperforms Dong+ [1]. We note that Dong+ [1] generated different
flowers from the source images (blue rectangles in Fig. 5).
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Dong+ Paired-D GAN

This black bird has no other 
colors with a short bill.

A small brown bird with a 
brown crown has a white belly.

A black bird with a red head.

An orange bird with green wings
and blue head.

This particular bird with a red 
head and breast and features 
grey wings.

Source image

Fig. 4. Visual comparison of our method against Dong+ [1] on the Caltech-200 bird
dataset [13]. First row: source images, most left column: text descriptions. Each image
is generated using a source image and a text description.

Dong+ Paired-D GAN

The petals are white and the 
stamens are light yellow.

The light purple flower has a large 
number of small petals.

The petals of the flower have 
yellow and red stripes.

The petals of the flower have 
mixed colors of bright yellow and 
light green.

The flower shown has reddish 
petals with yellow edges.

Source image

Fig. 5. Visual comparison of our method against Dong+ [1] on Oxford-102 flower
dataset [14]. First row: source image, most left column: text descriptions. Each image
is generated using its source image and text. The red rectangles indicate the failure syn-
thesized images in both Dong+ [1] and ours. The blue rectangles indicate the generated
images different from their source images. (Color figure online)

5.5 Quantitative Evaluation

For the quantitative evaluation, we computed IS, FGS, and BGS of the synthe-
sized images, which are shown in Table 2. To compute IS, we iterated 10 times
the experiment that we synthesize 8000 images, and computed the average and
the standard deviation of the resulting scores, as recommended in [39]. For FGS
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Table 2. Quantitative comparison using IS (larger is better), FGS, and BGS (smaller
is better). The best results are given in blue.

Dataset Caltech-200 [13] Oxford-102 [14]

Metric IS ⇑ FGS ⇓ BGS ⇓ IS ⇑ FGS ⇓ BGS ⇓
Paired-D GAN 6.39± 0.18 17.26± 0.21 9.03± 0.06 4.41± 0.08 8.81± 0.08 8.87± 0.04

Dong+ [1] 5.56± 0.14 18.60± 0.09 11.83± 0.06 4.03± 0.11 9.71± 0.11 9.47± 0.14

Yang+ [15] 5.92± 1.04 18.34± 0.14 – 3.49± 0.04 10.32± 0.09 –

and BGS, we iterated 5 times the experiment that we synthesize 600 images, and
computed the average and the standard deviation of the resulting scores. Note
that we cannot compute BGS for Yang+ [15] because no ground-truths of back-
ground images exit for Yang+ [15]. We also remark that we used the visual-text
shared-space model [25] pre-trained on the Caltech-200 (or Oxford-102) dataset
to compute features for FGS.

Table 2 shows that our method achieves the best performances in all the
metrics, meaning that the images synthesized by our method are superior not
only in the overall quality (IS) but also in foreground-text matching (FGS) and
in background preservation (BGS). The outperformance of our method against
Dong+ [1] in all the metrics confirms that evaluating foreground and back-
ground separately in the training phase is effective. Compared to Yang+ [15],
we see that our method and Dong+ [1] generate more realistic image, suggesting
that for semantic image synthesis, generating foreground and background at the
same time is better than separately and recursively generating foreground and
background.

5.6 Detailed Analysis

First of all, we evaluated the effectiveness of employing DBG through comparing
our complete model with models using DFG only or DBG only. As shown in
Table 3, the method using DFG only achieves FGS best, and the method using
DBG only achieves BGS best. This means that the method using DFG is cor-
rectly tuned to the foreground while the method using DBG is correctly tuned to
the background, and that DFG and DBG properly work for foreground and back-
ground each. Our completed method, on the other hand, balances foreground
and background well as it achieves IS best.

Table 3. Evaluation on the effectiveness of employing DBG.

Dataset Caltech-200 Oxford-102

Metric IS ⇑ FGS ⇓ BGS ⇓ IS ⇑ FGS ⇓ BGS ⇓
Complete model

(DFG + DBG)

6.39± 0.18 17.26± 0.21 9.03± 0.06 4.41± 0.08 8.81± 0.08 8.87± 0.04

Model with DFG only 5.83± 0.19 16.74± 0.12 11.89± 0.08 4.21± 0.07 8.52± 0.13 10.02± 0.08

Model with DBG only 6.02± 0.15 20.33± 0.11 7.63± 0.08 4.24± 0.10 10.68± 0.14 8.32± 0.15
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(a) Caltech-200 dataset.
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Fig. 6. Quantitative comparison by changing p by 0.2 from 0.0 to 0.8.

An orange bird with black head.

p=0.0 p=0.2 p=0.4 p=0.6 p=0.8 p=0.0 p=0.2 p=0.4 p=0.6 p=0.8

A blue bird with black wings.

Fig. 7. Zero-shot results by changing p by 0.2 from 0.0 to 0.8. The source image has
simple background (right) or complex background (left).

This is a red bird. A black bird.

This red bird has blue wings.

Fig. 8. Zero-shot results of interpolation. Left: interpolation between two source images
with the same target text description. Right: interpolation between two target text
descriptions for the same source image.

The petals of this 
flower are white
with a large stigma.

A yellow bird with 
a black on wings.

The red flower has 
no visible stamens.

This bird is 
completely white.

Fig. 9. Zero-shot results from a source image and text descriptions that are not related
to each other, showing the effectiveness of foreground and background discriminators.

The bird is blue and red in 
color with a black beak.

This bird is completely 
red with black swing.

Fig. 10. Zero-shot results from the same source image and text descriptions, showing
variety of foregrounds.
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Then, we evaluated the impact on the results by different p’s (the probability
of generating zero at each pixel) used in creating the binary filter for the fore-
ground discriminator DFG. We changed p by 0.2 from 0.0 (no mask) to 0.8 and
computed IS, BGS, FGS at each p (Fig. 6). Visual comparison with different
p’s are illustrated in Fig. 7 (two examples with simple/complex background).
Figure 6 indicates that all the metrics become better at p = 0.8 (80% in prob-
ability of a source image are masked to focus on foreground). The explanation
for this can be as follows, which is also supported by Fig. 7. When p = 0.0 (no
mask), DFG accesses the whole source image in the training phase, affecting
background of generated images. By increasing p, DFG is likely to focus on only
foreground, leading to improving the quality of generated images. We note that
background discriminator DBG also succeeds in maintaining background of the
source image (we can see that the background is kept well in most cases).

We next demonstrated the smooth interpolation between the source image
and the target image. Figure 8 show synthesized images obtained by the lin-
ear interpolation between the source and the target images. In Fig. 8 (left), we
interpolated two source images with a fixed text description. In contrast, we
keep the source image fixed while changing text descriptions in Fig. 8 (right).
These results indicate that our method is capable of independently interpolat-
ing between source images and text descriptions. We remark that our method
preserve background well regardless of interpolation.

Figure 9 shows the generated images obtained using source images from the
Caltech-200 [13] dataset with text descriptions from the Oxford-102 [14] dataset
(not used in training phase), and vice verse. Figure 9 shows that our model
retains background of source images and changes only foreground to match text
descriptions (e.g. color) even if they are not used in the training (regardless of
untrained text descriptions). This illustrates the flexible capability of our model
to disentangle foreground and background.

We also show in Fig. 10 the effectiveness of text embedding augmentation [7]
in our method to synthesize various images using the same source image and
text descriptions.

6 Conclusion

We proposed Paired-D GAN conditioned on both text descriptions and images
for semantic image synthesis. Paired-D GAN consists of one generator and two
discriminators with different architectures where one discriminator is used for
judging foreground and the other is for judging background. Our method is
able to synthesize a realistic image where an input text description matches its
corresponding part (foreground) of the image while preserving background of a
given source image. Experimental results on the Caltech-200 and the Oxford-102
datasets demonstrate the effectiveness of our method.
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